1
|
Dehghan Z, Darya G, Mehdinejadiani S, Derakhshanfar A. Comparison of two methods of sperm- and testis-mediated gene transfer in production of transgenic animals: A systematic review. Anim Genet 2024; 55:328-343. [PMID: 38361185 DOI: 10.1111/age.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/19/2023] [Accepted: 01/27/2024] [Indexed: 02/17/2024]
Abstract
Transgenic (Tg) animal technology is one of the growing areas in biology. Various Tg technologies, each with its own advantages and disadvantages, are available for generating Tg animals. These include zygote microinjection, electroporation, viral infection, embryonic stem cell or spermatogonial stem cell-mediated production of Tg animals, sperm-mediated gene transfer (SMGT), and testis-mediated gene transfer (TMGT). However, there are currently no comprehensive studies comparing SMGT and TMGT methods, selecting appropriate gene delivery carriers (such as nanoparticles and liposomes), and determining the optimal route for gene delivery (SMGT and TMGT) for producing Tg animal. Here we aim to provide a comprehensive assessment comparing SMGT and TMGT methods, and to introduce the best carriers and gene transfer methods to sperm and testis to generate Tg animals in different species. From 2010 to 2022, 47 studies on SMGT and 25 studies on TMGT have been conducted. Mice and rats were the most commonly used species in SMGT and TMGT. Regarding the SMGT approach, nanoparticles, streptolysin-O, and virus packaging were found to be the best gene transfer methods for generating Tg mice. In the TMGT method, the best gene transfer methods for generating Tg mice and rats were virus packaging, dimethyl sulfoxide, electroporation, and liposome. Our study has shown that the efficiency of producing Tg animals varies depending on the species, gene carrier, and method of gene transfer.
Collapse
Affiliation(s)
- Zeinab Dehghan
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamhossein Darya
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shayesteh Mehdinejadiani
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Derakhshanfar
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Sameni M, Moradbeigi P, Hosseini S, Ghaderian SMH, Jajarmi V, Miladipour AH, Basati H, Abbasi M, Salehi M. ZIF-8 Nanoparticle: A Valuable Tool for Improving Gene Delivery in Sperm-Mediated Gene Transfer. Biol Proced Online 2024; 26:4. [PMID: 38279129 PMCID: PMC10811821 DOI: 10.1186/s12575-024-00229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024] Open
Abstract
Metal-organic frameworks (MOFs) are porous materials with unique characteristics that make them well-suited for drug delivery and gene therapy applications. Among the MOFs, zeolitic imidazolate framework-8 (ZIF-8) has emerged as a promising candidate for delivering exogenous DNA into cells. However, the potential of ZIF-8 as a vector for sperm-mediated gene transfer (SMGT) has not yet been thoroughly explored.This investigation aimed to explore the potential of ZIF-8 as a vector for enhancing genetic transfer and transgenesis rates by delivering exogenous DNA into sperm cells. To test this hypothesis, we employed ZIF-8 to deliver a plasmid expressing green fluorescent protein (GFP) into mouse sperm cells and evaluated the efficiency of DNA uptake. Our findings demonstrate that ZIF-8 can efficiently load and deliver exogenous DNA into mouse sperm cells, increasing GFP expression in vitro. These results suggest that ZIF-8 is a valuable tool for enhancing genetic transfer in SMGT, with important implications for developing genetically modified animals for research and commercial purposes. Additionally, our study highlights the potential of ZIF-8 as a novel class of vectors for gene delivery in reproductive biology.Overall, our study provides a foundation for further research into using ZIF-8 and other MOFs as gene delivery systems in reproductive biology and underscores the potential of these materials as promising vectors for gene therapy and drug delivery.
Collapse
Affiliation(s)
- Marzieh Sameni
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Moradbeigi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Sara Hosseini
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hasti Noavaran Gene Royan, Tehran, Iran
| | | | - Vahid Jajarmi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Miladipour
- Department of Nephrology, Clinical Research and Development Center at Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojat Basati
- Tissue Engineering Department, TISSUEHUB Co, Tehran, Iran
- Department of Chemical Engineering, Faculty of Engineering, Tehran University, Tehran, Iran
| | - Maryam Abbasi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Zhino-Gene Research Services Co, Tehran, Iran
| | - Mohammad Salehi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Daneluz LO, Acosta IB, Nunes LS, Blodorn EB, Domingues WB, Martins AWS, Dellagostin EN, Rassier GT, Corcini CD, Fróes CN, Komninou ER, Varela AS, Campos VF. Efficiency and cell viability implications using tip type electroporation in zebrafish sperm cells. Mol Biol Rep 2020; 47:5879-5887. [PMID: 32661869 PMCID: PMC7356131 DOI: 10.1007/s11033-020-05658-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/08/2020] [Indexed: 12/26/2022]
Abstract
Sperm-mediated gene transfer (SMGT) has a potential use for zebrafish transgenesis. However, transfection into fish sperm cells still needs to be improved. The objective was to demonstrate the feasibility of tip type electroporation in zebrafish sperm, showing a protocol that provide high transfection efficiency, with minimal side-effects. Sperm was transfected with a Cy3-labelled DNA using tip type electroporation with voltages ranging from 500 to 1500 V. Sperm kinetics parameters were assessed using Computer Assisted Semen Analysis (CASA) and cell integrity, reactive oxygen species (ROS), mitochondrial functionality and transfection rate were evaluated by flow cytometry. The transfection rates were positively affected by tip type electroporation, reaching 64.9% ± 3.6 in the lowest voltage used (500 V) and 86.6% ± 1.9 in the highest (1500 V). The percentage of overall motile sperm in the electrotransfected samples was found to decrease with increasing field strength (P < 0.05). Increase in the sperm damaged plasma membrane was observed with increasing field strength (P < 0.05). ROS and sperm mitochondrial functionality did not present a negative response after the electroporation (P > 0.05). Overall results indicate that tip type electroporation enhances the internalization of exogenous DNA into zebrafish sperm cells with minimal harmful effects to sperm cells.
Collapse
Affiliation(s)
- Larissa O Daneluz
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Izani B Acosta
- ReproPel, Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil.,Laboratório de Reprodução Animal, Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas - Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Leandro S Nunes
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Eduardo B Blodorn
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - William B Domingues
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Amanda W S Martins
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Eduardo N Dellagostin
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Gabriela T Rassier
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Carine D Corcini
- ReproPel, Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Charles N Fróes
- Laboratório de Ictiologia, Faculdade de Zootecnia - Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Eliza R Komninou
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil.,ReproPel, Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Antônio S Varela
- ReproPel, Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil.,Laboratório de Reprodução Animal, Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas - Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Vinicius F Campos
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
4
|
Blödorn EB, Domingues WB, Komninou ER, Daneluz L, Dellagostin EN, Weege A, Varela AS, Corcini CD, Collares TV, Campos VF. Voltages up to 600V did not affect cryopreserved bovine spermatozoa on capillary-type electroporation. Reprod Biol 2018; 18:416-421. [DOI: 10.1016/j.repbio.2018.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 11/24/2022]
|
5
|
Abstract
Antifreeze proteins (AFPs) protect marine fishes from freezing in icy seawater. They evolved relatively recently, most likely in response to the formation of sea ice and Cenozoic glaciations that occurred less than 50 million years ago, following a greenhouse Earth event. Based on their diversity, AFPs have independently evolved on many occasions to serve the same function, with some remarkable examples of convergent evolution at the structural level, and even instances of lateral gene transfer. For some AFPs, the progenitor gene is recognizable. The intense selection pressure exerted by icy seawater, which can rapidly kill unprotected fish, has led to massive AFP gene amplification, as well as some partial gene duplications that have increased the size and activity of the antifreeze. The many protein evolutionary processes described in Gordon H. Dixon's Essays in Biochemistry article will be illustrated here by examples from studies on AFPs. Abbreviations: AFGP: antifreeze glycoproteins; AFP: antifreeze proteins; GHD: Gordon H. Dixon; SAS: sialic acid synthase; TH: thermal hysteresis.
Collapse
Affiliation(s)
- Peter L Davies
- a Department of Biomedical and Molecular Sciences , Queen's University , Kingston , Canada
| | - Laurie A Graham
- a Department of Biomedical and Molecular Sciences , Queen's University , Kingston , Canada
| |
Collapse
|
6
|
Tonelli FMP, Lacerda SMSN, Tonelli FCP, Costa GMJ, de França LR, Resende RR. Progress and biotechnological prospects in fish transgenesis. Biotechnol Adv 2017; 35:832-844. [PMID: 28602961 DOI: 10.1016/j.biotechadv.2017.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/04/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022]
Abstract
The history of transgenesis is marked by milestones such as the development of cellular transdifferentiation, recombinant DNA, genetic modification of target cells, and finally, the generation of simpler genetically modified organisms (e.g. bacteria and mice). The first transgenic fish was developed in 1984, and since then, continuing technological advancements to improve gene transfer have led to more rapid, accurate, and efficient generation of transgenic animals. Among the established methods are microinjection, electroporation, lipofection, viral vectors, and gene targeting. Here, we review the history of animal transgenesis, with an emphasis on fish, in conjunction with major developments in genetic engineering over the past few decades. Importantly, spermatogonial stem cell modification and transplantation are two common techniques capable of revolutionizing the generation of transgenic fish. Furthermore, we discuss recent progress and future biotechnological prospects of fish transgenesis, which has strong applications for the aquaculture industry. Indeed, some transgenic fish are already available in the current market, validating continued efforts to improve economically important species with biotechnological advancements.
Collapse
Affiliation(s)
- Fernanda M P Tonelli
- Laboratório de Sinalização Celular e Nanobiotecnologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Instituto Nanocell, Divinópolis, MG, Brazil
| | - Samyra M S N Lacerda
- Laboratório de Biologia Celular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávia C P Tonelli
- Laboratório de Sinalização Celular e Nanobiotecnologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Guilherme M J Costa
- Laboratório de Biologia Celular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiz Renato de França
- Laboratório de Biologia Celular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM, Brazil.
| | - Rodrigo R Resende
- Laboratório de Sinalização Celular e Nanobiotecnologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Instituto Nanocell, Divinópolis, MG, Brazil.
| |
Collapse
|
7
|
Wang C, Sun G, Wang Y, Kong N, Chi Y, Yang L, Xin Q, Teng Z, Wang X, Wen Y, Li Y, Xia G. Bacterial magnetic particles improve testes-mediated transgene efficiency in mice. Drug Deliv 2017; 24:651-659. [PMID: 28283003 PMCID: PMC8241085 DOI: 10.1080/10717544.2017.1293195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nano-scaled materials have been proved to be ideal DNA carriers for transgene. Bacterial magnetic particles (BMPs) help to reduce the toxicity of polyethylenimine (PEI), an efficient gene-transferring agent, and assist tissue transgene ex vivo. Here, the effectiveness of the BMP-PEI complex-conjugated foreign DNAs (BPDs) in promoting testes-mediated gene transfer (TMGT) in mouse was compared with that of liposome-conjugated foreign DNAs. The results proved that through testes injection, the clusters of BPDs successfully reached the cytoplasm and the nuclear of spermatogenesis cell, and expressed in testes of transgene founder mice. Additionally, the ratio of founder mice obtained from BPDs (88%) is about 3 times higher than the control (25%) (p < 0.05). Interestingly, the motility of sperms recovered from epididymis of the founder mice from BPD group were significantly improved, as compared with the control (p < 0.01). Based on classic breeding, the ratio of transgene mice within the first filial was significantly higher in BPDs compared with the control (73.8% versus 11.6%, p < 0.05). TMGT in this study did not produce visible histological changes in the testis. In conclusion, nano-scaled BPDs could be an alternative strategy for efficiently producing transgene mice in vivo.
Collapse
Affiliation(s)
- Chao Wang
- a State Key Laboratories for Agrobiotechnology and College of Biological Sciences, China Agricultural University , Beijing , China
| | - Guanghong Sun
- a State Key Laboratories for Agrobiotechnology and College of Biological Sciences, China Agricultural University , Beijing , China
| | - Ye Wang
- a State Key Laboratories for Agrobiotechnology and College of Biological Sciences, China Agricultural University , Beijing , China
| | - Nana Kong
- a State Key Laboratories for Agrobiotechnology and College of Biological Sciences, China Agricultural University , Beijing , China
| | - Yafei Chi
- b School of Basic Medical Science, Capital Medical University , Beijing , China
| | - Leilei Yang
- b School of Basic Medical Science, Capital Medical University , Beijing , China.,c Department of Pathology , Eye Hospital of Hebei Province , Hebei , China , and
| | - Qiliang Xin
- a State Key Laboratories for Agrobiotechnology and College of Biological Sciences, China Agricultural University , Beijing , China
| | - Zhen Teng
- a State Key Laboratories for Agrobiotechnology and College of Biological Sciences, China Agricultural University , Beijing , China
| | - Xu Wang
- a State Key Laboratories for Agrobiotechnology and College of Biological Sciences, China Agricultural University , Beijing , China
| | - Yujun Wen
- d Ningxia Key Laboratory of Cerebrocranial Diseases, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Ningxia Medical University , Yinchuan , China
| | - Ying Li
- a State Key Laboratories for Agrobiotechnology and College of Biological Sciences, China Agricultural University , Beijing , China
| | - Guoliang Xia
- a State Key Laboratories for Agrobiotechnology and College of Biological Sciences, China Agricultural University , Beijing , China
| |
Collapse
|
8
|
Das J, Choi YJ, Song H, Kim JH. Potential toxicity of engineered nanoparticles in mammalian germ cells and developing embryos: treatment strategies and anticipated applications of nanoparticles in gene delivery. Hum Reprod Update 2016; 22:588-619. [PMID: 27385359 DOI: 10.1093/humupd/dmw020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 05/16/2016] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Engineered nanoparticles (ENPs) offer technological advantages for a variety of industrial and consumer products as well as show promise for biomedical applications. Recent progress in the field of nanotechnology has led to increased exposure to nanoparticles by humans. To date, little is known about the adverse effects of these ENPs on reproductive health, although interest in nanotechnology area is growing. A few biocompatible ENPs have a high loading capacity for exogenous substances, including drugs, DNA or proteins, and can selectively deliver molecular cargo into cells; however, they represent a potential tool for gene delivery into gametes and embryos. OBJECTIVE AND RATIONALE Understanding the reprotoxicological aspects of these ENPs is of the utmost importance to reliably estimate its potential impact on human health. In addition, a search for protective agents to combat ENP-mediated reproductive toxicity is warranted. Therefore, in this review we summarize the toxic effects of a few ENPs (metal and metal oxides, carbon-based nanoparticles, quantum dots and chitosan) in mammalian germ cells and developing embryos, and propose some treatment strategies that could mitigate nanoparticle-mediated toxicity. In addition, we outline the anticipated applications of ENPs in transgenic animal production in order to generate models for investigations into the mechanisms for human disease. SEARCH METHODS A literature search was performed using the National Center for Biotechnology Information PubMed database up until March 2016 and relevant keywords were used to obtain information regarding mammalian germ cell-specific toxicity and embryotoxicity of ENPs, possible treatment strategies, as well as the anticipated applications of nanoparticles in gene delivery in germ cells and embryos. Only English language publications were included. OUTCOMES Here, we demonstrate the toxicological effects of ENPs in mammalian germ cells and developing embryos by considering both in vitro and in vivo experimental models based on the existing literature. The biodistribution and cellular uptake of ENPs and the observed toxicities are mostly dependent on ENP size and surface-coating agents (surface functional groups/surface charge). ENPs have been shown to induce toxicity via oxidative stress, inflammation and DNA damage in both human and mouse germ cells. Use of antioxidant, anti-inflammatory drugs and selective metal chelators would be beneficial against nanoparticle-induced toxicity. WIDER IMPLICATIONS Our review provides the reproductive scientists a mechanistic insight into the reprotoxicological aspects of ENPs to reliably estimate its potential impact on human health and help to select/design protective agents to combat ENP-mediated toxicity. Furthermore, research regarding the detailed mechanism(s) of ENP toxicity in mammalian germ cells and developing embryos as well as the search for protective agents to combat ENP-mediated reproductive toxicity is warranted. Furthermore, we anticipate that investigations into the possibility of applying nanovectors to gene delivery in germ cells and early embryos will open new horizons in reproductive biology.
Collapse
Affiliation(s)
- Joydeep Das
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Yun-Jung Choi
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| |
Collapse
|
9
|
Qin Z, Li Y, Su B, Cheng Q, Ye Z, Perera DA, Fobes M, Shang M, Dunham RA. Editing of the Luteinizing Hormone Gene to Sterilize Channel Catfish, Ictalurus punctatus, Using a Modified Zinc Finger Nuclease Technology with Electroporation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:255-263. [PMID: 26846523 DOI: 10.1007/s10126-016-9687-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
Channel catfish (Ictalurus punctatus) is the most important freshwater aquaculture species in the USA. Genetically enhanced fish that are sterile could both profit the catfish industry and reduce potential environmental and ecological risks. As the first step to generate sterile channel catfish, three sets of zinc finger nuclease (ZFN) plasmids targeting the luteinizing hormone (LH) gene were designed and electroporated into one-cell embryos, different concentrations were introduced, and the Cel-I assay was conducted to detect mutations. Channel catfish carrying the mutated LH gene were sterile, as confirmed by DNA sequencing and mating experiments. The overall mutation rate was 19.7 % for 66 channel catfish, and the best treatment was ZFN set 1 at the concentration 25 μg/ml. To our knowledge, this is the first instance of gene editing of fish via plasmid introduction instead of mRNA microinjection. The introduction of the ZFN plasmids may have reduced mosaicism, as mutated individuals were gene edited in every tissue evaluated. Apparently, the plasmids were eventually degraded without integration, as they were not detectable in mutated individuals using PCR. Carp pituitary extract failed to induce spawning and restoration of fertility, indicating the need for developing other hormone therapies to achieve reversal of sterility upon demand. This is the first sterilization achieved using ZFN technology in an aquaculture species and the first successful gene editing of channel catfish. Our results will help understand the roles of the LH gene, purposeful sterilization of teleost fishes, and is a step towards control of domestic, hybrid, exotic, invasive, and transgenic fishes.
Collapse
Affiliation(s)
- Zhenkui Qin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yun Li
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Laboratory of Fisheries Physiology and Reproduction-Breeding, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Key Laboratory of Freshwater Aquatic Biotechnology and Genetic Breeding, Ministry of Agriculture, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Qi Cheng
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhi Ye
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dayan A Perera
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Research and Development Corporation, Gus R. Douglass Land-Grant Institute, West Virginia State University, Institute, WV, 25112, USA
| | - Michael Fobes
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Mei Shang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Key Laboratory of Freshwater Aquatic Biotechnology and Genetic Breeding, Ministry of Agriculture, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Rex A Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
10
|
Su B, Shang M, Li C, Perera DA, Pinkert CA, Irwin MH, Peatman E, Grewe P, Patil JG, Dunham RA. Effects of transgenic sterilization constructs and their repressor compounds on hatch, developmental rate and early survival of electroporated channel catfish embryos and fry. Transgenic Res 2014; 24:333-52. [PMID: 25367204 DOI: 10.1007/s11248-014-9846-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/27/2014] [Indexed: 11/28/2022]
Abstract
Channel catfish (Ictalurus punctatus) embryos were electroporated with sterilization constructs targeting primordial germ cell proteins or with buffer. Some embryos then were treated with repressor compounds, cadmium chloride, copper sulfate, sodium chloride or doxycycline, to prevent expression of the transgene constructs. Promoters included channel catfish nanos and vasa, salmon transferrin (TF), modified yeast Saccharomyces cerevisiae copper transport protein (MCTR) and zebrafish racemase (RM). Knock-down systems were the Tet-off (nanos and vasa constructs), MCTR, RM and TF systems. Knock-down genes included shRNAi targeting 5' nanos (N1), 3' nanos (N2) or dead end (DND), or double-stranded nanos RNA (dsRNA) for overexpression of nanos mRNA. These constructs previously were demonstrated to knock down nanos, vasa and dead end, with the repressors having variable success. Exogenous DNA affected percentage hatch (% hatch), as all 14 constructs, except for the TF dsRNA, TF N1 (T), RM DND (C), vasa DND (C), vasa N1 (C) and vasa N2 (C), had lower % hatch than the control electroporated with buffer. The MCTR and RM DND (T) constructs resulted in delayed hatch, and the vasa and nanos constructs had minimal effects on time of hatch (P < 0.05). Cadmium chloride appeared to counteract the slow development caused by the TF constructs in two TF treatments (P < 0.05). The 4 ppt sodium chloride treatment for the RM system decreased % hatch (P < 0.05) and slowed development. In the case of nanos constructs, doxycycline greatly delayed hatch (P < 0.05). Adverse effects of the transgenes and repressors continued for several treatments for the first 6 days after hatch, but only in a few treatments during the next 10 days. Repressors and gene expression impacted the yield of putative transgenic channel catfish fry, and need to be considered and accounted for in the hatchery phase of producing transgenically sterilized catfish fry and their fertile counterparts. This fry output should be considered to ensure that sufficient numbers of transgenic fish are produced for future applications and for defining repressor systems that are the most successful.
Collapse
Affiliation(s)
- Baofeng Su
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cheng Q, Su B, Qin Z, Weng CC, Yin F, Zhou Y, Fobes M, Perera DA, Shang M, Soller F, Shi Z, Davis A, Dunham RA. Interaction of diet and the masou salmon Δ5-desaturase transgene on Δ6-desaturase and stearoyl-CoA desaturase gene expression and N-3 fatty acid level in common carp (Cyprinus carpio). Transgenic Res 2014; 23:729-42. [PMID: 25011564 DOI: 10.1007/s11248-014-9812-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 06/30/2014] [Indexed: 12/31/2022]
Abstract
The masou salmon Δ5-desaturase-like gene (D5D) driven by the common carp β-actin promoter was transferred into common carp (Cyprinus carpio) that were fed two diets. For P1 transgenic fish fed a commercial diet, Δ6-desaturase-like gene (D6D) and stearoyl-CoA desaturase (SCD) mRNA levels in muscle were up-regulated (P < 0.05) 12.7- and 17.9-fold, respectively, and the D6D mRNA level in the gonad of transgenic fish was up-regulated 6.9-fold (P < 0.05) compared to that of non-transgenic fish. In contrast, D6D and SCD mRNA levels in transgenic fish were dramatically down-regulated (P < 0.05), 50.2- and 16.7-fold in brain, and 5.4- and 2.4-fold in liver, respectively, in comparison with those of non-transgenic fish. When fed a specially formulated diet, D6D and SCD mRNA levels in muscle of transgenic fish were up-regulated (P < 0.05) 41.5- and 8.9-fold, respectively, and in liver 6.0- and 3.3-fold, respectively, compared to those of non-transgenic fish. In contrast, D6D and SCD mRNA levels in the gonad of transgenic fish were down-regulated (P < 0.05) 5.5- and 12.4-fold, respectively, and D6D and SCD mRNA levels in the brain were down-regulated 14.9- and 1.4-fold (P < 0.05), respectively, compared to those of non-transgenic fish. The transgenic common carp fed the commercial diet had 1.07-fold EPA, 1.12-fold DPA, 1.07-fold DHA, and 1.07-fold higher observed total omega-3 fatty acid levels than non-transgenic common carp. Although these differences were not statistically different (P > 0.05), there were significantly (P < 0.10) higher omega-3 fatty acid levels when considering the differences for all of the individual omega-3 fatty acids. The genotype × diet interactions observed indicated that the potential of desaturase transgenesis cannot be realized without using a well-designed diet with the needed amount of substrates.
Collapse
Affiliation(s)
- Qi Cheng
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36839, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Xin N, Liu T, Zhao H, Wang Z, Liu J, Zhang Q, Qi J. The impact of exogenous DNA on the structure of sperm of olive flounder (Paralichthys olivaceus). Anim Reprod Sci 2014; 149:305-10. [PMID: 25042775 DOI: 10.1016/j.anireprosci.2014.06.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/07/2014] [Accepted: 06/23/2014] [Indexed: 11/30/2022]
Abstract
Sperm-mediated gene transfer (SMGT) is a promising transgenic technology that relies on the capability of sperm to internalize exogenous DNA. In marine fish, however, the interaction between sperm and exogenous DNA appears to be deficient. Here, we demonstrated significant DNase activity in the seminal plasma of the olive flounder. When incubated with naked-DNA, the spermatozoa lost their structural integrity, including the head, mitochondria and flagellum, in an incubation time-dependent manner. However, internalization of a liposome-DNA complex resulted in the structural integrity of the spermatozoa being maintained, even when using incubation times of up to 50min. We concluded that in the olive flounder, SMGT is possible by integrating liposome-DNA complexes, rather than naked-DNA alone, into the sperm. In brief, removal of the seminal plasma and packaging the exogenous DNA were necessary for successful SMGT in the olive flounder.
Collapse
Affiliation(s)
- Nian Xin
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Tiantian Liu
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Haitao Zhao
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Zhenwei Wang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Jie Qi
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao, Shandong, 266003, China.
| |
Collapse
|
13
|
Gross J, Bhattacharya D, Pelletreau KN, Rumpho ME, Reyes-Prieto A. Secondary and Tertiary Endosymbiosis and Kleptoplasty. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2012. [DOI: 10.1007/978-94-007-2920-9_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
NanoSMGT: Transgene transmission into bovine embryos using halloysite clay nanotubes or nanopolymer to improve transfection efficiency. Theriogenology 2011; 76:1552-60. [DOI: 10.1016/j.theriogenology.2011.06.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 06/25/2011] [Accepted: 06/25/2011] [Indexed: 01/07/2023]
|
15
|
Transgene transmission in chickens by sperm-mediated gene transfer after seminal plasma removal and exogenous DNA treated with dimethylsulfoxide or N,N-dimethylacetamide. J Biosci 2011; 36:613-20. [DOI: 10.1007/s12038-011-9098-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Campos VF, Amaral MG, Seixas FK, Pouey JL, Selau LP, Dellagostin OA, Deschamps JC, Collares T. Exogenous DNA uptake by South American catfish (Rhamdia quelen) spermatozoa after seminal plasma removal. Anim Reprod Sci 2011; 126:136-41. [DOI: 10.1016/j.anireprosci.2011.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 05/02/2011] [Accepted: 05/16/2011] [Indexed: 01/03/2023]
|
17
|
NanoSMGT: transfection of exogenous DNA on sex-sorted bovine sperm using nanopolymer. Theriogenology 2011; 75:1476-81. [DOI: 10.1016/j.theriogenology.2011.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 01/10/2011] [Accepted: 01/10/2011] [Indexed: 12/26/2022]
|
18
|
Liu T, Liu L, Wei Q, Hong Y. Sperm nuclear transfer and transgenic production in the fish medaka. Int J Biol Sci 2011; 7:469-75. [PMID: 21547064 PMCID: PMC3088289 DOI: 10.7150/ijbs.7.469] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 04/10/2011] [Indexed: 12/04/2022] Open
Abstract
Sperm nuclear transfer or intracytoplasmic sperm injection (ICSI) is a powerful assisted reproductive technology (ART) for treating human male infertility. Controversial reports of increased birth defects have raised concerns about the ART's safety. The cause for birth defects, however, has remained elusive for analysis in human because of the sample size, male infertility genetics, physiological heterogeneity and associated procedures such as embryo manipulations. Animal models are required to evaluate factors leading to the increased birth defects. Here we report the establishment of medakafish model for ICSI and transgenic production. This small laboratory fish has high fecundity and easy embryology. We show that ICSI produced a 5% high percentage of fertile animals that exhibited both paternal and maternal contribution as evidenced by the pigmentation marker. Furthermore, when sperm were pre-incubated with a plasmid ubiquitously expressing RFP and subjected to ICSI, 50% of sperm nuclear transplants showed germline transmission. We conclude that medaka is an excellent model for ICSI to evaluate birth defects and that sperm nuclear transfer can mediate stable gene transfer at high efficiency. Although more demanding for experimentation, sperm-mediated transgenesis should be particularly applicable for aquaculture species with a lengthy generation time and/or a large adult body size.
Collapse
Affiliation(s)
- Tongming Liu
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
| | | | | | | |
Collapse
|