1
|
Jana SK, Som NN, Jha PK. Size-Dependent Fullerenes for Enhanced Interaction of l-Leucine: A Combined DFT and MD Simulations Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13844-13859. [PMID: 38916256 DOI: 10.1021/acs.langmuir.4c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Fullerene-based biosensors have received great attention due to their unique electronic properties that allow them to transduce electrical signals by accepting electrons from amino acids. Babies with MSUD (maple syrup urine disease) are unable to break down amino acids such as l-leucine, and excess levels of the l-leucine are harmful. Therefore, sensing of l-leucine is foremost required. We aim to investigate the interaction tendencies of size-variable fullerenes (CX; X = 24, 36, 50, and 70) toward l-leucine (LEU) using density functional theory (DFT-D3) and classical molecular dynamics (MD) simulation. The C24 fullerene shows the highest affinity of the LEU biomolecule in the gas phase. Smaller fullerenes (C24 and C36) show stronger interactions with leucine due to their higher curvature in water environments. Moreover, recovery times in the ranges of 1010 and 104 s make it a viable candidate for the isolation application of LEU from the biological system. Further, the interaction between LEU and fullerenes is in line with the natural bond order (NBO) analysis, Mulliken charge analysis, quantum theory atom in molecule (QTAIM) analysis, and reduced density gradient (RDG) analysis. At 310 K, employing the explicit water model in classical MD simulations, fullerenes C24 and C36 demonstrate notably elevated binding free energies (-24.946 kJ/mol) in relation to LEU, showcasing their potential as sensors for l-leucine. Here, we demonstrate that the smaller fullerene exhibits a higher potential for l-leucine sensors than the larger fullerene.
Collapse
Affiliation(s)
- Sourav Kanti Jana
- Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 39002, India
| | - Narayan N Som
- Institute of High-Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| | - Prafulla K Jha
- Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 39002, India
| |
Collapse
|
2
|
Ghoudi A, Ben Brahim K, Ghalla H, Lhoste J, Auguste S, Khirouni K, Aydi A, Oueslati A. Crystal structure and optical characterization of a new hybrid compound, C 6H 9N 2FeCl 4, with large dielectric constants for field-effect transistors. RSC Adv 2023; 13:12844-12862. [PMID: 37114024 PMCID: PMC10126822 DOI: 10.1039/d3ra01239e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Due to remarkable dielectric features, such as a large dielectric constant, strong electrical conductivity, high capacitance, and low dielectric loss, hybrid materials have lately seen a huge number of applications in the field of optoelectronics. These are critical characteristics that qualify the performance of optoelectronic devices, particularly field-effect transistor components (FETs). Here, the hybrid compound 2-amino-5-picoline tetrachloroferrate(iii) (2A5PFeCl4) was synthesised by using the slow evaporation solution growth method at room temperature. Structural, optical, and dielectric properties have been investigated. The 2A5PFeCl4 compound crystallises in the monoclinic system (P21/c space group). Its structure can be described as a successive layering of inorganic and organic parts. [FeCl4]- tetrahedral anions and 2-amino-5-picolinium cations are connected by N-H⋯Cl and C-H⋯Cl hydrogen bonds. The optical absorption measurement confirms the semiconductor nature with a band gap of around 2.47 eV. Additionally, the structural and electronic properties of the title compound have been investigated theoretically through DFT calculations. At low frequencies, this material has significant dielectric constants (ε ∼106). Furthermore, the high electrical conductivity, low dielectric loss at high frequencies, and high capacitance show that this new material has great dielectric potential in FET technologies. Due to their high permittivity, these compounds can be employed as gate dielectrics.
Collapse
Affiliation(s)
- A Ghoudi
- Laboratory for Spectroscopic Characterization and Optics of Materials, Faculty of Sciences, University of Sfax B. P. 1171 3000 Sfax Tunisia
| | - Kh Ben Brahim
- Laboratory for Spectroscopic Characterization and Optics of Materials, Faculty of Sciences, University of Sfax B. P. 1171 3000 Sfax Tunisia
| | - H Ghalla
- Quantum and Statistical Physics Laboratory, Faculty of Sciences, University of Monastir Monastir 5079 Tunisia
| | - J Lhoste
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université Avenue Olivier Messiaen 72085 Le Mans Cedex 9 France
| | - S Auguste
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université Avenue Olivier Messiaen 72085 Le Mans Cedex 9 France
| | - K Khirouni
- Laboratoire de Physique des Matériaux et des Nanomatériaux appliquée a`l'Environnement, Faculté des Sciences de Gabes, Université de Gabes cite Erriadh 6079 Gabes Tunisia
| | - A Aydi
- Laboratory for Spectroscopic Characterization and Optics of Materials, Faculty of Sciences, University of Sfax B. P. 1171 3000 Sfax Tunisia
| | - A Oueslati
- Laboratory for Spectroscopic Characterization and Optics of Materials, Faculty of Sciences, University of Sfax B. P. 1171 3000 Sfax Tunisia
| |
Collapse
|
3
|
Investigation of optical, TD-DFT calculation and electrical conductivity in semiconducting [(CH3)NH3]2ZnBr4. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Abstract
Co-amorphous (CAM) systems are promising drug-delivery systems in the arena of therapeutic drug delivery, addressing the poor aqueous solubility of drugs by enhancing solubility and thereby improving the oral bioavailability and therapeutic effect of the drug. A CAM system is a single-phase homogeneous blend of two or more low molecular weight molecules that can be drug–drug or drug–co-former, stabilized via intermolecular interactions, adding the benefit of thermodynamic stability. This review covers the fundamentals of CAM systems and recent advances in formulation development. In particular, we strive to address the theoretical, molecular, technical and biopharmaceutical aspects, advantages over polymeric amorphous solid dispersions, mechanisms of stabilization of amorphous forms, insights into unexplored in silico tools in excipient selection and regulatory viewpoints.
Collapse
|
5
|
Crystal structure, DFT studies and thermal characterization of new luminescent stannate (IV) based inorganic-organic hybrid compound. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129266] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Suma N, Aruldhas D, Joe IH, Sasi BA, Anuf AR, Mol GS, Balachandran S, George J. Spectroscopic and molecular structure investigation of Propachlor herbicide: A combined experimental and theoretical study. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Fluorine induced conformational switching and modulation in photophysical properties of 7-fluorotryptophan: Spectroscopic, quantum chemical calculation and molecular dynamics simulation studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2020. [DOI: 10.1016/j.jpap.2020.100011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
8
|
Rodrigues-Oliveira AF, Batista PR, Ducati LC, Correra TC. Analyzing the N–H+…π interactions of protonated tryptophan and phenylalkylamines using QTAIM, NCI, and NBO. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02643-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Intermolecular hydrogen bond interactions in the thiourea/water complexes (Thio-(H 2O) n) (n = 1, …, 5): X-ray, DFT, NBO, AIM, and RDG analyses. J Mol Model 2020; 26:161. [PMID: 32472203 DOI: 10.1007/s00894-020-04423-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023]
Abstract
This study aims to experimentally and theoretically examine the nature and energy of intermolecular bond interactions between thiourea and water molecules using natural bond orbital (NBO), non-linear optical (NLO), atoms in molecules (AIM), and reduced density gradient (RDG) analyses based on the quantum chemical approach and spectroscopic analysis on X-ray and FTIR. Geometry optimizations of Thio-(H2O)1-5 complexes were carried out in the gas phase by B3LYP/6-311++G(d,p) level of density functional theory. The nature of the molecular interactions between the water and thiourea through hydrogen bonding has been investigated using RDG and AIM methods. NBO analysis shows that the Thio-(H2O)5 complex has higher stabilization energy values than the other complexes. The non-linear optical properties, such as dipole moment (μ), the polarizability (α0), and the first hyperpolarizability (βtot), and thermodynamic functions, such as entropy (S), specific heat capacity (Cv), and thermal energy (E), were calculated using the same method. It was observed that thermodynamic parameters, polarizability, and the first hyperpolarizability increased with the number of water molecules. X-ray diffraction analysis confirmed that thiourea is single crystal, and the thiourea/water complexes are crystalline in nature. Besides, the infrared spectrum shows the existence of water molecules and it is used to get details of the structure of the complex.
Collapse
|
10
|
1-Ferrocenylbutane-1,3-dione as a scaffold for ferrocenyl-based ligands: Synthesis, X-ray and computational studies. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Oliveira CX, Mocellin A, Menezes de Souza Lima F, Jesus Chaves Neto AM, Lima Azevedo D. DFT Study of L‐Cysteine Fragmentation Route using a Novel Protocol. ChemistrySelect 2019. [DOI: 10.1002/slct.201903453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Carlos Xavier Oliveira
- Institute of Physics University of Brasília Campus Darcy Ribeiro, Asa Norte Brasília-DF Brazil 70919-970
| | - Alexandra Mocellin
- Institute of Physics University of Brasília Campus Darcy Ribeiro, Asa Norte Brasília-DF Brazil 70919-970
| | | | | | - David Lima Azevedo
- Institute of Physics University of Brasília Campus Darcy Ribeiro, Asa Norte Brasília-DF Brazil 70919-970
| |
Collapse
|
12
|
Sheeja Mol GP, Aruldhas D, Hubert Joe I, Balachandran S, Ronaldo Anuf A, George J, Nadh AG. Structural activity, fungicidal activity and molecular dynamics simulation of certain triphenyl methyl imidazole derivatives by experimental and computational spectroscopic techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 212:105-120. [PMID: 30616164 DOI: 10.1016/j.saa.2018.12.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 12/21/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
The main objective of the study is to analyze the structural behaviour and fungicidal activity of clotrimazole by experimental and theoretical spectroscopic techniques. Its computational results are correlated with three triphenyl imidazole derivative compounds. The clotrimazole-water complexes formed by hydrogen bonding interactions are investigated at the B3LYP/6-311G(d,p) level. The distributions of the vibrational bands are carried out with the help of normal coordinate analysis (NCA). Hirshfeld surface analysis of clotrimazole is done and the obtained finger print plots reveal the interactions within the compound. The stability of the compounds in water has been investigated by using molecular dynamics simulation (MDS). Molecular docking is done on the compounds in comparison with the native ligand (Lanosterol 14α-demethylase) and standard drug (fluconazole) to study the hydrogen bond energy interaction. The antifungal activity of clotrimazole is analyzed by using two fungal pathogens.
Collapse
Affiliation(s)
- G P Sheeja Mol
- Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 627 012, Tamil Nadu, India; Department of Physics & Research Centre, Nesamony Memorial Christian College, Marthandam 629165, Tamil Nadu, India
| | - D Aruldhas
- Department of Physics & Research Centre, Nesamony Memorial Christian College, Marthandam 629165, Tamil Nadu, India.
| | - I Hubert Joe
- Centre for Molecular and Biophysics Research, Department of Physics, Mar Ivanios College, Thiruvananthapuram 695015, Kerala, India
| | | | - A Ronaldo Anuf
- Department of Biotechnology, Kamaraj College of Engineering and Technology, Virudhunagar 626001, Tamilnadu, India
| | - Jesby George
- Department of Physics, Bishop Moore College, Mavelikara, Alappuzha, Kerala 690110, India
| | - Anuroopa G Nadh
- Department of Computational Biology & Bioinformatics, University of Kerala, Kariavattom, Kerala 695581, India
| |
Collapse
|
13
|
Anithaa VS, Vijayakumar S, Sudha M, Shankar R. Theoretical investigation on hydrogen bond interaction of diketo/keto-enol form uracil and thymine tautomers with intercalators. J Mol Model 2017; 23:333. [DOI: 10.1007/s00894-017-3476-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
|
14
|
Yuan C, An P, Chen J, Luo Z, Yao J. Unraveling weak interactions in aniline-pyrrole dimer clusters. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0105-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Shakourian-Fard M, Kamath G, Sankaranarayanan SKRS. Evaluating the Free Energies of Solvation and Electronic Structures of Lithium-Ion Battery Electrolytes. Chemphyschem 2016; 17:2916-30. [PMID: 27257715 DOI: 10.1002/cphc.201600338] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Indexed: 11/06/2022]
Abstract
Adaptive biasing force molecular dynamics simulations and density functional theory calculations were performed to understand the interaction of Li(+) with pure carbonates and ethylene carbonate (EC)-based binary mixtures. The most favorable Li carbonate cluster configurations obtained from molecular dynamics simulations were subjected to detailed structural and thermochemistry calculations on the basis of the M06-2X/6-311++G(d,p) level of theory. We report the ranking of these electrolytes on the basis of the free energies of Li-ion solvation in carbonates and EC-based mixtures. A strong local tetrahedral order involving four carbonates around the Li(+) was seen in the first solvation shell. Thermochemistry calculations revealed that the enthalpy of solvation and the Gibbs free energy of solvation of the Li(+) ion with carbonates are negative and suggested the ion-carbonate complexation process to be exothermic and spontaneous. Natural bond orbital analysis indicated that Li(+) interacts with the lone pairs of electrons on the carbonyl oxygen atom in the primary solvation sphere. These interactions lead to an increase in the carbonyl (C=O) bond lengths, as evidenced by a redshift in the vibrational frequencies [ν(C=O)] and a decrease in the electron density values at the C=O bond critical points in the primary solvation sphere. Quantum theory of atoms in molecules, localized molecular orbital energy decomposition analysis (LMO-EDA), and noncovalent interaction plots revealed the electrostatic nature of the Li(+) ion interactions with the carbonyl oxygen atoms in these complexes. On the basis of LMO-EDA, the strongest attractive interaction in these complexes was found to be the electrostatic interaction followed by polarization, dispersion, and exchange interactions. Overall, our calculations predicted EC and a binary mixture of EC/dimethyl carbonate to be appropriate electrolytes for Li-ion batteries, which complies with experiments and other theoretical results.
Collapse
Affiliation(s)
| | - Ganesh Kamath
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO, 65211, USA.
| | | |
Collapse
|
16
|
|
17
|
Hussain MA, Mahadevi AS, Sastry GN. Estimating the binding ability of onium ions with CO2 and π systems: a computational investigation. Phys Chem Chem Phys 2015; 17:1763-75. [DOI: 10.1039/c4cp03434a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The impact of increasing methyl substitution on onium ions in their complexes with CO2 and aromatic systems has been analyzed using DFT calculations.
Collapse
Affiliation(s)
- M. Althaf Hussain
- Center for Molecular Modeling
- Indian Institute of Chemical Technology
- Hyderabad 500607
- India
| | - A. Subha Mahadevi
- Center for Molecular Modeling
- Indian Institute of Chemical Technology
- Hyderabad 500607
- India
| | - G. Narahari Sastry
- Center for Molecular Modeling
- Indian Institute of Chemical Technology
- Hyderabad 500607
- India
| |
Collapse
|
18
|
|