1
|
Opioid receptor activation suppresses the neuroinflammatory response by promoting microglial M2 polarization. Mol Cell Neurosci 2022; 121:103744. [PMID: 35660086 DOI: 10.1016/j.mcn.2022.103744] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/02/2022] [Accepted: 05/29/2022] [Indexed: 11/20/2022] Open
Abstract
Activation of microglia is considered the most important component of neuroinflammation. Microglia can adopt a pro-inflammatory (M1) or anti-inflammatory (M2) phenotype. Opioid receptors (ORs) have been shown to control neurotransmission of various peptidergic neurons, but their potential role in regulating microglial function is largely unknown. Here, we aimed to investigate the effect of the OR agonists DAMGO, DADLE and U-50488 on the polarization of C8-B4 microglial cells. We observed that opioids suppressed lipopolysaccharide (LPS)-triggered M1 polarization and promoted M2 polarization. This was reflected in lower phagocytic activity, lower production of NO, lower expression of TNF-α, IL-1β, IL-6, IL-86 and IL-12 beta p40 together with higher migration rate, and increased expression of IL-4, IL-10, arginase 1 and CD 206 in microglia, compared to cells affected by LPS. We demonstrated that the effect of opioids on microglial polarization is mediated by the TREM2/NF-κB signaling pathway. These results provide new insights into the anti-inflammatory and neuroprotective effects of opioids and highlight their potential in combating neurodegenerative diseases.
Collapse
|
2
|
Pandey A, Sarkar S, Yadav SK, Yadav SS, Srikrishna S, Siddiqui MH, Parmar D, Yadav S. Studies on Regulation of Global Protein Profile and Cellular Bioenergetics of Differentiating SH-SY5Y Cells. Mol Neurobiol 2022; 59:1799-1818. [PMID: 35025051 DOI: 10.1007/s12035-021-02667-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/25/2021] [Indexed: 01/07/2023]
Abstract
The SH-SY5Y cells differentiated by sequential exposure of retinoic acid (RA) and brain-derived neurotrophic growth factor (BDNF) are a well-employed cellular model for studying the mechanistic aspects of neural development and neurodegeneration. Earlier studies from our lab have identified dramatic upregulation (77 miRNAs) and downregulation (17 miRNAs) of miRNAs in SH-SY5Y cells differentiated with successive exposure of RA + BDNF and demonstrated the essential role of increased levels of P53 proteins in coping with the differentiation-induced changes in protein levels. In continuation to our earlier studies, we have performed unbiased LC-MS/MS global protein profiling of naïve and differentiated SH-SY5Y cells and analyzed the identified proteins in reference to miRNAs identified in our earlier studies to identify the cellular events regulated by both identified miRNAs and proteins. Analysis of LC-MS/MS data has shown a significant increase and decrease in levels of 215 and 163 proteins, respectively, in differentiated SH-SY5Y cells. Integrative analysis of miRNA identified in our previous studies and protein identified in the present study is carried out to discover novel miRNA-protein regulatory modules to elucidate miRNA-protein regulatory relationships of differentiating neurons. In silico network analysis of miRNAs and proteins deregulated upon SH-SY5Y differentiation identified cell cycle, synapse formation, axonogenesis, differentiation, neuron projection, and neurotransmission, as the topmost involved pathways. Further, measuring mitochondrial dynamics and cellular bioenergetics using qPCR and Seahorse XFp Flux Analyzer, respectively, showed that differentiated cells possess increased mitochondrial dynamics and OCR relative to undifferentiated cells. In summary, our studies have identified a novel set of proteins deregulated during neuronal differentiation and establish the role of miRNAs identified in earlier studies in the regulation of proteins identified by LC-MS/MS-based global profiling of differentiating neurons, which will help in future studies related to neural development and neurodegeneration.
Collapse
Affiliation(s)
- Anuj Pandey
- Systems Toxicology and Health Risk Assessment Group, , CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Uttar Pradesh, Vishvigyan Bhawan, Lucknow, India.,Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sana Sarkar
- Systems Toxicology and Health Risk Assessment Group, , CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Uttar Pradesh, Vishvigyan Bhawan, Lucknow, India.,Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, India
| | - Sanjeev Kumar Yadav
- Systems Toxicology and Health Risk Assessment Group, , CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Uttar Pradesh, Vishvigyan Bhawan, Lucknow, India
| | - Smriti Singh Yadav
- Systems Toxicology and Health Risk Assessment Group, , CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Uttar Pradesh, Vishvigyan Bhawan, Lucknow, India
| | - Saripella Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | | | - Devendra Parmar
- Systems Toxicology and Health Risk Assessment Group, , CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Uttar Pradesh, Vishvigyan Bhawan, Lucknow, India.
| | - Sanjay Yadav
- Systems Toxicology and Health Risk Assessment Group, , CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Uttar Pradesh, Vishvigyan Bhawan, Lucknow, India. .,All India Institute of Medical Sciences (AIIMS), Uttar Pradesh, Raebareli, India.
| |
Collapse
|