1
|
Moni R, Noman Khan AA, Islam Z, Zohora US, Rahman MS. Biofilm Fermentation: A Propitious Method for the Production of Protease Enzyme by Bacillus subtilis RB14. Ind Biotechnol (New Rochelle N Y) 2022. [DOI: 10.1089/ind.2021.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ripa Moni
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Abdullah Al Noman Khan
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Zahidul Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Umme Salma Zohora
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Mohammad Shahedur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| |
Collapse
|
2
|
Zhou C, Zhou H, Fang H, Ji Y, Wang H, Liu F, Zhang H, Lu F. Spo0A can efficiently enhance the expression of the alkaline protease gene aprE in Bacillus licheniformis by specifically binding to its regulatory region. Int J Biol Macromol 2020; 159:444-454. [PMID: 32437805 DOI: 10.1016/j.ijbiomac.2020.05.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
The expression of enzymes in Bacillus licheniformis, such as the valuable extracellular alkaline protease AprE, is highly regulated by a complex transcriptional regulation mechanism. Here, we found that the transcript abundance of aprE varies >343-fold in response to the supply of nutrients or to environmental challenges. To identify the underlying regulatory mechanism, the core promoter of aprE and several important upstream regulatory regions outside the promoter were firstly confirmed by 5'-RACE and mutagenesis experiments. The specific proteins that bind to the identified sequences were subsequently captured by DNA pull-down experiments, which yielded the transcriptional factors (TFs) Spo0A, CggR, FruR, YhcZ, as well as fragments of functionally unassigned proteins. Further electrophoretic mobility shift assay (EMSA) and DNase I foot-printing experiments indicated that Spo0A can directly bind to the region from -92 to -118 nucleotides upstream of the transcription start site, and the deletion of this specific region drastically decreased the production of AprE. Taken together, these results indicated that the expression of aprE was mainly regulated by the interplay between Spo0A and its cognate DNA sequence, which was successfully applied to overproduce AprE in a genetically modified host harboring three aprE expression cassettes. The DNA binding proteins may serve to increase the efficiency of transcription by creating an additional binding site for RNA polymerase. The discovery of this mechanism significantly increases our understanding of the aprE transcription mechanism, which is of great importance for AprE overproduction.
Collapse
Affiliation(s)
- Cuixia Zhou
- Key laboratory of industrial fermentation microbiology, ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China; School of biology and brewing engineering, Taishan University, Taian 271018, PR China
| | - Huiying Zhou
- Key laboratory of industrial fermentation microbiology, ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Honglei Fang
- Key laboratory of industrial fermentation microbiology, ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Yizhi Ji
- Beijing Key Laboratory of Biomass Waste Resource Utilization, College of Biochemistry and Engineering, Beijing Union University, Beijing 100023, PR China
| | - Hongbin Wang
- Key laboratory of industrial fermentation microbiology, ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Fufeng Liu
- Key laboratory of industrial fermentation microbiology, ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Huitu Zhang
- Key laboratory of industrial fermentation microbiology, ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China.
| | - Fuping Lu
- Key laboratory of industrial fermentation microbiology, ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China.
| |
Collapse
|
3
|
Gupta M, Rao KK. Phosphorylation of DegU is essential for activation of amyE expression in Bacillus subtilis. J Biosci 2014; 39:747-52. [DOI: 10.1007/s12038-014-9481-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Bacterial competition reveals differential regulation of the pks genes by Bacillus subtilis. J Bacteriol 2013; 196:717-28. [PMID: 24187085 DOI: 10.1128/jb.01022-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis is adaptable to many environments in part due to its ability to produce a broad range of bioactive compounds. One such compound, bacillaene, is a linear polyketide/nonribosomal peptide. The pks genes encode the enzymatic megacomplex that synthesizes bacillaene. The majority of pks genes appear to be organized as a giant operon (>74 kb from pksC-pksR). In previous work (P. D. Straight, M. A. Fischbach, C. T. Walsh, D. Z. Rudner, and R. Kolter, Proc. Natl. Acad. Sci. U. S. A. 104:305-310, 2007, doi:10.1073/pnas.0609073103), a deletion of the pks operon in B. subtilis was found to induce prodiginine production by Streptomyces coelicolor. Here, colonies of wild-type B. subtilis formed a spreading population that induced prodiginine production from Streptomyces lividans, suggesting differential regulation of pks genes and, as a result, bacillaene. While the parent colony showed widespread induction of pks expression among cells in the population, we found the spreading cells uniformly and transiently repressed the expression of the pks genes. To identify regulators that control pks genes, we first determined the pattern of pks gene expression in liquid culture. We next identified mutations in regulatory genes that disrupted the wild-type pattern of pks gene expression. We found that expression of the pks genes requires the master regulator of development, Spo0A, through its repression of AbrB and the stationary-phase regulator, CodY. Deletions of degU, comA, and scoC had moderate effects, disrupting the timing and level of pks gene expression. The observed patterns of expression suggest that complex regulation of bacillaene and other antibiotics optimizes competitive fitness for B. subtilis.
Collapse
|