1
|
Hikmat WM, Sievers A, Hausmann M, Hildenbrand G. Peculiar k-mer Spectra Are Correlated with 3D Contact Frequencies and Breakpoint Regions in the Human Genome. Genes (Basel) 2024; 15:1247. [PMID: 39457371 PMCID: PMC11506876 DOI: 10.3390/genes15101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND It is widely accepted that the 3D chromatin organization in human cell nuclei is not random and recent investigations point towards an interactive relation of epigenetic functioning and chromatin (re-)organization. Although chromatin organization seems to be the result of self-organization of the entirety of all molecules available in the cell nucleus, a general question remains open as to what extent chromatin organization might additionally be predetermined by the DNA sequence and, if so, if there are characteristic differences that distinguish typical regions involved in dysfunction-related aberrations from normal ones, since typical DNA breakpoint regions involved in disease-related chromosome aberrations are not randomly distributed along the DNA sequence. METHODS Highly conserved k-mer patterns in intronic and intergenic regions have been reported in eukaryotic genomes. In this article, we search and analyze regions deviating from average spectra (ReDFAS) of k-mer word frequencies in the human genome. This includes all assembled regions, e.g., telomeric, centromeric, genic as well as intergenic regions. RESULTS A positive correlation between k-mer spectra and 3D contact frequencies, obtained exemplarily from given Hi-C datasets, has been found indicating a relation of ReDFAS to chromatin organization and interactions. We also searched and found correlations of known functional annotations, e.g., genes correlating with ReDFAS. Selected regions known to contain typical breakpoints on chromosomes 9 and 5 that are involved in cancer-related chromosomal aberrations appear to be enriched in ReDFAS. Since transposable elements like ALUs are often assigned as major players in 3D genome organization, we also studied their impact on our examples but could not find a correlation between ALU regions and breakpoints comparable to ReDFAS. CONCLUSIONS Our findings might show that ReDFAS are associated with instable regions of the genome and regions with many chromatin contacts which is in line with current research indicating that chromatin loop anchor points lead to genomic instability.
Collapse
Affiliation(s)
- Wisam Mohammed Hikmat
- Kirchhoff-Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany; (W.M.H.); (A.S.)
| | - Aaron Sievers
- Kirchhoff-Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany; (W.M.H.); (A.S.)
- Institute for Human Genetics, University Hospital Heidelberg, INF 366, 69117 Heidelberg, Germany
| | - Michael Hausmann
- Kirchhoff-Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany; (W.M.H.); (A.S.)
| | - Georg Hildenbrand
- Kirchhoff-Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany; (W.M.H.); (A.S.)
- Faculty of Engineering, University of Applied Science Aschaffenburg, Würzburger Str. 45, 63743 Aschaffenburg, Germany
| |
Collapse
|
2
|
Fouziya S, Krietenstein N, Mir US, Mieczkowski J, Khan MA, Baba A, Dar MA, Altaf M, Wani AH. Genome wide nucleosome landscape shapes 3D chromatin organization. SCIENCE ADVANCES 2024; 10:eadn2955. [PMID: 38848364 PMCID: PMC11160460 DOI: 10.1126/sciadv.adn2955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
The hierarchical chromatin organization begins with formation of nucleosomes, which fold into chromatin domains punctuated by boundaries and ultimately chromosomes. In a hierarchal organization, lower levels shape higher levels. However, the dependence of higher-order 3D chromatin organization on the nucleosome-level organization has not been studied in cells. We investigated the relationship between nucleosome-level organization and higher-order chromatin organization by perturbing nucleosomes across the genome by deleting Imitation SWItch (ISWI) and Chromodomain Helicase DNA-binding (CHD1) chromatin remodeling factors in budding yeast. We find that changes in nucleosome-level properties are accompanied by changes in 3D chromatin organization. Short-range chromatin contacts up to a few kilo-base pairs decrease, chromatin domains weaken, and boundary strength decreases. Boundary strength scales with accessibility and moderately with width of nucleosome-depleted region. Change in nucleosome positioning seems to alter the stiffness of chromatin, which can affect formation of chromatin contacts. Our results suggest a biomechanical "bottom-up" mechanism by which nucleosome distribution across genome shapes 3D chromatin organization.
Collapse
Affiliation(s)
- Shah Fouziya
- Department of Biotechnology, School of Biological Sciences, University of Kashmir, Srinagar, J&K, 190006, India
| | - Nils Krietenstein
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Denmark
| | - Ulfat Syed Mir
- Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, J&K, 190006, India
| | - Jakub Mieczkowski
- International Research Agenda 3P Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Masood A. Khan
- Department of Biotechnology, School of Biological Sciences, University of Kashmir, Srinagar, J&K, 190006, India
| | - Aemon Baba
- Department of Biotechnology, School of Biological Sciences, University of Kashmir, Srinagar, J&K, 190006, India
| | - Mohmmad Abaas Dar
- Department of Biotechnology, School of Biological Sciences, University of Kashmir, Srinagar, J&K, 190006, India
| | - Mohammad Altaf
- Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, J&K, 190006, India
| | - Ajazul H. Wani
- Department of Biotechnology, School of Biological Sciences, University of Kashmir, Srinagar, J&K, 190006, India
| |
Collapse
|
3
|
Henn L, Sievers A, Hausmann M, Hildenbrand G. Specific Patterns in Correlations of Super-Short Tandem Repeats (SSTRs) with G+C Content, Genic and Intergenic Regions, and Retrotransposons on All Human Chromosomes. Genes (Basel) 2023; 15:33. [PMID: 38254923 PMCID: PMC10815669 DOI: 10.3390/genes15010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
The specific characteristics of k-mer words (2 ≤ k ≤ 11) regarding genomic distribution and evolutionary conservation were recently found. Among them are, in high abundance, words with a tandem repeat structure (repeat unit length of 1 bp to 3 bp). Furthermore, there seems to be a class of extremely short tandem repeats (≤12 bp), so far overlooked, that are non-random-distributed and, therefore, may play a crucial role in the functioning of the genome. In the following article, the positional distributions of these motifs we call super-short tandem repeats (SSTRs) were compared to other functional elements, like genes and retrotransposons. We found length- and sequence-dependent correlations between the local SSTR density and G+C content, and also between the density of SSTRs and genes, as well as correlations with retrotransposon density. In addition to many general interesting relations, we found that SINE Alu has a strong influence on the local SSTR density. Moreover, the observed connection of SSTR patterns to pseudogenes and -exons might imply a special role of SSTRs in gene expression. In summary, our findings support the idea of a special role and the functional relevance of SSTRs in the genome.
Collapse
Affiliation(s)
- Lukas Henn
- Kirchhoff Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany; (L.H.); (A.S.); (M.H.)
| | - Aaron Sievers
- Kirchhoff Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany; (L.H.); (A.S.); (M.H.)
- Institute for Human Genetics, University Hospital Heidelberg, INF 366, 69117 Heidelberg, Germany
| | - Michael Hausmann
- Kirchhoff Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany; (L.H.); (A.S.); (M.H.)
| | - Georg Hildenbrand
- Kirchhoff Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany; (L.H.); (A.S.); (M.H.)
- Faculty of Engineering, University of Applied Science Aschaffenburg, Würzburger Str. 45, 63743 Aschaffenburg, Germany
| |
Collapse
|
4
|
Amin A, Kadam S, Mieczkowski J, Ahmed I, Bhat YA, Shah F, Tolstorukov MY, Kingston RE, Padinhateeri R, Wani AH. Disruption of polyhomeotic polymerization decreases nucleosome occupancy and alters genome accessibility. Life Sci Alliance 2023; 6:e202201768. [PMID: 36849253 PMCID: PMC9973501 DOI: 10.26508/lsa.202201768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 03/01/2023] Open
Abstract
Chromatin attains its three-dimensional (3D) conformation by establishing contacts between different noncontiguous regions. Sterile Alpha Motif (SAM)-mediated polymerization of the polyhomeotic (PH) protein regulates subnuclear clustering of Polycomb Repressive Complex 1 (PRC1) and chromatin topology. The mutations that perturb the ability of the PH to polymerize, disrupt long-range chromatin contacts, alter Hox gene expression, and lead to developmental defects. To understand the underlying mechanism, we combined the experiments and theory to investigate the effect of this SAM domain mutation on nucleosome occupancy and accessibility on a genome wide scale. Our data show that disruption of PH polymerization because of SAM domain mutation decreases nucleosome occupancy and alters accessibility. Polymer simulations investigating the interplay between distant chromatin contacts and nucleosome occupancy, both of which are regulated by PH polymerization, suggest that nucleosome density increases when contacts between different regions of chromatin are established. Taken together, it appears that SAM domain-mediated PH polymerization biomechanically regulates the organization of chromatin at multiple scales from nucleosomes to chromosomes and we suggest that higher order organization can have a top-down causation effect on nucleosome occupancy.
Collapse
Affiliation(s)
- Adfar Amin
- Department of Biotechnology, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Sangram Kadam
- Department of Biosciences and Bioengineering, IIT, Bombay, India
| | - Jakub Mieczkowski
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Ikhlak Ahmed
- CIRI, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Younus A Bhat
- Department of Biotechnology, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Fouziya Shah
- Department of Biotechnology, School of Biological Sciences, University of Kashmir, Srinagar, India
| | | | - Robert E Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | - Ajazul H Wani
- Department of Biotechnology, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
5
|
Sievers A, Sauer L, Bisch M, Sprengel J, Hausmann M, Hildenbrand G. Moderation of Structural DNA Properties by Coupled Dinucleotide Contents in Eukaryotes. Genes (Basel) 2023; 14:genes14030755. [PMID: 36981025 PMCID: PMC10048725 DOI: 10.3390/genes14030755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Dinucleotides are known as determinants for various structural and physiochemical properties of DNA and for binding affinities of proteins to DNA. These properties (e.g., stiffness) and bound proteins (e.g., transcription factors) are known to influence important biological functions, such as transcription regulation and 3D chromatin organization. Accordingly, the question arises of how the considerable variations in dinucleotide contents of eukaryotic chromosomes could still provide consistent DNA properties resulting in similar functions and 3D conformations. In this work, we investigate the hypothesis that coupled dinucleotide contents influence DNA properties in opposite directions to moderate each other's influences. Analyzing all 2478 chromosomes of 155 eukaryotic species, considering bias from coding sequences and enhancers, we found sets of correlated and anti-correlated dinucleotide contents. Using computational models, we estimated changes of DNA properties resulting from this coupling. We found that especially pure A/T dinucleotides (AA, TT, AT, TA), known to influence histone positioning and AC/GT contents, are relevant moderators and that, e.g., the Roll property, which is known to influence histone affinity of DNA, is preferably moderated. We conclude that dinucleotide contents might indirectly influence transcription and chromatin 3D conformation, via regulation of histone occupancy and/or other mechanisms.
Collapse
Affiliation(s)
- Aaron Sievers
- Kirchhoff Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany
- Institute for Human Genetics, University Hospital Heidelberg, INF 366, 69117 Heidelberg, Germany
| | - Liane Sauer
- Kirchhoff Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany
- Institute for Human Genetics, University Hospital Heidelberg, INF 366, 69117 Heidelberg, Germany
| | - Marc Bisch
- Kirchhoff Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany
| | - Jan Sprengel
- Kirchhoff Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany
| | - Michael Hausmann
- Kirchhoff Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany
| | - Georg Hildenbrand
- Kirchhoff Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany
- Faculty of Engeneering, University of Applied Science Aschaffenburg, Würzburger Str. 45, 63743 Aschaffenburg, Germany
| |
Collapse
|
6
|
Parmar JJ, Padinhateeri R. Nucleosome positioning and chromatin organization. Curr Opin Struct Biol 2020; 64:111-118. [PMID: 32731156 DOI: 10.1016/j.sbi.2020.06.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/31/2020] [Accepted: 06/23/2020] [Indexed: 11/24/2022]
Abstract
In our cells, DNA is folded and packed with the help of many proteins into chromatin whose basic unit is a nucleosome-DNA wrapped around octamer of histone proteins. The chain of nucleosomes is further folded and arranged into many layers and has a dynamic organization. How does the complex chromatin organization emerge from interactions among DNA, histones, and non-histone proteins have been a question of great interest. Here we review recent literature that investigated how nucleosome positioning and nucleosome-mediated interactions drive chromatin organization. Unlike our earlier understanding, chromatin is organized into 3D domains of various sizes having irregularly organized nucleosomes. These domains emerge due to heterogeneous nucleosome positioning and diverse inter-nucleosome interactions that vary in space and time.
Collapse
Affiliation(s)
- Jyotsana J Parmar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076, India.
| |
Collapse
|