1
|
Rajbongshi BK, Abdullah S, Lama B, Bhattacharyya HP, Sarma M. Regioselective and solvent-dependent photoisomerization induced internal conversion in red fluorescent protein chromophore analogues. RSC Adv 2024; 14:18373-18384. [PMID: 38860252 PMCID: PMC11163268 DOI: 10.1039/d4ra00988f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024] Open
Abstract
Photophysical properties of three red fluorescent protein (RFP) chromophore analogues are reported here. The three RFP chromophore analogues differ in the additional conjugation present in the RFP chromophore. The three chromophores do not exhibit any solvent effect in both absorption and fluorescence spectra. The photoirradiation experiments and recording of 1H NMR before and after irradiation on one of the three RFP model chromophores show isomerization of the (Z,E) diastereomer to the (E,E) diastereomer. Calculation of S0 and S1 potential energy curves shows the preference for isomerization through the exocyclic C[double bond, length as m-dash]C bond with Z-stereochemistry, thus corroborating the experimental results. The computational studies also suggest that torsional motion along the exocyclic C[double bond, length as m-dash]C bond pushes the molecules to a conical intersection, thus paving the pathway for radiationless deactivation.
Collapse
Affiliation(s)
| | - Sheikh Abdullah
- Department of Chemistry, Cotton University Panbazar Guwahati Assam 781001 India
| | - Bittu Lama
- Department of Chemistry, Indian Institute of Technology Guwahati Assam 781039 India
| | | | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology Guwahati Assam 781039 India
| |
Collapse
|
2
|
Dumitraş D, Dalmau D, García-Orduña P, Pop A, Silvestru A, Urriolabeitia EP. Orthopalladated imidazolones and thiazolones: synthesis, photophysical properties and photochemical reactivity. Dalton Trans 2024; 53:8948-8957. [PMID: 38727513 DOI: 10.1039/d4dt00730a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The reaction of Pd(OAc)2 with (Z)-5-arylidene-4-(4H)-imidazolones (2a-e) and (Z)-4-arylidene-5(4H)-thiazolones (3a-e) in trifluoroacetic acid results in the corresponding orthopalladated dinuclear complexes (4a-e, imidazolones; 11a-d, thiazolones) with trifluoroacetate bridges through regioselective C-H activation at the ortho position of the 4-arylidene group. Compound 4e, which contains an imidazolone substituted at 2- and 4-positions of the arylidene ring with methoxide groups and exhibits strong push-pull charge transfer, is an excellent precursor for the synthesis of fluorescent complexes with green yellowish emission and remarkable quantum yields. Breaking the bridging system with pyridine yields the mononuclear complex 5e (ΦF = 5%), while metathesis of trifluoroacetate ligands with chloride leads to the dinuclear complex 6e, also a precursor of fluorescent complexes by breaking the chloride bridging system with pyridine (7e, ΦF = 7%), or by substitution of chloride ligands with pyridine (8e, ΦF = 15%) or acetylacetonate (9e, ΦF = 2%). In addition to notable photophysical properties, dinuclear complexes 4 and 11 also exhibit significant photochemical reactivity. Thus, irradiation of orthopalladates 4a-c and 11a-c in CH2Cl2 with blue light (465 nm) proceeds via [2 + 2] photocycloaddition of the CC double bonds of imidazolone and thiazolone ligands, yielding the corresponding cyclobutane-bridging diaminotruxillic derivatives 10a-c and 12a-c, respectively.
Collapse
Affiliation(s)
- Darius Dumitraş
- Supramolecular Organic and Organometallic Chemistry Centre, Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca, Romania
| | - David Dalmau
- Instituto de Síntesis Química y Catálisis Homogénea, ISQCH, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain.
| | - Pilar García-Orduña
- Instituto de Síntesis Química y Catálisis Homogénea, ISQCH, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain.
| | - Alexandra Pop
- Supramolecular Organic and Organometallic Chemistry Centre, Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca, Romania
| | - Anca Silvestru
- Supramolecular Organic and Organometallic Chemistry Centre, Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca, Romania
| | - Esteban P Urriolabeitia
- Instituto de Síntesis Química y Catálisis Homogénea, ISQCH, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain.
| |
Collapse
|
3
|
Gowri MR, Ramanathan G. Planarity is one of the essential requirements for fluorescence in Red Fluorescent Protein chromophore analogs. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Singh VP, Dowarah J, Marak BN, Tewari AK. Design, synthesis, in silico analysis with
PPAR
‐γ receptor and study of non‐covalent interactions in unsymmetrical heterocyclic/phenyl fleximer. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ved Prakash Singh
- Department of Chemistry School of Physical Sciences, Mizoram University Aizawl Mizoram India
- Department of Chemistry Institute of Science, Banaras Hindu University Varanasi Uttar Pradesh India
| | - Jayanta Dowarah
- Department of Chemistry School of Physical Sciences, Mizoram University Aizawl Mizoram India
| | - Brilliant N. Marak
- Department of Chemistry School of Physical Sciences, Mizoram University Aizawl Mizoram India
| | - Ashish Kumar Tewari
- Department of Chemistry Institute of Science, Banaras Hindu University Varanasi Uttar Pradesh India
| |
Collapse
|
5
|
Singh VP, Dowarah J, Lalhruaizela, Geiger DK. Structural and Non-Covalent Interactions Study of 2-Pyridone Based Flexible Unsymmetrical Dimer. CRYSTAL RESEARCH AND TECHNOLOGY 2019. [DOI: 10.1002/crat.201900136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ved P. Singh
- Department of Chemistry; Physical Sciences; Mizoram University; Aizawl 796004 Mizoram India
| | - Jayanta Dowarah
- Department of Chemistry; Physical Sciences; Mizoram University; Aizawl 796004 Mizoram India
| | - Lalhruaizela
- Department of Chemistry; Physical Sciences; Mizoram University; Aizawl 796004 Mizoram India
| | - David K. Geiger
- Department of Chemistry; State University of New York; College at Geneseo; Geneseo NY 14454 USA
| |
Collapse
|
6
|
Singh A, Badi-Uz-Zama K, Ramanathan G. Protonation of the imino nitrogen deactivates the excited state of imidazolin-5-one in the solid state. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1429-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Singh A, Ramanathan G. Rational Design of Heterogeneous Silver Catalysts by Exploitation of Counteranion-Induced Coordination Geometry. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ashish Singh
- Department of Chemistry; Indian Institute of Technology; Kanpur 208016 India
| | - Gurunath Ramanathan
- Department of Chemistry; Indian Institute of Technology; Kanpur 208016 India
| |
Collapse
|
8
|
Tewari AK, Srivastava P, Singh VP, Singh P, Khanna RS. Molecular recognition phenomenon in aromatic compounds. RESEARCH ON CHEMICAL INTERMEDIATES 2012. [DOI: 10.1007/s11164-012-0849-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Rather SR, Rajbongshi BK, Nair NN, Sen P, Ramanathan G. Excited state relaxation dynamics of model green fluorescent protein chromophore analogs: evidence for cis-trans isomerism. J Phys Chem A 2011; 115:13733-42. [PMID: 21995735 DOI: 10.1021/jp206815t] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two green fluorescent protein (GFP) chromophore analogs (4Z)-4-(N,N-dimethylaminobenzylidene)-1-methyl-2-phenyl-1,4-dihydro-5H-imidazolin-5-one (DMPI) and (4Z)-4-(N,N-diphenylaminobenzylidene)-1-methyl-2-phenyl-1,4-dihydro-5H-imidazolin-5-one (DPMPI) were investigated using femtosecond fluorescence up-conversion spectroscopy and quantum chemical calculations with the results being substantiated by HPLC and NMR measurements. The femtosecond fluorescence transients are found to be biexponential in nature and the time constants exhibit a significant dependence on solvent viscosity and polarity. A multicoordinate relaxation mechanism is proposed for the excited state relaxation behavior of the model GFP analogs. The first time component (τ(1)) was assigned to the formation of twisted intramolecular charge transfer (TICT) state along the rotational coordinate of N-substituted amine group. Time resolved intensity normalized and area normalized emission spectra (TRES and TRANES) were constructed to authenticate the occurrence of TICT state in subpicosecond time scale. Another picosecond time component (τ(2)) was attributed to internal conversion via large amplitude motion along the exomethylenic double bond which has been enunciated by quantum chemical calculations. Quantum chemical calculation also forbids the involvement of hula-twist because of high activation barrier of twisting. HPLC profiles and proton-NMR measurements of the irradiated analogs confirm the presence of Z and E isomers, whose possibility of formation can be accomplished only by the rotation along the exomethylenic double bond. The present observations can be extended to p-HBDI in order to understand the role of protein scaffold in reducing the nonradiative pathways, leading to highly luminescent nature of GFP.
Collapse
Affiliation(s)
- Shahnawaz R Rather
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208 016, UP, India
| | | | | | | | | |
Collapse
|
10
|
Rajbongshi BK, Sen P, Ramanathan G. Twisted intramolecular charge transfer in a model green fluorescent protein luminophore analog. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.06.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|