1
|
De Mori A, Jones RS, Cretella M, Cerri G, Draheim RR, Barbu E, Tozzi G, Roldo M. Evaluation of Antibacterial and Cytotoxicity Properties of Silver Nanowires and Their Composites with Carbon Nanotubes for Biomedical Applications. Int J Mol Sci 2020; 21:ijms21072303. [PMID: 32225118 PMCID: PMC7178261 DOI: 10.3390/ijms21072303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
In this work, we prepared silver nanowires (AgNWs) via the polyol method in the presence or absence of single wall carbon nanotubes (CNTs) and tested their physicochemical, antibacterial and cytotoxic properties. Results showed that the introduction of CNTs lead to the formation of AgNWs at lower temperature, but the final product characteristics of AgNWs and AgNWs-CNT were not significantly different. AgNWs exhibited antibacterial properties against all the studied bacterial species via the formation of oxygen reactive species (ROS) and membrane damage. Furthermore, AgNWs exhibited a dose-dependent and time-dependent toxicity at concentrations ≥ 10 µg/mL. Fibroblasts appeared to be more resistant than human colorectal adenocarcinoma (Caco-2) and osteoblasts to the toxicity of AgNWs. The cytotoxicity of AgNWs was found to be related to the formation of ROS, but not to membrane damage. Overall, these results suggest that AgNWs are potential antibacterial agents against E. coli, S. aureus, MRSA and S. saprophyticus, but their dosage needs to be adjusted according to the route of administration.
Collapse
Affiliation(s)
- Arianna De Mori
- School of Pharmacy and Biomedical Science, University of Portsmouth, St Michael’s Building, White Swan Road, PO1 2DT, Portsmouth, UK; (A.D.M.); (R.S.J.); (M.C.); (R.R.D.); (E.B.)
| | - Richard S. Jones
- School of Pharmacy and Biomedical Science, University of Portsmouth, St Michael’s Building, White Swan Road, PO1 2DT, Portsmouth, UK; (A.D.M.); (R.S.J.); (M.C.); (R.R.D.); (E.B.)
| | - Matteo Cretella
- School of Pharmacy and Biomedical Science, University of Portsmouth, St Michael’s Building, White Swan Road, PO1 2DT, Portsmouth, UK; (A.D.M.); (R.S.J.); (M.C.); (R.R.D.); (E.B.)
| | - Guido Cerri
- Department of Architecture, Design and Urban Planning—GeoMaterials Lab, University of Sassari, Via Piandanna 4, 07100 Sassari, Italy;
| | - Roger R. Draheim
- School of Pharmacy and Biomedical Science, University of Portsmouth, St Michael’s Building, White Swan Road, PO1 2DT, Portsmouth, UK; (A.D.M.); (R.S.J.); (M.C.); (R.R.D.); (E.B.)
| | - Eugen Barbu
- School of Pharmacy and Biomedical Science, University of Portsmouth, St Michael’s Building, White Swan Road, PO1 2DT, Portsmouth, UK; (A.D.M.); (R.S.J.); (M.C.); (R.R.D.); (E.B.)
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, PO1 3DJ Portsmouth, UK;
| | - Marta Roldo
- School of Pharmacy and Biomedical Science, University of Portsmouth, St Michael’s Building, White Swan Road, PO1 2DT, Portsmouth, UK; (A.D.M.); (R.S.J.); (M.C.); (R.R.D.); (E.B.)
- Correspondence:
| |
Collapse
|