1
|
Zhang S, Wang N, Gao Z, Gao J, Wang X, Xie H, Wang CY, Zhang S. Reductive stress: The key pathway in metabolic disorders induced by overnutrition. J Adv Res 2025:S2090-1232(25)00031-1. [PMID: 39805424 DOI: 10.1016/j.jare.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/04/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The balance of redox states is crucial for maintaining physiological homeostasis. For decades, the focus has been mainly on the concept of oxidative stress, which is involved in the mechanism of almost all diseases. However, robust evidence has highlighted that reductive stress, the other side of the redox spectrum, plays a pivotal role in the development of various diseases, particularly those related to metabolism and cardiovascular health. AIM OF REVIEW In this review, we present an extensive array of evidence for the occurrence of reductive stress and its significant implications mainly in metabolic and cardiovascular diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW Reductive stress is defined as a shift in the cellular redox balance towards a more reduced state, characterized by an excess of endogenous reductants (such as NADH, NADPH, and GSH) over their oxidized counterparts (NAD+, NADP+, and GSSG). While oxidative stress has been the predominant mechanism studied in obesity, metabolic disorders, and cardiovascular diseases, growing evidence underscores the critical role of reductive stress. This review discusses how reductive stress contributes to metabolic and cardiovascular pathologies, emphasizing its effects on key cellular processes. For example, excessive NADH accumulation can disrupt mitochondrial function by impairing the electron transport chain, leading to decreased ATP production and increased production of reactive oxygen species. In the endoplasmic reticulum (ER), an excess of reductive equivalents hampers protein folding, triggering ER stress and activating the unfolded protein response, which can lead to insulin resistance and compromised cellular homeostasis. Furthermore, we explore how excessive antioxidant supplementation can exacerbate reductive stress by further shifting the redox balance, potentially undermining the beneficial effects of exercise, impairing cardiovascular health, and aggravating metabolic disorders, particularly in obese individuals. This growing body of evidence calls for a reevaluation of the role of reductive stress in disease pathogenesis and therapeutic interventions.
Collapse
Affiliation(s)
- Shiyi Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhichao Gao
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Gao
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohui Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Xie
- Institute of Translational Medicine, Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Cong-Yi Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shu Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Misceo D, Strømme P, Bitarafan F, Chawla MS, Sheng Y, Bach de Courtade SM, Eide L, Frengen E. Biallelic NDUFA4 Deletion Causes Mitochondrial Complex IV Deficiency in a Patient with Leigh Syndrome. Genes (Basel) 2024; 15:500. [PMID: 38674434 PMCID: PMC11050323 DOI: 10.3390/genes15040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Oxidative phosphorylation involves a complex multi-enzymatic mitochondrial machinery critical for proper functioning of the cell, and defects herein cause a wide range of diseases called "primary mitochondrial disorders" (PMDs). Mutations in about 400 nuclear and 37 mitochondrial genes have been documented to cause PMDs, which have an estimated birth prevalence of 1:5000. Here, we describe a 4-year-old female presenting from early childhood with psychomotor delay and white matter signal changes affecting several brain regions, including the brainstem, in addition to lactic and phytanic acidosis, compatible with Leigh syndrome, a genetically heterogeneous subgroup of PMDs. Whole genome sequencing of the family trio identified a homozygous 12.9 Kb deletion, entirely overlapping the NDUFA4 gene. Sanger sequencing of the breakpoints revealed that the genomic rearrangement was likely triggered by Alu elements flanking the gene. NDUFA4 encodes for a subunit of the respiratory chain Complex IV, whose activity was significantly reduced in the patient's fibroblasts. In one family, dysfunction of NDUFA4 was previously documented as causing mitochondrial Complex IV deficiency nuclear type 21 (MC4DN21, OMIM 619065), a relatively mild form of Leigh syndrome. Our finding confirms the loss of NDUFA4 function as an ultra-rare cause of Complex IV defect, clinically presenting as Leigh syndrome.
Collapse
Affiliation(s)
- Doriana Misceo
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; (F.B.); (Y.S.); (E.F.)
| | - Petter Strømme
- Division of Pediatrics and Adolescent Medicine, Oslo University Hospital and Faculty of Medicine, University of Oslo, 0450 Oslo, Norway;
| | - Fatemeh Bitarafan
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; (F.B.); (Y.S.); (E.F.)
| | | | - Ying Sheng
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; (F.B.); (Y.S.); (E.F.)
| | | | - Lars Eide
- Department of Biochemistry, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; (S.M.B.d.C.); (L.E.)
| | - Eirik Frengen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; (F.B.); (Y.S.); (E.F.)
| |
Collapse
|
3
|
Zhou Q, Li X, Zhou H, Zhao J, Zhao H, Li L, Zhou Y. Mitochondrial respiratory chain component NDUFA4: a promising therapeutic target for gastrointestinal cancer. Cancer Cell Int 2024; 24:97. [PMID: 38443961 PMCID: PMC10916090 DOI: 10.1186/s12935-024-03283-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/24/2024] [Indexed: 03/07/2024] Open
Abstract
Gastrointestinal cancer, one of the most common cancers, continues to be a major cause of mortality and morbidity globally. Accumulating evidence has shown that alterations in mitochondrial energy metabolism are involved in developing various clinical diseases. NADH dehydrogenase 1 alpha subcomplex 4 (NDUFA4), encoded by the NDUFA4 gene located on human chromosome 7p21.3, is a component of mitochondrial respiratory chain complex IV and integral to mitochondrial energy metabolism. Recent researchers have disclosed that NDUFA4 is implicated in the pathogenesis of various diseases, including gastrointestinal cancer. Aberrant expression of NDUFA4 leads to the alteration in mitochondrial energy metabolism, thereby regulating the growth and metastasis of cancer cells, indicating that it might be a new promising target for cancer intervention. This article comprehensively reviews the structure, regulatory mechanism, and biological function of NDUFA4. Of note, the expression and roles of NDUFA4 in gastrointestinal cancer including colorectal cancer, liver cancer, gastric cancer, and so on were discussed. Finally, the existing problems of NDUFA4-based intervention on gastrointestinal cancer are discussed to provide help to strengthen the understanding of the carcinogenesis of gastrointestinal cancer, as well as the development of new strategies for clinical intervention.
Collapse
Affiliation(s)
- Quanling Zhou
- Department of Pathophysiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Department of Physics, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xiaohui Li
- Department of Physics, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Honglian Zhou
- Department of Physics, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Juanjuan Zhao
- Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000, Guizhou, China
| | - Hailong Zhao
- Department of Pathophysiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Lijuan Li
- Department of Pathophysiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Ya Zhou
- Department of Pathophysiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- Department of Physics, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
4
|
Wang J, Yang Y, Xu Y, Xu Z, Zhao X, Jia R, Dai Y. Long noncoding RNA XIST inhibition promotes Leydig cell apoptosis by acting as a competing endogenous RNA for microRNA-145a-5p that targets SIRT1 in late-onset hypogonadism. Cell Tissue Res 2024; 395:285-297. [PMID: 38353742 DOI: 10.1007/s00441-024-03860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/04/2024] [Indexed: 03/01/2024]
Abstract
Leydig cell (LCs) apoptosis is responsible for decreased serum testosterone levels during late-onset hypogonadism (LOH). Our study was designed to illustrate the regulatory effect of lncRNA XIST on LCs and to clarify its molecular mechanism of action in LOH. The Leydig cells (TM3) was treated by 300 μM H2O2 for 8 h to establish Leydig cell oxidative stress model in vitro. The expression levels of lncRNA XIST in the testicular tissues of patients with LOH were measured using fluorescence in situ hybridization (FISH). The interaction between lncRNA XIST/SIRT1 and miR-145a-5p was assessed using starBase and dual-luciferase reporter gene assays. Apoptotic cells and Caspase3 activity were determined by flow cytometry (FCM) assay. Testosterone concentration was determined by ELISA. Moreover, histological assessment of testicles in mice was performed by using HE staining and the TUNEL assay was used to determine apoptosis. We found that the lncRNA XIST was downregulated in the testicular tissues of LOH patients and mice and in H2O2-induced TM3 cells. XIST siRNA significantly promoted apoptosis, enhanced Caspase3 activity and reduced testosterone levels in H2O2-stimulated TM3 cells. Further studies showed that the miR-145a-5p inhibitor reversed the effect of XIST-siRNA on H2O2-induced Leydig cell apoptosis. MiR-145a-5p negatively regulated SIRT1 expression, and SIRT1-siRNA reversed the effects of the miR-145a-5p inhibitor on H2O2 stimulated TM3 cells. The in vivo experiments indicated that silencing of the lncRNA XIST aggravated LOH symptoms in mice. Inhibition of lncRNA XIST induces Leydig cell apoptosis through the miR-145a-5p/SIRT1 axis in the progression of LOH.
Collapse
Affiliation(s)
- Jing Wang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, 210006, China
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, 210008, China
| | - Yiqiong Yang
- Department of Emergency, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yang Xu
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, 210008, China
| | - Zhipeng Xu
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, 210008, China
| | - Xiaozhi Zhao
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, 210008, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, 210006, China.
| | - Yutian Dai
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, 210008, China.
| |
Collapse
|
5
|
Zhu J, Xiang X, Hu X, Li C, Song Z, Dong Z. miR-147 Represses NDUFA4, Inducing Mitochondrial Dysfunction and Tubular Damage in Cold Storage Kidney Transplantation. J Am Soc Nephrol 2023; 34:1381-1397. [PMID: 37211637 PMCID: PMC10400108 DOI: 10.1681/asn.0000000000000154] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/25/2023] [Indexed: 05/23/2023] Open
Abstract
SIGNIFICANCE STATEMENT Cold storage-associated transplantation (CST) injury occurs in renal transplant from deceased donors, the main organ source. The pathogenesis of CST injury remains poorly understood, and effective therapies are not available. This study has demonstrated an important role of microRNAs in CST injury and revealed the changes in microRNA expression profiles. Specifically, microRNA-147 (miR-147) is consistently elevated during CST injury in mice and in dysfunctional renal grafts in humans. Mechanistically, NDUFA4 (a key component of mitochondrial respiration complex) is identified as a direct target of miR-147. By repressing NDUFA4, miR-147 induces mitochondrial damage and renal tubular cell death. Blockade of miR-147 and overexpression of NDUFA4 reduce CST injury and improve graft function, unveiling miR-147 and NDUFA4 as new therapeutic targets in kidney transplantation. BACKGROUND Kidney injury due to cold storage-associated transplantation (CST) is a major factor determining the outcome of renal transplant, for which the role and regulation of microRNAs remain largely unclear. METHODS The kidneys of proximal tubule Dicer (an enzyme for microRNA biogenesis) knockout mice and their wild-type littermates were subjected to CST to determine the function of microRNAs. Small RNA sequencing then profiled microRNA expression in mouse kidneys after CST. Anti-microRNA-147 (miR-147) and miR-147 mimic were used to examine the role of miR-147 in CST injury in mouse and renal tubular cell models. RESULTS Knockout of Dicer from proximal tubules attenuated CST kidney injury in mice. RNA sequencing identified multiple microRNAs with differential expression in CST kidneys, among which miR-147 was induced consistently in mouse kidney transplants and in dysfunctional human kidney grafts. Anti-miR-147 protected against CST injury in mice and ameliorated mitochondrial dysfunction after ATP depletion injury in renal tubular cells in intro . Mechanistically, miR-147 was shown to target NDUFA4, a key component of the mitochondrial respiration complex. Silencing NDUFA4 aggravated renal tubular cell death, whereas overexpression of NDUFA4 prevented miR-147-induced cell death and mitochondrial dysfunction. Moreover, overexpression of NDUFA4 alleviated CST injury in mice. CONCLUSIONS microRNAs, as a class of molecules, are pathogenic in CST injury and graft dysfunction. Specifically, miR-147 induced during CST represses NDUFA4, leading to mitochondrial damage and renal tubular cell death. These results unveil miR-147 and NDUFA4 as new therapeutic targets in kidney transplantation.
Collapse
Affiliation(s)
- Jiefu Zhu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Xiaohong Xiang
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia
- Department of Critical Care Medicine, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Xiaoru Hu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Chenglong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Zhixia Song
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia
- Department of Nephrology, Yichang Central People's Hospital, The First Clinical Medical College of Three Gorges University, Yichang, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia
| |
Collapse
|