1
|
Qi HY, Zhang DD, Liu B, Chen JY, Han D, Wang D. Leveraging RNA interference technology for selective and sustainable crop protection. FRONTIERS IN PLANT SCIENCE 2024; 15:1502015. [PMID: 39777080 PMCID: PMC11703868 DOI: 10.3389/fpls.2024.1502015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Double-stranded RNA (dsRNA) has emerged as key player in gene silencing for the past two decades. Tailor-made dsRNA is now recognized a versatile raw material, suitable for a wide range of applications in biopesticide formulations, including insect control to pesticide resistance management. The mechanism of RNA interference (RNAi) acts at the messenger RNA (mRNA) level, utilizing a sequence-dependent approach that makes it unique in term of effectiveness and specificity compared to conventional agrochemicals. Two primary categories of small RNAs, known as short interfering RNAs (siRNAs) and microRNAs (miRNAs), function in both somatic and germline lineages in a broad range of eukaryotic species to regulate endogenous genes and to defend the genome from invasive nucleic acids. Furthermore, the application of RNAi in crop protection can be achieved by employing plant-incorporated protectants through plant transformation, but also by non-transformative strategies such as the use of formulations of sprayable RNAs as direct control agents, resistance factor repressors or developmental disruptors. This review explores the agricultural applications of RNAi, delving into its successes in pest-insect control and considering its broader potential for managing plant pathogens, nematodes, and pests. Additionally, the use of RNAi as a tool for addressing pesticide-resistant weeds and insects is reviewed, along with an evaluation of production costs and environmental implications.
Collapse
Affiliation(s)
- Hong-Yue Qi
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan-Dan Zhang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Binhui Liu
- Key Laboratory of Crop Drought Resistance Research of Hebei Province/Institute of Dryland Farming, Hebei Academy of Agriculture and Forestry Sciences, Hengshui, China
| | - Jie-Yin Chen
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Dongfei Han
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Dan Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
2
|
Mondéjar-López M, García-Simarro MP, Navarro-Simarro P, Gómez-Gómez L, Ahrazem O, Niza E. A review on the encapsulation of "eco-friendly" compounds in natural polymer-based nanoparticles as next generation nano-agrochemicals for sustainable agriculture and crop management. Int J Biol Macromol 2024; 280:136030. [PMID: 39332563 DOI: 10.1016/j.ijbiomac.2024.136030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Crop management techniques and sustainable agriculture offer a comprehensive farming method that incorporates social, economic, and ecological factors. Sustainable agriculture places a high priority on soil health, water efficiency, and biodiversity conservation in order to develop resilient and regenerative food systems that can feed both the current and future generations. Our goal in this review is to give a thorough overview of current developments in the use of polysaccharides as raw materials for the encapsulation of natural chemicals in nanoparticles as novel crop protection products. The search for recent research articles and latest reviews has been carried out through pubmed, google scholar, BASE as search engines. Offer cutting-edge solutions for sustainable crop management that satisfy the demands of an expanding population, comply with changing legal frameworks, and address environmental issues by encasing natural compounds inside polysaccharide-based nanoparticles. A variety of natural substances, such as essential oils, plant extracts, antimicrobials compounds and miRNA, can be included in these nanoparticles. These materials have many advantages, such as biocompatibility, biodegradability and controlled release of active compounds. Thanks to their action mechanism, they are able to mediate hormone signaling and gene expression in different plant physiological aspects, as well as enhance their tolerance to abiotic stress conditions. Sustainable agriculture can be supported by this type of treatments, correctly developing food safety through the production of non-toxic nanoparticles, low-cost industrial scale-up and the use of biodegradable materials. Polysaccharide-based nanoparticles have a wide range of uses in agriculture: they improve crop yields, encourage "eco-friendly" farming methods and can decrease the concentrations of active ingredient used, providing an accurate and affective dosage without damaging further species, as well as avoiding treatment resistance risks. These nanoparticles can also reduce the negative effects of chemical fertilizers and pesticides, contributing to the environmentally friendly agricultural development. Furthermore, the application of polysaccharide-based nanoparticles is consistent with the expanding trend of green and sustainable agriculture.
Collapse
Affiliation(s)
- María Mondéjar-López
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Maria Paz García-Simarro
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; Naplatec S.L, Calle Mayor 36, 02001 Albacete, Spain
| | - Pablo Navarro-Simarro
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Lourdes Gómez-Gómez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; Facultad de Farmacia, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, C/ José María Sánchez Ibáñez s/n, 02008 Albacete, Spain
| | - Oussama Ahrazem
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Enrique Niza
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; Facultad de Farmacia, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, C/ José María Sánchez Ibáñez s/n, 02008 Albacete, Spain; Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
| |
Collapse
|
3
|
Altaf MT, Liaqat W, Jamil A, Jan MF, Baloch FS, Barutçular C, Nadeem MA, Mohamed HI. Strategies and bibliometric analysis of legumes biofortification to address malnutrition. PLANTA 2024; 260:85. [PMID: 39227398 DOI: 10.1007/s00425-024-04504-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/11/2024] [Indexed: 09/05/2024]
Abstract
MAIN CONCLUSION Biofortification of legumes using diverse techniques such as plant breeding, agronomic practices, genetic modification, and nano-technological approaches presents a sustainable strategy to address micronutrient deficiencies of underprivileged populations. The widespread issue of chronic malnutrition, commonly referred to as "hidden hunger," arises from the consumption of poor-quality food, leading to various health and cognitive impairments. Biofortified food crops have been a sustainable solution to address micronutrient deficiencies. This review highlights multiple biofortification techniques, such as plant breeding, agronomic practices, genetic modification, and nano-technological approaches, aimed at enhancing the nutrient content of commonly consumed crops. Emphasizing the biofortification of legumes, this review employs bibliometric analysis to examine research trends from 2000 to 2023. It identifies key authors, influential journals, contributing countries, publication trends, and prevalent keywords in this field. The review highlights the progress in developing biofortified crops and their potential to improve global nutrition and help underprivileged populations.
Collapse
Affiliation(s)
- Muhammad Tanveer Altaf
- Department of Plant Production and Technologies, Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, 58140, Sivas, Turkey.
| | - Waqas Liaqat
- Department of Field Crops, Faculty of Agriculture, Institute of Natural and Applied Sciences, Çukurova University, 01330, Adana, Turkey
| | - Amna Jamil
- Department of Horticulture, MNS University of Agriculture, Multan, Pakistan
| | - Muhammad Faheem Jan
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Faheem Shehzad Baloch
- Department of Biotechnology, Faculty of Science, Mersin University, 33343, Yenişehir, Mersin, Turkey
| | - Celaleddin Barutçular
- Department of Field Crops, Faculty of Agriculture, Institute of Natural and Applied Sciences, Çukurova University, 01330, Adana, Turkey
| | - Muhammad Azhar Nadeem
- Department of Plant Production and Technologies, Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, 58140, Sivas, Turkey
| | - Heba I Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
| |
Collapse
|
4
|
Chauhan S, Rajam MV. Host RNAi-mediated silencing of Fusarium oxysporum f. sp. lycopersici specific-fasciclin-like protein genes provides improved resistance to Fusarium wilt in Solanum lycopersicum. PLANTA 2024; 259:79. [PMID: 38431538 DOI: 10.1007/s00425-024-04360-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
MAIN CONCLUSION Tomato transgenics expressing dsRNA against FoFLPs act as biofungicides and result in enhanced disease resistance upon Fol infection, by downregulating the endogenous gene expression levels of FoFLPs within Fol. Fusarium oxysporum f. sp. lycopersici (Fol) hijacks plant immunity by colonizing within the host and further instigating secondary infection causing vascular wilt disease in tomato that leads to significant yield loss. Here, RNA interference (RNAi) technology was used to determine its potential in enduring resistance against Fusarium wilt in tomato. To gain resistance against Fol infection, host-induced gene silencing (HIGS) of Fol-specific genes encoding for fasciclin-like proteins (FoFLPs) was done by generating tomato transgenics harbouring FoFLP1, FoFLP4 and FoFLP5 RNAi constructs confirmed by southern hybridizations. These tomato transgenics were screened for stable siRNA production in T0 and T1 lines using northern hybridizations. This confirmed stable dsRNAhp expression in tomato transgenics and suggested durable trait heritability in the subsequent progenies. FoFLP-specific siRNAs producing T1 tomato progenies were further selected to ascertain its disease resistance ability using seedling infection assays. We observed a significant reduction in FoFLP1, FoFLP4 and FoFLP5 transcript levels in Fol, upon infecting their respective RNAi tomato transgenic lines. Moreover, tomato transgenic lines, expressing intended siRNA molecules in the T1 generation, exhibit delayed disease onset with improved resistance. Furthermore, reduced fungal colonization was observed in the roots of Fol-infected T1 tomato progenies, without altering the plant photosynthetic efficiency of transgenic plants. These results substantiate the cross-kingdom dsRNA or siRNA delivery from transgenic tomato to Fol, leading to enhanced resistance against Fusarium wilt disease. The results also demonstrated that HIGS is a successful approach in rendering resistance to Fol infection in tomato plants.
Collapse
Affiliation(s)
- Sambhavana Chauhan
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India
| | - Manchikatla Venkat Rajam
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India.
| |
Collapse
|
5
|
Zulfiqar U, Khokhar A, Maqsood MF, Shahbaz M, Naz N, Sara M, Maqsood S, Sahar S, Hussain S, Ahmad M. Genetic biofortification: advancing crop nutrition to tackle hidden hunger. Funct Integr Genomics 2024; 24:34. [PMID: 38365972 DOI: 10.1007/s10142-024-01308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/18/2024]
Abstract
Malnutrition, often termed "hidden hunger," represents a pervasive global issue carrying significant implications for health, development, and socioeconomic conditions. Addressing the challenge of inadequate essential nutrients, despite sufficient caloric intake, is crucial. Biofortification emerges as a promising solution by enhance the presence of vital nutrients like iron, zinc, iodine, and vitamin A in edible parts of different crop plants. Crop biofortification can be attained through either agronomic methods or genetic breeding techniques. Agronomic strategies for biofortification encompass the application of mineral fertilizers through foliar or soil methods, as well as leveraging microbe-mediated mechanisms to enhance nutrient uptake. On the other hand, genetic biofortification involves the strategic crossing of plants to achieve a desired combination of genes, promoting balanced nutrient uptake and bioavailability. Additionally, genetic biofortification encompasses innovative methods such as speed breeding, transgenic approaches, genome editing techniques, and integrated omics approaches. These diverse strategies collectively contribute to enhancing the nutritional profile of crops. This review highlights the above-said genetic biofortification strategies and it also covers the aspect of reduction in antinutritional components in food through genetic biofortification.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Amman Khokhar
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Muhammad Shahbaz
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Nargis Naz
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Maheen Sara
- Department of Nutritional Sciences, Government College Women University, Faisalabad, Pakistan
| | - Sana Maqsood
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sajila Sahar
- Department of Plant Breeding & Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
6
|
Sahu A, Verma R, Gupta U, Kashyap S, Sanyal I. An Overview of Targeted Genome Editing Strategies for Reducing the Biosynthesis of Phytic Acid: an Anti-nutrient in Crop Plants. Mol Biotechnol 2024; 66:11-25. [PMID: 37061991 DOI: 10.1007/s12033-023-00722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/11/2023] [Indexed: 04/17/2023]
Abstract
Anti-nutrients are substances either found naturally or are of synthetic origin, which leads to the inactivation of nutrients and limits their utilization in metabolic processes. Phytic acid is classified as an anti-nutrient, as it has a strong binding affinity with most minerals like Fe, Zn, Mg, Ca, Mn, and Cd and impairs their proper metabolism. Removing anti-nutrients from cereal grains may enable the bioavailability of both macro- and micronutrients which is the desired goal of genetic engineering tools for the betterment of agronomic traits. Several strategies have been adopted to minimize phytic acid content in plants. Pursuing the molecular strategies, there are several studies, which result in the decrement of the total phytic acid content in grains of major as well as minor crops. Biosynthesis of phytic acid mainly takes place in the seed comprising lipid-dependent and lipid-independent pathways, involving various enzymes. Furthermore, some studies show that interruption of these enzymes may involve the pleiotropic effect. However, using modern biotechnological approaches, undesirable agronomic traits can be removed. This review presents an overview of different genes encoding the various enzymes involved in the biosynthetic pathway of phytic acid which is being targeted for its reduction. It also, highlights and enumerates the variety of potential applications of genome editing tools such as TALEN, ZFN, and CRISPR/Cas9 to knock out the desired genes, and RNAi for their silencing.
Collapse
Affiliation(s)
- Anshu Sahu
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P, 226001, India
| | - Rita Verma
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P, 226001, India
| | - Uma Gupta
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P, 226001, India
| | - Shashi Kashyap
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P, 226001, India
| | - Indraneel Sanyal
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P, 226001, India.
| |
Collapse
|
7
|
Animasaun DA, Lawrence JA. Antisense RNA (asRNA) technology: the concept and applications in crop improvement and sustainable agriculture. Mol Biol Rep 2023; 50:9545-9557. [PMID: 37755651 DOI: 10.1007/s11033-023-08814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Antisense RNA (asRNA) technology is a method used to silence genes and inhibit their expression. Gene function relies on expression, which follows the central dogma of molecular biology. The use of asRNA can regulate gene expression by targeting specific mRNAs, which can result in changes in phenotype, disease resistance, and other traits associated with protein expression profiles. This technology uses short, single-stranded oligonucleotide strands that are complementary to the targeted mRNA. Manipulating and regulating protein expression during its translation can either knock out or knock down the expression of a gene of interest. Therefore, functional genomics can benefit from this technology since it allows for the regulation of protein expression. In this review, we discuss the concept, and applications of asRNA technology which include delaying ripening, prolonging shelf life, biofortification, and increasing biotic and abiotic resistance among others in crop improvement and sustainable agriculture.
Collapse
Affiliation(s)
- David Adedayo Animasaun
- Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Kwara State, Nigeria.
- Plant Tissue Culture Lab, Central Research Laboratories, University of Ilorin, P.M.B.1515, Ilorin, Kwara State, Nigeria.
| | - Judith Amaka Lawrence
- Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Kwara State, Nigeria.
| |
Collapse
|
8
|
Cao J, Hao X, Li Y, Tan R, Cui Z, Li L, Zhang Y, Cao J, Min M, Liang L, Xu Z, Ma W, Ma L. Exploring the role of detoxification genes in the resistance of Bursaphelenchus xylophilus to different exogenous nematicidal substances using transcriptomic analyses. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105527. [PMID: 37532336 DOI: 10.1016/j.pestbp.2023.105527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023]
Abstract
Bursaphelenchus xylophilus (Pine wood nematode, PWN) has become a worldwide forest disease due to its rapid infection ability, high lethality and difficulty in control. The main means of countering B. xylophilus is currently chemical control, but nematicides can present problems such as environmental pollution and drug resistance. The development of novel environmentally-friendly nematicides has thus become a focus of recent research. In this study, BxUGT3 and BxUGT34, which might be related to detoxification, were investigated by comparing transcriptomic and WGCNA approaches. Three other genes with a similar expression pattern, BxUGT13, BxUGT14, and BxUGT16, were found by gene family analysis. Further bioassays and qPCR assays confirmed that these five genes showed significant changes in transcript levels upon exposure to α-pinene and carvone, demonstrating that they respond to exogenous nematicidal substances. Finally, RNAi and bioassays showed that B. xylophilus with silenced BxUGT16 had increased mortality in the face of α-pinene and carvone stress, suggesting that BxUGT16 plays an important role in detoxification. Taken together, this study used novel molecular research methods, explored the detoxification mechanism of B. xylophilus at a transcriptomic level, and revealed a molecular target for the development of novel biopesticides.
Collapse
Affiliation(s)
- Jingxin Cao
- School of Forestry, Northeast Forestry University, Harbin 15004, China.
| | - Xin Hao
- School of Forestry, Northeast Forestry University, Harbin 15004, China.
| | - Yang Li
- School of Forestry, Northeast Forestry University, Harbin 15004, China
| | - Ruina Tan
- School of Forestry, Northeast Forestry University, Harbin 15004, China
| | - Zhixin Cui
- Kuntouhe Forestry Field, Ningcheng County, Chifeng 024228, Inner Mongolia, China
| | - Lu Li
- School of Forestry, Northeast Forestry University, Harbin 15004, China
| | - Yue Zhang
- School of Forestry, Northeast Forestry University, Harbin 15004, China
| | - Jingyu Cao
- School of Forestry, Northeast Forestry University, Harbin 15004, China
| | - Mengru Min
- School of Forestry, Northeast Forestry University, Harbin 15004, China
| | - Liwei Liang
- Liaoning Institute of Poplar Research, Gaizhou 115213, China
| | - Zhe Xu
- School of Forestry, Northeast Forestry University, Harbin 15004, China
| | - Wei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150000, China.
| | - Ling Ma
- School of Forestry, Northeast Forestry University, Harbin 15004, China.
| |
Collapse
|
9
|
Halder K, Chaudhuri A, Abdin MZ, Datta A. Tweaking the Small Non-Coding RNAs to Improve Desirable Traits in Plant. Int J Mol Sci 2023; 24:ijms24043143. [PMID: 36834556 PMCID: PMC9966754 DOI: 10.3390/ijms24043143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Plant transcriptome contains an enormous amount of non-coding RNAs (ncRNAs) that do not code for proteins but take part in regulating gene expression. Since their discovery in the early 1990s, much research has been conducted to elucidate their function in the gene regulatory network and their involvement in plants' response to biotic/abiotic stresses. Typically, 20-30 nucleotide-long small ncRNAs are a potential target for plant molecular breeders because of their agricultural importance. This review summarizes the current understanding of three major classes of small ncRNAs: short-interfering RNAs (siRNAs), microRNA (miRNA), and transacting siRNAs (tasiRNAs). Furthermore, their biogenesis, mode of action, and how they have been utilized to improve crop productivity and disease resistance are discussed here.
Collapse
Affiliation(s)
- Koushik Halder
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Abira Chaudhuri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Correspondence: (A.C.); (A.D.); Tel.: +91-1126742750 or +91-1126735119 (A.D.)
| | - Malik Z. Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Correspondence: (A.C.); (A.D.); Tel.: +91-1126742750 or +91-1126735119 (A.D.)
| |
Collapse
|
10
|
Transgenic Improvement for Biotic Resistance of Crops. Int J Mol Sci 2022; 23:ijms232214370. [PMID: 36430848 PMCID: PMC9697442 DOI: 10.3390/ijms232214370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Biotic constraints, including pathogenic fungi, viruses and bacteria, herbivory insects, as well as parasitic nematodes, cause significant yield loss and quality deterioration of crops. The effect of conventional management of these biotic constraints is limited. The advances in transgenic technologies provide a direct and directional approach to improve crops for biotic resistance. More than a hundred transgenic events and hundreds of cultivars resistant to herbivory insects, pathogenic viruses, and fungi have been developed by the heterologous expression of exogenous genes and RNAi, authorized for cultivation and market, and resulted in a significant reduction in yield loss and quality deterioration. However, the exploration of transgenic improvement for resistance to bacteria and nematodes by overexpression of endogenous genes and RNAi remains at the testing stage. Recent advances in RNAi and CRISPR/Cas technologies open up possibilities to improve the resistance of crops to pathogenic bacteria and plant parasitic nematodes, as well as other biotic constraints.
Collapse
|
11
|
Touzdjian Pinheiro Kohlrausch Távora F, de Assis dos Santos Diniz F, de Moraes Rêgo-Machado C, Chagas Freitas N, Barbosa Monteiro Arraes F, Chumbinho de Andrade E, Furtado LL, Osiro KO, Lima de Sousa N, Cardoso TB, Márcia Mertz Henning L, Abrão de Oliveira Molinari P, Feingold SE, Hunter WB, Fátima Grossi de Sá M, Kobayashi AK, Lima Nepomuceno A, Santiago TR, Correa Molinari HB. CRISPR/Cas- and Topical RNAi-Based Technologies for Crop Management and Improvement: Reviewing the Risk Assessment and Challenges Towards a More Sustainable Agriculture. Front Bioeng Biotechnol 2022; 10:913728. [PMID: 35837551 PMCID: PMC9274005 DOI: 10.3389/fbioe.2022.913728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated gene (Cas) system and RNA interference (RNAi)-based non-transgenic approaches are powerful technologies capable of revolutionizing plant research and breeding. In recent years, the use of these modern technologies has been explored in various sectors of agriculture, introducing or improving important agronomic traits in plant crops, such as increased yield, nutritional quality, abiotic- and, mostly, biotic-stress resistance. However, the limitations of each technique, public perception, and regulatory aspects are hindering its wide adoption for the development of new crop varieties or products. In an attempt to reverse these mishaps, scientists have been researching alternatives to increase the specificity, uptake, and stability of the CRISPR and RNAi system components in the target organism, as well as to reduce the chance of toxicity in nontarget organisms to minimize environmental risk, health problems, and regulatory issues. In this review, we discuss several aspects related to risk assessment, toxicity, and advances in the use of CRISPR/Cas and topical RNAi-based technologies in crop management and breeding. The present study also highlights the advantages and possible drawbacks of each technology, provides a brief overview of how to circumvent the off-target occurrence, the strategies to increase on-target specificity, the harm/benefits of association with nanotechnology, the public perception of the available techniques, worldwide regulatory frameworks regarding topical RNAi and CRISPR technologies, and, lastly, presents successful case studies of biotechnological solutions derived from both technologies, raising potential challenges to reach the market and being social and environmentally safe.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Karen Ofuji Osiro
- Department of Phytopathology, University of Brasília, Brasília, Brazil
- Embrapa Agroenergy, Brasília, Brazil
| | | | | | | | | | | | - Wayne B. Hunter
- USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, FL, United States
| | | | | | | | | | | |
Collapse
|
12
|
Choudhury A, Verma S, Muthamilarasan M, Rajam MV. Identification of suitable reference genes for expression profiling studies using qRT-PCR in an important insect pest, Maruca vitrata. Mol Biol Rep 2021; 48:7477-7485. [PMID: 34637095 DOI: 10.1007/s11033-021-06766-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Maruca vitrata is one of the potential insect pests that cause devastating losses to legume cultivation worldwide. Gene functional studies facilitate dissecting the molecular mechanisms underlying the infection process and enable devising appropriate molecular strategies to control this insect pest. Expression profiling using quantitative real-time PCR (qRT-PCR) provides insights into the functional characterization of target genes; however, ideal reference genes should be deployed in such studies to nullify the background variation and improve the accuracy of target gene expression. An ideal reference gene should have a stable expression across developmental stages, biological conditions, tissues, or experimental conditions. METHODS AND RESULTS Given this, the stability of eight candidate reference genes was evaluated in M. vitrata at different developmental stages, diets, and sexes by qRT-PCR method, and the data was analyzed using four independent algorithms, namely GeNorm, NormFinder, BestKeeper, and ΔCt, and one comprehensive algorithm, RefFinder. CONCLUSION The analysis showed that RP49 and RPL13 were the best suitable reference genes for studying target gene expression at different developmental stages. Further, the study identified RP49 and RPL24, and GAPDH and RPL24 as the ideal reference genes in M. vitrata fed with different diets and sexes, respectively. The reference genes reported in the present study will ensure the accuracy of target gene expression, and thus, will serve as an important resource for gene functional studies in M. vitrata.
Collapse
Affiliation(s)
- Aparajita Choudhury
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Shubham Verma
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Telangana, 500046, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Telangana, 500046, India
| | - Manchikatla Venkat Rajam
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
13
|
Shahzad R, Jamil S, Ahmad S, Nisar A, Khan S, Amina Z, Kanwal S, Aslam HMU, Gill RA, Zhou W. Biofortification of Cereals and Pulses Using New Breeding Techniques: Current and Future Perspectives. Front Nutr 2021; 8:721728. [PMID: 34692743 PMCID: PMC8528959 DOI: 10.3389/fnut.2021.721728] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/23/2021] [Indexed: 12/25/2022] Open
Abstract
Cereals and pulses are consumed as a staple food in low-income countries for the fulfillment of daily dietary requirements and as a source of micronutrients. However, they are failing to offer balanced nutrition due to deficiencies of some essential compounds, macronutrients, and micronutrients, i.e., cereals are deficient in iron, zinc, some essential amino acids, and quality proteins. Meanwhile, the pulses are rich in anti-nutrient compounds that restrict the bioavailability of micronutrients. As a result, the population is suffering from malnutrition and resultantly different diseases, i.e., anemia, beriberi, pellagra, night blindness, rickets, and scurvy are common in the society. These facts highlight the need for the biofortification of cereals and pulses for the provision of balanced diets to masses and reduction of malnutrition. Biofortification of crops may be achieved through conventional approaches or new breeding techniques (NBTs). Conventional approaches for biofortification cover mineral fertilization through foliar or soil application, microbe-mediated enhanced uptake of nutrients, and conventional crossing of plants to obtain the desired combination of genes for balanced nutrient uptake and bioavailability. Whereas, NBTs rely on gene silencing, gene editing, overexpression, and gene transfer from other species for the acquisition of balanced nutritional profiles in mutant plants. Thus, we have highlighted the significance of conventional and NBTs for the biofortification of cereals and pulses. Current and future perspectives and opportunities are also discussed. Further, the regulatory aspects of newly developed biofortified transgenic and/or non-transgenic crop varieties via NBTs are also presented.
Collapse
Affiliation(s)
- Rahil Shahzad
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Shakra Jamil
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Shakeel Ahmad
- Maize Research Station, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Amina Nisar
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Sipper Khan
- Tropics and Subtropics Group, Institute of Agricultural Engineering, University of Hohenheim, Stuttgart, Germany
| | - Zarmaha Amina
- Tropics and Subtropics Group, Institute of Agricultural Engineering, University of Hohenheim, Stuttgart, Germany
| | - Shamsa Kanwal
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | | | - Rafaqat Ali Gill
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Weijun Zhou
- Key Laboratory of Spectroscopy Sensing, The Ministry of Agriculture and Rural Affairs, Institute of Crop Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Tetorya M, Rajam MV. RNAi-mediated silencing of PEX6 and GAS1 genes of Fusarium oxysporum f. sp. lycopersici confers resistance against Fusarium wilt in tomato. 3 Biotech 2021; 11:443. [PMID: 34631344 DOI: 10.1007/s13205-021-02973-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022] Open
Abstract
In the present study, we have explored the potential of the RNAi mediated silencing of genes encoding peroxisomal biogenesis factor and β-1,3-glucanosyltransferase in Fusarium oxysporum f. sp. lycopersici (Fol) to confer resistance to Fusarium wilt in transgenic tomato plants. The partial gene fragments from these genes were utilized independently to generate hairpin RNAi constructs in appropriate silencing vectors and used for Agrobacterium-mediated transformation of tomato. The presence of gene-specific siRNAs was confirmed by stem-loop RT-PCR analysis of selected transgenic tomato lines. Transgenic lines expressing gene-specific dsRNA displayed enhanced resistance to Fol with delayed development of disease symptoms. The survival rate of transgenic tomato lines after fungal infection was higher as compared to that of the untransformed tomato plants. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02973-8.
Collapse
Affiliation(s)
- Meenakshi Tetorya
- Department of Genetics, University of Delhi-South Campus, Benito Juarez Marg, New Delhi, 110021 India
| | - Manchikatla Venkat Rajam
- Department of Genetics, University of Delhi-South Campus, Benito Juarez Marg, New Delhi, 110021 India
| |
Collapse
|
15
|
Kaur R, Choudhury A, Chauhan S, Ghosh A, Tiwari R, Rajam MV. RNA interference and crop protection against biotic stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2357-2377. [PMID: 34744371 PMCID: PMC8526635 DOI: 10.1007/s12298-021-01064-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/14/2021] [Accepted: 09/07/2021] [Indexed: 05/26/2023]
Abstract
RNA interference (RNAi) is a universal phenomenon of RNA silencing or gene silencing with broader implications in important physiological and developmental processes of most eukaryotes, including plants. Small RNA (sRNA) are the critical drivers of the RNAi machinery that ensures down-regulation of the target genes in a homology-dependent manner and includes small-interfering RNAs (siRNAs) and micro RNAs (miRNAs). Plant researchers across the globe have exploited the powerful technique of RNAi to execute targeted suppression of desired genes in important crop plants, with an intent to improve crop protection against pathogens and pests for sustainable crop production. Biotic stresses cause severe losses to the agricultural productivity leading to food insecurity for future generations. RNAi has majorly contributed towards the development of designer crops that are resilient towards the various biotic stresses such as viruses, bacteria, fungi, insect pests, and nematodes. This review summarizes the recent progress made in the RNAi-mediated strategies against these biotic stresses, along with new insights on the future directions in research involving RNAi for crop protection.
Collapse
Affiliation(s)
- Ranjeet Kaur
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Aparajita Choudhury
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Sambhavana Chauhan
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Arundhati Ghosh
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Ruby Tiwari
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Manchikatla Venkat Rajam
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| |
Collapse
|
16
|
Hao X, Wang B, Chen J, Wang B, Xu J, Pan J, Ma L. Molecular characterization and functional analysis of multidrug resistance-associated genes of Pinewood nematode (Bursaphelenchus xylophilus) for nematicides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 177:104902. [PMID: 34301363 DOI: 10.1016/j.pestbp.2021.104902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/10/2021] [Accepted: 06/09/2021] [Indexed: 05/02/2023]
Abstract
Bursaphelenchus xylophilus (Pinewood nematode, PWN) is the causative agent of pine wilt disease (PWD) which caused serious threat to pine forests in the world, especially in East Asia and Western Europe. At present, the control of PWD mainly rely on the massive use of pesticide despite the damage to human health and environmental safety. Developing novel drug targets is the optimized strategy for developing new method to control PWN. In this study, four multidrug resistance-associated protein (MRP) genes containing highly conserved MRP-associated domains were cloned from PWN. The expression patterns of the four Bx-mrps under three different nematicides treatments were studied by quantitative reverse transcription PCR (qRT-PCR) and the function of the four genes in multidrug resistance were also validated by RNA interference (RNAi). Results showed that the expression of Bx-mrp1, Bx-mrp2, Bx-mrp3, and Bx-mrp4 were significantly increased when exposed to different nematicides, wherein, Bx-mrp4 exposed by 4.0 mg/mL of matrine own the highest expression level. The mortality rates of Bx-mrps silenced nematodes revealed significant increase(P < 0.05)under matrine, avermectin, and emamectin benzoate exposure. Specially, Bx-mrp4 exposed with 4.0 mg/mL matrine for 24 h own the highest mortality increase by 18.34%. After RNAi of Bx-mrps, feeding ability of the nematodes were also significantly decreased. These results demonstrate that Bx-mrps were linked to the detoxification process and feeding behavior of PWN. Silencing of Bx-mrps can lead to increased sensitivity of PWN to nematicides and decrease its feeding ability. Bx-mrps are potential new PWN control targets in the future.
Collapse
Affiliation(s)
- Xin Hao
- School of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Bowen Wang
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jie Chen
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Buyong Wang
- School of Agriculture and Bioengineering, Heze University, Heze 274015, China
| | - Jiayao Xu
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jialiang Pan
- Key laboratory of State Forestry Administration on Forest Pest Monitoring and Warning, General Station of Forest and Grassland Pest Management, General Station of Forest and Grassland Pest Management, National Forestry and Grassland Administration, Shenyang 110034, China..
| | - Ling Ma
- School of Forestry, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
17
|
|