1
|
Singh AK. Hsrω and Other lncRNAs in Neuronal Functions and Disorders in Drosophila. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010017. [PMID: 36675966 PMCID: PMC9865238 DOI: 10.3390/life13010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/27/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Long noncoding RNAs (lncRNAs) have a crucial role in epigenetic, transcriptional and posttranscriptional regulation of gene expression. Many of these regulatory lncRNAs, such as MALAT1, NEAT1, HOTAIR, etc., are associated with different neurodegenerative diseases in humans. The lncRNAs produced by the hsrω gene are known to modulate neurotoxicity in polyQ and amyotrophic lateral sclerosis disease models of Drosophila. Elevated expression of hsrω lncRNAs exaggerates, while their genetic depletion through hsrω-RNAi or in an hsrω-null mutant background suppresses, the disease pathogenicity. This review discusses the possible mechanistic details and implications of the functions of hsrω lncRNAs in the modulation of neurodegenerative diseases.
Collapse
Affiliation(s)
- Anand Kumar Singh
- Interdisciplinary School of Life Sciences, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
2
|
Singh AK, Choudhury SR, De S, Zhang J, Kissane S, Dwivedi V, Ramanathan P, Petric M, Orsini L, Hebenstreit D, Brogna S. The RNA helicase UPF1 associates with mRNAs co-transcriptionally and is required for the release of mRNAs from gene loci. eLife 2019; 8:e41444. [PMID: 30907728 PMCID: PMC6447362 DOI: 10.7554/elife.41444] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 03/22/2019] [Indexed: 12/21/2022] Open
Abstract
UPF1 is an RNA helicase that is required for nonsense-mediated mRNA decay (NMD) in eukaryotes, and the predominant view is that UPF1 mainly operates on the 3'UTRs of mRNAs that are directed for NMD in the cytoplasm. Here we offer evidence, obtained from Drosophila, that UPF1 constantly moves between the nucleus and cytoplasm by a mechanism that requires its RNA helicase activity. UPF1 is associated, genome-wide, with nascent RNAs at most of the active Pol II transcription sites and at some Pol III-transcribed genes, as demonstrated microscopically on the polytene chromosomes of salivary glands and by ChIP-seq analysis in S2 cells. Intron recognition seems to interfere with association and translocation of UPF1 on nascent pre-mRNAs, and cells depleted of UPF1 show defects in the release of mRNAs from transcription sites and their export from the nucleus.
Collapse
Affiliation(s)
- Anand K Singh
- School of BiosciencesUniversity of BirminghamBirminghamUnited Kingdom
| | | | - Sandip De
- School of BiosciencesUniversity of BirminghamBirminghamUnited Kingdom
| | - Jie Zhang
- Life SciencesUniversity of WarwickCoventryUnited Kingdom
| | - Stephen Kissane
- School of BiosciencesUniversity of BirminghamBirminghamUnited Kingdom
| | - Vibha Dwivedi
- School of BiosciencesUniversity of BirminghamBirminghamUnited Kingdom
| | | | - Marija Petric
- School of BiosciencesUniversity of BirminghamBirminghamUnited Kingdom
| | - Luisa Orsini
- School of BiosciencesUniversity of BirminghamBirminghamUnited Kingdom
| | | | - Saverio Brogna
- School of BiosciencesUniversity of BirminghamBirminghamUnited Kingdom
| |
Collapse
|
3
|
Heterochromatin protein 1 (HP1) is intrinsically required for post-transcriptional regulation of Drosophila Germline Stem Cell (GSC) maintenance. Sci Rep 2019; 9:4372. [PMID: 30867469 PMCID: PMC6416348 DOI: 10.1038/s41598-019-40152-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/07/2019] [Indexed: 01/05/2023] Open
Abstract
A very important open question in stem cells regulation is how the fine balance between GSCs self-renewal and differentiation is orchestrated at the molecular level. In the past several years much progress has been made in understanding the molecular mechanisms underlying intrinsic and extrinsic controls of GSC regulation but the complex gene regulatory networks that regulate stem cell behavior are only partially understood. HP1 is a dynamic epigenetic determinant mainly involved in heterochromatin formation, epigenetic gene silencing and telomere maintenance. Furthermore, recent studies have revealed the importance of HP1 in DNA repair, sister chromatid cohesion and, surprisingly, in positive regulation of gene expression. Here, we show that HP1 plays a crucial role in the control of GSC homeostasis in Drosophila. Our findings demonstrate that HP1 is required intrinsically to promote GSC self-renewal and progeny differentiation by directly stabilizing the transcripts of key genes involved in GSCs maintenance.
Collapse
|
4
|
Sun Y, Xiaoyan H, Yun L, Chaoqun L, Jialing W, Liu Y, Yingqi Z, Peipei Y, Junjun P, Yuanming L. Identification of Key Candidate Genes and Pathways for Relationship between Ovarian Cancer and Diabetes Mellitus Using Bioinformatical Analysis. Asian Pac J Cancer Prev 2019; 20:145-155. [PMID: 30678426 PMCID: PMC6485580 DOI: 10.31557/apjcp.2019.20.1.145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ovarian cancer is one of the three major gynecologic cancers in the world. The aim of this study is to find the
relationship between ovarian cancer and diabetes mellitus by using the genetic screening technique. By GEO database
query and related online tools of analysis, we analyzed 185 cases of ovarian cancer and 10 control samples from
GSE26712, and a total of 379 different genes were identified, including 104 up-regulated genes and 275 down-regulated
genes. The up-regulated genes were mainly enriched in biological processes, including cell adhesion, transcription of
nucleic acid and biosynthesis, and negative regulation of cell metabolism. The down-regulated genes were enriched in
cell proliferation, migration, angiogenesis and macromolecular metabolism. Protein-protein interaction was analyzed
by network diagram and module synthesis analysis. The top ten hub genes (CDC20, H2AFX, ENO1, ACTB, ISG15,
KAT2B, HNRNPD, YWHAE, GJA1 and CAV1) were identified, which play important roles in critical signaling
pathways that regulate the process of oxidation-reduction reaction and carboxylic acid metabolism. CTD analysis
showed that the hub genes were involved in 1,128 distinct diseases (bonferroni-corrected P<0.05). Further analysis by
drawing the Kaplan-Meier survival curve indicated that CDC20 and ISG15 were statistically significant (P<0.05). In
conclusion, glycometabolism was related to ovarian cancer and genes and proteins in glycometabolism could serve as
potential targets in ovarian cancer treatment.
Collapse
Affiliation(s)
- Yi Sun
- Department of Toxicology, Guilin Medical University School of Public Health, Guilin, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Lakhotia SC. From Heterochromatin to Long Noncoding RNAs in Drosophila: Expanding the Arena of Gene Function and Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1008:75-118. [PMID: 28815537 DOI: 10.1007/978-981-10-5203-3_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent years have witnessed a remarkable interest in exploring the significance of pervasive noncoding transcripts in diverse eukaryotes. Classical cytogenetic studies using the Drosophila model system unraveled the perplexing attributes and "functions" of the "gene"-poor heterochromatin. Recent molecular studies in the fly model are likewise revealing the very diverse and significant roles played by long noncoding RNAs (lncRNAs) in development, gene regulation, chromatin organization, cell and nuclear architecture, etc. There has been a rapid increase in the number of identified lncRNAs, although a much larger number still remains unknown. The diversity of modes of actions and functions of the limited number of Drosophila lncRNAs, which have been examined, already reflects the profound roles of such RNAs in generating and sustaining the biological complexities of eukaryotes. Several of the known Drosophila lncRNAs originate as independent sense or antisense transcripts from promoter or intergenic, intronic, or 5'/3'-UTR regions, while many of them are independent genes that produce only lncRNAs or coding as well as noncoding RNAs. The different lncRNAs affect chromatin organization (local or large-scale pan-chromosomal), transcription, RNA processing/stability, or translation either directly through interaction with their target DNA sequences or indirectly by acting as intermediary molecules for specific regulatory proteins or may act as decoys/sinks, or storage sites for specific proteins or groups of proteins, or may provide a structural framework for the assembly of substructures in nucleus/cytoplasm. It is interesting that many of the "functions" alluded to heterochromatin in earlier cytogenetic studies appear to find correlates with the known subtle as well as far-reaching actions of the different small and long noncoding RNAs. Further studies exploiting the very rich and powerful genetic and molecular resources available for the Drosophila model are expected to unravel the mystery underlying the long reach of ncRNAs.
Collapse
Affiliation(s)
- Subhash C Lakhotia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
6
|
Choudhury SR, Singh AK, McLeod T, Blanchette M, Jang B, Badenhorst P, Kanhere A, Brogna S. Exon junction complex proteins bind nascent transcripts independently of pre-mRNA splicing in Drosophila melanogaster. eLife 2016; 5:e19881. [PMID: 27879206 PMCID: PMC5158136 DOI: 10.7554/elife.19881] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/21/2016] [Indexed: 12/16/2022] Open
Abstract
Although it is currently understood that the exon junction complex (EJC) is recruited on spliced mRNA by a specific interaction between its central protein, eIF4AIII, and splicing factor CWC22, we found that eIF4AIII and the other EJC core proteins Y14 and MAGO bind the nascent transcripts of not only intron-containing but also intronless genes on Drosophila polytene chromosomes. Additionally, Y14 ChIP-seq demonstrates that association with transcribed genes is also splicing-independent in Drosophila S2 cells. The association of the EJC proteins with nascent transcripts does not require CWC22 and that of Y14 and MAGO is independent of eIF4AIII. We also show that eIF4AIII associates with both polysomal and monosomal RNA in S2 cell extracts, whereas Y14 and MAGO fractionate separately. Cumulatively, our data indicate a global role of eIF4AIII in gene expression, which would be independent of Y14 and MAGO, splicing, and of the EJC, as currently understood.
Collapse
Affiliation(s)
| | - Anand K Singh
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Tina McLeod
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Marco Blanchette
- Stowers Institute for Medical Research, Kansas city, United States
| | - Boyun Jang
- Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Paul Badenhorst
- Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Aditi Kanhere
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Saverio Brogna
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
7
|
Ray M, Lakhotia SC. The commonly used eye-specific sev-GAL4 and GMR-GAL4 drivers in Drosophila melanogaster are expressed in tissues other than eyes also. J Genet 2016; 94:407-16. [PMID: 26440079 DOI: 10.1007/s12041-015-0535-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The binary GAL4-UAS system of conditional gene expression is widely used by Drosophila geneticists to target expression of the desired transgene in tissue of interest. In many studies, a preferred target tissue is the Drosophila eye, for which the sev-GAL4 and GMR-GAL4 drivers are most widely used since they are believed to be expressed exclusively in the developing eye cells. However, several reports have noted lethality following expression of certain transgenes under these GAL4 drivers notwithstanding the fact that eye is not essential for survival of the fly. Therefore, to explore the possibility that these drivers may also be active in tissues other than eye, we examined the expression of UAS-GFP reporter driven by the sev-GAL4 or GMR-GAL4 drivers. We found that both these drivers are indeed expressed in additional tissues, including a common set of specific neuronal cells in larval and pupal ventral and cerebral ganglia. Neither sev nor glass gene has so far been reported to be expressed in these neuronal cells. Expression pattern of sev-GAL4 driver parallels that of the endogenous Sevenless protein. In addition to cells in which sev-GAL4 is expressed, the GMR-GAL4 is expressed in several other larval cell types also. Further, two different GMR-GAL4 lines also show some specific differences in their expression domains outside the eye discs. These findings emphasize the need for a careful confirmation of the expression domains of a GAL4 driver being used in a given study, rather than relying only on the empirically claimed expression domains.
Collapse
Affiliation(s)
- Mukulika Ray
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221 005, India.
| | | |
Collapse
|
8
|
Cugusi S, Li Y, Jin P, Lucchesi JC. The Drosophila Helicase MLE Targets Hairpin Structures in Genomic Transcripts. PLoS Genet 2016; 12:e1005761. [PMID: 26752049 PMCID: PMC4710571 DOI: 10.1371/journal.pgen.1005761] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 12/02/2015] [Indexed: 12/28/2022] Open
Abstract
RNA hairpins are a common type of secondary structures that play a role in every aspect of RNA biochemistry including RNA editing, mRNA stability, localization and translation of transcripts, and in the activation of the RNA interference (RNAi) and microRNA (miRNA) pathways. Participation in these functions often requires restructuring the RNA molecules by the association of single-strand (ss) RNA-binding proteins or by the action of helicases. The Drosophila MLE helicase has long been identified as a member of the MSL complex responsible for dosage compensation. The complex includes one of two long non-coding RNAs and MLE was shown to remodel the roX RNA hairpin structures in order to initiate assembly of the complex. Here we report that this function of MLE may apply to the hairpins present in the primary RNA transcripts that generate the small molecules responsible for RNA interference. Using stocks from the Transgenic RNAi Project and the Vienna Drosophila Research Center, we show that MLE specifically targets hairpin RNAs at their site of transcription. The association of MLE at these sites is independent of sequence and chromosome location. We use two functional assays to test the biological relevance of this association and determine that MLE participates in the RNAi pathway.
Collapse
Affiliation(s)
- Simona Cugusi
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Yujing Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta
| | - John C. Lucchesi
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
9
|
Singh AK, Lakhotia SC. Expression of hsrω-RNAi transgene prior to heat shock specifically compromises accumulation of heat shock-induced Hsp70 in Drosophila melanogaster. Cell Stress Chaperones 2016; 21:105-120. [PMID: 26386576 PMCID: PMC4679734 DOI: 10.1007/s12192-015-0644-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/03/2015] [Accepted: 09/08/2015] [Indexed: 02/02/2023] Open
Abstract
A delayed organismic lethality was reported in Drosophila following heat shock when developmentally active and stress-inducible noncoding hsrω-n transcripts were down-regulated during heat shock through hs-GAL4-driven expression of the hsrω-RNAi transgene, despite the characteristic elevation of all heat shock proteins (Hsp), including Hsp70. Here, we show that hsrω-RNAi transgene expression prior to heat shock singularly prevents accumulation of Hsp70 in all larval tissues without affecting transcriptional induction of hsp70 genes and stability of their transcripts. Absence of the stress-induced Hsp70 accumulation was not due to higher levels of Hsc70 in hsrω-RNAi transgene-expressing tissues. Inhibition of proteasomal activity during heat shock restored high levels of the induced Hsp70, suggesting very rapid degradation of the Hsp70 even during the stress when hsrω-RNAi transgene was expressed ahead of heat shock. Unexpectedly, while complete absence of hsrω transcripts in hsrω (66) homozygotes (hsrω-null) did not prevent high accumulation of heat shock-induced Hsp70, hsrω-RNAi transgene expression in hsrω-null background blocked Hsp70 accumulation. Nonspecific RNAi transgene expression did not affect Hsp70 induction. These observations reveal that, under certain conditions, the stress-induced Hsp70 can be selectively and rapidly targeted for proteasomal degradation even during heat shock. In the present case, the selective degradation of Hsp70 does not appear to be due to down-regulation of the hsrω-n transcripts per se; rather, this may be an indirect effect of the expression of hsrω-RNAi transgene whose RNA products may titrate away some RNA-binding proteins which may also be essential for stability of the induced Hsp70.
Collapse
Affiliation(s)
- Anand K Singh
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Subhash C Lakhotia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
10
|
Singh AK, Lakhotia SC. The hnRNP A1 homolog Hrb87F/Hrp36 is important for telomere maintenance in Drosophila melanogaster. Chromosoma 2015; 125:373-88. [PMID: 26373285 DOI: 10.1007/s00412-015-0540-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/25/2015] [Accepted: 09/07/2015] [Indexed: 10/23/2022]
Abstract
Unlike the telomerase-dependent mammalian telomeres, HeT-A, TART, and TAHRE (HTT) retroposon arrays regulate Drosophila telomere length. Cap prevents telomeric associations (TAs) and telomeric fusions (TFs). Our results suggest important roles of Hrb87F in telomeric HTT array and cap maintenance in Drosophila. All chromosome arms, except 2L, in Df(3R)Hrb87F homozygotes (Hrb87F-null) displayed significantly elongated telomeres with amplified HTT arrays and high TAs, all of which resolved without damage. Presence of FLAG-tagged Hrb87F (FLAG-Hrb87F) on cap and subtelomeric regions following hsFLAG-Hrb87F transgene expression in Df(3R)Hrb87F homozygotes suppressed TAs without affecting telomere length. A normal X-chromosome telomere expanded within five generations in Hrb87F-null background and displayed high TAs, but not when hsFLAG-Hrb87F was co-expressed. Tel (1) /Gaiano line or HP1 loss-of-function mutant-derived expanded telomeres carry Hrb87F on cap and HTT arrays while Hrb87F-null telomeres have HP1 and HOAP on caps and expanded HTT arrays. ISWI, seen only on cap on normal telomeres, was abundant on Hrb87F-null expanded HTT arrays. Extended telomeres derived from Tel (1) (Gaiano) or HP1-null mutation background interact with those from Hrb87F-null, since while the end association frequency was negligible in Df(3R)Hrb87F/+ nuclei, it increased significantly in co-presence of Tel (1) or HP1-null-based expanded telomere/s. Together, these suggest complex interactions between members of the proteome of telomere so that absence of any key member leads to telomere expansion and/or enhanced TAs/TFs. HTT expansion in Hrb87F-null condition is not developmental but a germline event presumably because absence of Hrb87F in germline may deregulate HTT retroposition/replication leading to telomere elongation.
Collapse
Affiliation(s)
- Anand K Singh
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Subhash C Lakhotia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
11
|
Cugusi S, Kallappagoudar S, Ling H, Lucchesi JC. The Drosophila Helicase Maleless (MLE) is Implicated in Functions Distinct From its Role in Dosage Compensation. Mol Cell Proteomics 2015; 14:1478-88. [PMID: 25776889 PMCID: PMC4458714 DOI: 10.1074/mcp.m114.040667] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Indexed: 11/06/2022] Open
Abstract
Helicases are ubiquitous enzymes that unwind or remodel single or double-stranded nucleic acids, and that participate in a vast array of metabolic pathways. The ATP-dependent DEXH-box RNA/DNA helicase MLE was first identified as a core member of the chromatin remodeling MSL complex, responsible for dosage compensation in Drosophila males. Although this complex does not assemble in females, MLE is present. Given the multiplicity of functions attributed to its mammalian ortholog RNA helicase A, we have carried out an analysis for the purpose of determining whether MLE displays the same diversity. We have identified a number of different proteins that associate with MLE, implicating its role in specific pathways. We have documented this association in selected examples that include the spliceosome complex, heterogeneous Nuclear Ribonucleoproteins involved in RNA Processing and in Heterochromatin Protein 1 deposition, and the NuRD complex.
Collapse
Affiliation(s)
- Simona Cugusi
- From the ‡Department of Biology, Emory University, Atlanta, Georgia 30322
| | | | - Huiping Ling
- From the ‡Department of Biology, Emory University, Atlanta, Georgia 30322
| | - John C Lucchesi
- From the ‡Department of Biology, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
12
|
Dynamics of hnRNPs and omega speckles in normal and heat shocked live cell nuclei of Drosophila melanogaster. Chromosoma 2015; 124:367-83. [PMID: 25663367 DOI: 10.1007/s00412-015-0506-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/27/2014] [Accepted: 01/20/2015] [Indexed: 01/14/2023]
Abstract
The nucleus limited long-noncoding hsrω-n transcripts, hnRNPs, and some other RNA processing proteins organize nucleoplasmic omega speckles in Drosophila. Unlike other nuclear speckles, omega speckles rapidly disappear following cell stress, while hnRNPs and other associated proteins move away from chromosome sites, nucleoplasm, and the disappearing speckles to get uniquely sequestered at hsrω locus. Omega speckles reappear and hnRNPs get redistributed to normal locations during recovery from stress. With a view to understand the dynamics of omega speckles and their associated proteins, we used live imaging of GFP tagged hnRNPs (Hrb87F, Hrb98DE, or Squid) in unstressed and stressed Drosophila cells. Omega speckles display size-dependent mobility in nucleoplasmic domains with significant colocalization with nuclear matrix Tpr/Megator and SAFB proteins, which also accumulate at hsrω gene site after stress. Instead of moving towards the nuclear periphery located hsrω locus following heat shock or colchicine treatment, omega speckles rapidly disappear within nucleoplasm while chromosomal and nucleoplasmic hnRNPs move, stochastically or, more likely, by nuclear matrix-mediated transport to hsrω locus in non-particulate form. Continuing transcription of hsrω during cell stress is essential for sequestering incoming hnRNPs at the site. While recovering from stress, the sequestered hnRNPs are released as omega speckles in ISWI-dependent manner. Photobleaching studies reveal hnRNPs to freely move between nucleoplasm, omega speckles, chromosome regions, and hsrω gene site although their residence periods at chromosomes and hsrω locus are longer. A model for regulation of exchange of hnRNPs between nuclear compartments by hsrω-n transcripts is presented.
Collapse
|
13
|
Emerging roles for hnRNPs in post-transcriptional regulation: what can we learn from flies? Chromosoma 2014; 123:515-27. [PMID: 24913828 DOI: 10.1007/s00412-014-0470-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 12/13/2022]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a highly conserved family of RNA-binding proteins able to associate with nascent RNAs in order to support their localization, maturation and translation. Research over this last decade has remarked the importance of gene regulatory processes at post-transcriptional level, highlighting the emerging roles of hnRNPs in several essential biological events. Indeed, hnRNPs are key factors in regulating gene expression, thus, having a number of roles in many biological pathways. Moreover, failure of the activities catalysed by hnRNPs affects various biological processes and may underlie several human diseases including cancer, diabetes and neurodegenerative syndromes. In this review, we summarize some of hnRNPs' roles in the model organism Drosophila melanogaster, particularly focusing on their participation in all aspects of post-transcriptional regulation as well as their conserved role and involvement in the aetiology of human pathologies.
Collapse
|
14
|
Ji Y, Jarnik M, Tulin AV. Poly(ADP-ribose) glycohydrolase and poly(ADP-ribose)-interacting protein Hrp38 regulate pattern formation during Drosophila eye development. Gene 2013; 526:187-94. [PMID: 23711619 PMCID: PMC3729623 DOI: 10.1016/j.gene.2013.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/29/2013] [Accepted: 05/15/2013] [Indexed: 12/15/2022]
Abstract
Drosophila Hrp38, a homolog of human hnRNP A1, has been shown to regulate splicing, but its function can be modified by poly(ADP-ribosyl)ation. Notwithstanding such findings, our understanding of the roles of poly(ADP-ribosyl)ated Hrp38 on development is limited. Here, we have demonstrated that Hrp38 is essential for fly eye development based on a rough-eye phenotype with disorganized ommatidia observed in adult escapers of the hrp38 mutant. We also observed that poly(ADP-ribose) glycohydrolase (Parg) loss-of-function, which caused increased Hrp38 poly(ADP-ribosyl)ation, also resulted in the rough-eye phenotype with disrupted ommatidial lattice and reduced number of photoreceptor cells. In addition, ectopic expression of DE-cadherin, which is required for retinal morphogenesis, fully rescued the rough-eye phenotype of the hrp38 mutant. Similarly, Parg mutant eye clones had decreased expression level of DE-cadherin with orientation defects, which is reminiscent of DE-cadherin mutant eye phenotype. Therefore, our results suggest that Hrp38 poly(ADP-ribosyl)ation controls eye pattern formation via regulation of DE-cadherin expression, a finding which has implications for understanding the pathogenic mechanisms of Hrp38-related Fragile X syndrome and PARP1-related retinal degeneration diseases.
Collapse
Affiliation(s)
- Yingbiao Ji
- Cancer Biology Program, Epigenetics and Progenitor Cell Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
15
|
Pathak RU, Mamillapalli A, Rangaraj N, Kumar RP, Vasanthi D, Mishra K, Mishra RK. AAGAG repeat RNA is an essential component of nuclear matrix in Drosophila. RNA Biol 2013; 10:564-71. [PMID: 23588056 DOI: 10.4161/rna.24326] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic nucleus is functionally as well as spatially compartmentalized and maintains dynamic organization of sub-nuclear bodies. This organization is supported by a non-chromatin nuclear structure called the nuclear matrix. Although the precise molecular composition and ultra-structure of the nuclear matrix is not known, proteins and RNA molecules are its major components and several nuclear matrix proteins have been identified. However, the nature of its RNA component is unknown. Here we show that in Drosophila melanogaster, transcripts from AAGAG repeats of several hundred nucleotide in length are critical constituents of the nuclear matrix. While both the strands of this repeat are transcribed and are nuclear matrix associated, the polypurine strand is predominantly detected in situ. We also show that AAGAG RNA is essential for viability. Our results reveal the molecular identity of a critical RNA component of the nuclear architecture and point to one of the utilities of the repetitive part of the genome that has accumulated in higher eukaryotes.
Collapse
Affiliation(s)
- Rashmi U Pathak
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| | | | | | | | | | | | | |
Collapse
|
16
|
Bekenstein U, Soreq H. Heterogeneous nuclear ribonucleoprotein A1 in health and neurodegenerative disease: from structural insights to post-transcriptional regulatory roles. Mol Cell Neurosci 2012; 56:436-46. [PMID: 23247072 DOI: 10.1016/j.mcn.2012.12.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 12/02/2012] [Accepted: 12/06/2012] [Indexed: 12/14/2022] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a family of conserved nuclear proteins that associate with nascent RNA polymerase II transcripts to yield hnRNP particles, playing key roles in mRNA metabolism, DNA-related functions and microRNA biogenesis. HnRNPs accompany transcripts from stages of transcriptional regulation through splicing and post-transcriptional regulation, and are believed to affect the majority of expressed genes in mammals. Most hnRNP mRNA transcripts undergo alternative splicing and post-translational modifications, to yield a remarkable diversity of proteins with numerous functional elements that work in concert in their multiple functions. Therefore, mis-regulation of hnRNPs leads to different maladies. Here, we focus on the role of one of the best-known members of this protein family, hnRNP A1 in RNA metabolism, and address recent works that note its multileveled involvement in several neurodegenerative disorders. Initially discovered as a DNA binding protein, hnRNP A1 includes two RNA recognition motifs, and post-translational modifications of these and other regions in this multifunctional protein alter both its nuclear pore shuttling properties and its RNA interactions and affect transcription, mRNA splicing and microRNA biogenesis. HnRNP A1 plays several key roles in neuronal functioning and its depletion, either due to debilitated cholinergic neurotransmission or under autoimmune reactions causes drastic changes in RNA metabolism. Consequently, hnRNP A1 decline contributes to the severity of symptoms in several neurodegenerative diseases, including Alzheimer's disease (AD), spinal muscular atrophy (SMA), fronto-temporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), hereditary spastic paraparesis (HSP) and HTLV-I associated myelopathy/tropical spastic paraparesis (HAM/TSP). At the translational level, these properties of hnRNP A1 led to massive research efforts aimed at developing RNA-targeted therapeutic tools such as splicing-modulating oligonucleotides with promising pharmaceutical potential. HnRNP A1 thus presents an intriguing example for the complexity and importance of heteronuclear ribonucleoproteins in health and disease. This article is part of a Special Issue entitled 'RNA and splicing regulation in neurodegeneration'.
Collapse
Affiliation(s)
- Uriya Bekenstein
- Dept of Biological Chemistry, The Life Sciences Institute and The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, 91904, Israel
| | | |
Collapse
|
17
|
Lakhotia SC. Long non-coding RNAs coordinate cellular responses to stress. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:779-96. [PMID: 22976942 DOI: 10.1002/wrna.1135] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Following the initial discovery of the heat shock RNA omega (hsrω) gene of Drosophila melanogaster to be non-coding (nc) and also inducible by cell stress, other stress-inducible long non-coding RNAs (lncRNA) have been described in diverse organisms. In view of the rapid sequence divergence of lncRNAs, present knowledge of stress trasncriptome is limited and fragmented. Several known stress-related lncRNAs, associated with specific nuclear speckled domains or nucleolus, provide structural base for sequestering diverse RNA-processing/regulatory proteins. Others have roles in transcriptional or translational inhibition during stress or in signaling pathways; functions of several other lncRNAs are not yet known. Most stress-related lncRNAs act primarily by modulating activity of the proteins to which they bind or by sequestering specific sets of proteins away from the active pool. A common emerging theme is that a given lncRNA targets one or more protein/s with key role/s in the cascade of events triggered by the stress and therefore has a widespread integrative effect. Since proteins associate with RNA through short sequence motifs, the overall base sequence of functionally similar ncRNAs is often not conserved except for specific motifs. The rapid evolvability of ncRNA sequences provides elegant modules for adaptability to changing environment as binding of one or the other protein to ncRNA can alter its structure and functions in distinct ways. Thus the stress-related lncRNAs act as hubs in the cellular networks to coordinate activities of the members within and between different networks to maintain cellular homeostasis for survival or to trigger cell death.
Collapse
Affiliation(s)
- Subhash C Lakhotia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|