1
|
Zhang S, Zheng S, Gong Y, Wang Y, Wei Q, Zhu Y, Liu L, Wu R, Du S. Does the herbicide napropamide exhibit enantioselective effects across genus plasmid transfer from Escherichia coli to Bacillus subtilis? JOURNAL OF HAZARDOUS MATERIALS 2024; 484:136704. [PMID: 39637801 DOI: 10.1016/j.jhazmat.2024.136704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
The dissemination of plasmid-borne antibiotic resistance genes (ARGs) into the environment is an urgent concern. However, the enantioselective effects of herbicides on plasmid conjugation among bacterial genera and their underlying mechanisms remain unclear. This study demonstrates for the first time that the herbicide napropamide (NAP), commonly used in vegetable fields, exhibits a concentration-dependent effect on the transfer efficiency of the pBE2R plasmid from Escherichia coli to Bacillus subtilis. Notably, at a concentration of 5 mg L-1, R-NAP increased transfer efficiency by threefold compared to the S-enantiomer. Scanning electron microscopy revealed that R-NAP caused less structural damage to bacteria than S-NAP but more effectively reduced cell wall components (lipopolysaccharides and peptidoglycan) in donor and recipient bacteria, increasing reactive oxygen species levels and membrane permeability. Transcriptomic analysis indicated that NAP enantiomers altered the expression of genes related to membrane transport activity and transposons. Cross-domain network analysis identified yieK, ygeH, and ydbL as key genes mediating conjugation transfer. Molecular docking results showed that NAP likely interacts hydrophobically with the active sites of the proteins encoded by these genes. In conclusion, herbicides like R-NAP should be carefully managed in fields irrigated with livestock manure to mitigate the risk of ARG transfer and accumulation in crops.
Collapse
Affiliation(s)
- Siyu Zhang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Shihao Zheng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Yanxia Gong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yin Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Qing Wei
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Yaxin Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Lijuan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Ran Wu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
2
|
Mastenbrook J, Pathak E, Beaver C, Stull F, Koestler BJ. Breaking the habit: isolating nicotine-degrading bacteria in undergraduate microbiology teaching labs. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2024; 25:e0015223. [PMID: 38602406 PMCID: PMC11360543 DOI: 10.1128/jmbe.00152-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/24/2024] [Indexed: 04/12/2024]
Abstract
Nicotine is a major alkaloid in tobacco plants and an addictive component of tobacco products. Some bacteria grow on tobacco plants and have evolved the ability to metabolize nicotine. As part of our microbiology teaching lab, we used minimal media with nicotine as the sole carbon source to isolate nicotine-degrading bacteria from tobacco leaves and commercial tobacco products. Students then identified these bacteria using 16S rRNA sequencing and biochemical assays and assessed their ability to catabolize nicotine using UV spectroscopy. Students were able to isolate and identify 14 distinct genera that can metabolize nicotine. This modification of the commonly used unknown project gave students firsthand experience using selective media, and students got the opportunity to work with largely uncharacterized microbes with a real-world connection to public health, which increased student engagement. Students had the opportunity to think critically about why nicotine-degrading microorganisms associate with tobacco plants, why there are different bacteria that use the same specialized metabolism, and how these organisms are isolated from other bacteria using selective media.
Collapse
Affiliation(s)
- J. Mastenbrook
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan, USA
| | - E. Pathak
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan, USA
| | - C. Beaver
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan, USA
| | - F. Stull
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan, USA
| | - B. J. Koestler
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan, USA
| |
Collapse
|
3
|
Boiangiu RS, Brinza I, Honceriu I, Mihasan M, Hritcu L. Insights into Pharmacological Activities of Nicotine and 6-Hydroxy-L-nicotine, a Bacterial Nicotine Derivative: A Systematic Review. Biomolecules 2023; 14:23. [PMID: 38254623 PMCID: PMC10813004 DOI: 10.3390/biom14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
The purported cognitive benefits associated with nicotine and its metabolites in the brain are a matter of debate. In this review, the impact of the pharmacologically active metabolite of a nicotine derivative produced by bacteria named 6-hydroxy-L-nicotine (6HLN) on memory, oxidative stress, and the activity of the cholinergic system in the brain was examined. A search in the PubMed, Science Direct, Web of Science, and Google Scholar databases, limiting entries to those published between 1992 and 2023, was conducted. The search focused specifically on articles about nicotine metabolites, memory, oxidative stress, and cholinergic system activity, as well as enzymes or pathways related to nicotine degradation in bacteria. The preliminary search resulted in 696 articles, and following the application of exclusion criteria, 212 articles were deemed eligible for inclusion. This review focuses on experimental studies supporting nicotine catabolism in bacteria, and the chemical and pharmacological activities of nicotine and its metabolite 6HLN.
Collapse
Affiliation(s)
| | | | | | - Marius Mihasan
- BioActive Research Group, Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (I.B.); (I.H.)
| | - Lucian Hritcu
- BioActive Research Group, Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (I.B.); (I.H.)
| |
Collapse
|
4
|
El-Sabeh A, Mlesnita AM, Munteanu IT, Honceriu I, Kallabi F, Boiangiu RS, Mihasan M. Characterisation of the Paenarthrobacter nicotinovorans ATCC 49919 genome and identification of several strains harbouring a highly syntenic nic-genes cluster. BMC Genomics 2023; 24:536. [PMID: 37697273 PMCID: PMC10494377 DOI: 10.1186/s12864-023-09644-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Paenarthrobacter nicotinovorans ATCC 49919 uses the pyridine-pathway to degrade nicotine and could provide a renewable source of precursors from nicotine-containing waste as well as a model for studying the molecular evolution of catabolic pathways and their spread by horizontal gene transfer via soil bacterial plasmids. RESULTS In the present study, the strain was sequenced using the Illumina NovaSeq 6000 and Oxford Nanopore Technology (ONT) MinION platforms. Following hybrid assembly with Unicycler, the complete genome sequence of the strain was obtained and used as reference for whole-genome-based phylogeny analyses. A total of 64 related genomes were analysed; five Arthrobacter strains showed both digital DNA-DNA hybridization and average nucleotide identity values over the species threshold when compared to P. nicotinovorans ATCC 49919. Five plasmids and two contigs belonging to Arthrobacter and Paenarthrobacter strains were shown to be virtually identical with the pAO1 plasmid of Paenarthrobacter nicotinovorans ATCC 49919. Moreover, a highly syntenic nic-genes cluster was identified on five plasmids, one contig and three chromosomes. The nic-genes cluster contains two major locally collinear blocks that appear to form a putative catabolic transposon. Although the origins of the nic-genes cluster and the putative transposon still elude us, we hypothesise here that the ATCC 49919 strain most probably evolved from Paenarthrobacter sp. YJN-D or a very closely related strain by acquiring the pAO1 megaplasmid and the nicotine degradation pathway. CONCLUSIONS The data presented here offers another snapshot into the evolution of plasmids harboured by Arthrobacter and Paenarthrobacter species and their role in the spread of metabolic traits by horizontal gene transfer among related soil bacteria.
Collapse
Affiliation(s)
- Amada El-Sabeh
- Faculty of Biology, Alexandru Ioan Cuza University of Iași, Iași, Romania
| | | | | | - Iasmina Honceriu
- Faculty of Biology, Alexandru Ioan Cuza University of Iași, Iași, Romania
| | - Fakhri Kallabi
- Faculty of Biology, Alexandru Ioan Cuza University of Iași, Iași, Romania
- Laboratory of Human Molecular Genetics, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | | | - Marius Mihasan
- Faculty of Biology, Alexandru Ioan Cuza University of Iași, Iași, Romania.
| |
Collapse
|
5
|
Jiang Y, Song Y, Jiang C, Li X, Liu T, Wang J, Chen C, Gao J. Identification and Characterization of Arthrobacter nicotinovorans JI39, a Novel Plant Growth-Promoting Rhizobacteria Strain From Panax ginseng. FRONTIERS IN PLANT SCIENCE 2022; 13:873621. [PMID: 35615118 PMCID: PMC9125309 DOI: 10.3389/fpls.2022.873621] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
A bacterial strain JI39 that had plant growth-promoting traits was isolated from the rhizosphere soil of Panax ginseng. It had the ability to produce high indole-3-acetic acid (13.1 μg/ml), phosphate solubilization (164.2 μg/ml), potassium solubilization (16.1 μg/ml), and nitrogen fixation. The strain JI39 was identified to be Arthrobacter nicotinovorans based on morphological, physiological, and biochemical traits and through 16S rDNA sequence analysis. The optimal culture environment for strain growth was 1.0% NaCl, 30°C, pH 6.0, and without UV irradiation. The strain can produce cellulase and protease. The strain JI39 can significantly promote the growth of ginseng. After ginseng seeds were treated with 3 × 108 CFU/ml of JI39 bacterial suspension, the shoot's length was significantly increased by 64.61% after 15 days. Meanwhile, the fresh weight of 2-year-old ginseng roots was significantly increased by 24.70% with a treatment by the 108 CFU/ml bacterial suspension after 150 days in the field. The gene expression of phenylalanine ammonia-lyase (PAL), β-1.3 glucanase (β-1,3-GA), chitinase (CHI), superoxide dismutase (SOD), and peroxidase (POD) of ginseng was upregulated, and it also can improve the soil urease, phosphatase, invertase, and catalase activity. In conclusion, the bacterial strain JI39 could efficiently promote the growth of ginseng and has the potential to be a good microbial fertilizer for ginseng.
Collapse
Affiliation(s)
- Yun Jiang
- College of Life Science, Jilin Agricultural University, Changchun, China
- Jilin Key Laboratory of Green Management on Crop Diseases and Pests, Jilin Agricultural University, Changchun, China
| | - Yu Song
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Chengyang Jiang
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Xiang Li
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Tingting Liu
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Jiarui Wang
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Changqing Chen
- Jilin Key Laboratory of Green Management on Crop Diseases and Pests, Jilin Agricultural University, Changchun, China
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Jie Gao
- Jilin Key Laboratory of Green Management on Crop Diseases and Pests, Jilin Agricultural University, Changchun, China
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| |
Collapse
|