1
|
Hammoud L, Strebler C, Toufaily J, Hamieh T, Keller V, Caps V. The role of the gold-platinum interface in AuPt/TiO 2-catalyzed plasmon-induced reduction of CO 2 with water. Faraday Discuss 2023; 242:443-463. [PMID: 36205304 DOI: 10.1039/d2fd00094f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bimetallic gold-platinum nanoparticles have been widely studied in the fields of nanoalloys, catalysis and plasmonics. Many preparation methods can lead to the formation of these bimetallic nanoparticles (NPs), and the structure and related properties of the nanoalloy often depend on the preparation method used. Here we investigate the ability of thermal dimethylformamide (DMF) reduction to prepare bimetallic gold-platinum sub-nm clusters supported on titania. We find that deposition of Pt preferentially occurs on gold. Formation of sub-nm clusters (vs. NPs) appears to be dependent on the metal concentration used: clusters can be obtained for metal loadings up to 4 wt% but 7-8 nm NPs are formed for metal loadings above 8 wt%, as shown using high resolution transmission electron microscopy (HRTEM). X-ray photoelectron spectroscopy (XPS) shows electron-rich Au and Pt components in a pure metallic form and significant platinum enrichment of the surface, which increases with increasing Pt/Au ratio and suggests the presence of Au@Pt core-shell type structures. By contrast, titania-supported bimetallic particles (typically >7 nm) obtained by sodium borohydride (NaBH4) reduction in DMF, contain Au/Pt Janus-type objects in addition to oxidized forms of Pt as evidenced by HRTEM, which is in agreement with the lower Pt surface enrichment found by XPS. Both types of supported nanostructures contain a gold-platinum interface, as shown by the chemical interface damping, i.e. gold plasmon damping by Pt, found using UV-visible spectroscopy. Evaluation of the materials for plasmon-induced continuous flow CO2 reduction with water, shows that: (1) subnanometer metallic clusters are not suitable for CO2 reduction with water, producing hydrogen from the competing water reduction instead, thereby highlighting the plasmonic nature of the reaction; (2) the highest methane production rates are obtained for the highest Pt enrichments of the surface, i.e. the core-shell-like structures achieved by the thermal DMF reduction method; (3) selectivity towards CO2 reduction vs. the competing water reduction is enhanced by loading of the plasmonic NPs, i.e. coverage of the titania semi-conductor by plasmonic NPs. Full selectivity is achieved for loadings above 6 wt%, regardless of the NPs composition and alloy structure.
Collapse
Affiliation(s)
- Leila Hammoud
- ICPEES (CNRS UMR 7515/Université de Strasbourg), 25 rue Becquerel, 67087 Strasbourg, Cedex 02, France.
| | - Claire Strebler
- ICPEES (CNRS UMR 7515/Université de Strasbourg), 25 rue Becquerel, 67087 Strasbourg, Cedex 02, France.
| | - Joumana Toufaily
- Laboratory of Materials, Catalysis, Environment and Analytical Methods Laboratory (MCEMA), Faculty of Sciences, Lebanese University, Rafic Hariri Campus, Hadath, Lebanon
| | - Tayssir Hamieh
- Laboratory of Materials, Catalysis, Environment and Analytical Methods Laboratory (MCEMA), Faculty of Sciences, Lebanese University, Rafic Hariri Campus, Hadath, Lebanon.,Faculty of Science and Engineering, Maastricht University, 6200 MD, Maastrich, P.O. Box 616, The Netherlands
| | - Valérie Keller
- ICPEES (CNRS UMR 7515/Université de Strasbourg), 25 rue Becquerel, 67087 Strasbourg, Cedex 02, France.
| | - Valérie Caps
- ICPEES (CNRS UMR 7515/Université de Strasbourg), 25 rue Becquerel, 67087 Strasbourg, Cedex 02, France.
| |
Collapse
|
2
|
Arul P, Huang ST, Mani V, Huang CH. Graphene quantum dots-based nanocomposite for electrocatalytic application of L-cysteine in whole blood and live cells. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
3
|
Isoaho N, Sainio S, Wester N, Botello L, Johansson LS, Peltola E, Climent V, Feliu JM, Koskinen J, Laurila T. Pt-grown carbon nanofibers for detection of hydrogen peroxide. RSC Adv 2018; 8:12742-12751. [PMID: 35541272 PMCID: PMC9079629 DOI: 10.1039/c8ra01703d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/28/2018] [Indexed: 11/21/2022] Open
Abstract
Removal of left-over catalyst particles from carbon nanomaterials is a significant scientific and technological problem. Here, we present the physical and electrochemical study of application-specific carbon nanofibers grown from Pt-catalyst layers. The use of Pt catalyst removes the requirement for any cleaning procedure as the remaining catalyst particles have a specific role in the end-application. Despite the relatively small amount of Pt in the samples (7.0 ± 0.2%), they show electrochemical features closely resembling those of polycrystalline Pt. In O2-containing environment, the material shows two separate linear ranges for hydrogen peroxide reduction: 1–100 μM and 100–1000 μM with sensitivities of 0.432 μA μM−1 cm−2 and 0.257 μA μM−1 cm−2, respectively, with a 0.21 μM limit of detection. In deaerated solution, there is only one linear range with sensitivity 0.244 μA μM−1 cm−2 and 0.22 μM limit of detection. We suggest that the high sensitivity between 1 μM and 100 μM in solutions where O2 is present is due to oxygen reduction reaction occurring on the CNFs producing a small additional cathodic contribution to the measured current. This has important implications when Pt-containing sensors are utilized to detect hydrogen peroxide reduction in biological, O2-containing environment. Application specific Pt-grown carbon nanofibers for H2O2 detection were characterized and the roles of dissolved oxygen and chloride ions on the electrochemical performance were assessed in detail.![]()
Collapse
|
4
|
Karuppusamy S, Demudu Babu G, Venkatesh V, Marken F, Anbu Kulandainathan M. Highly conductive nano-silver textile for sensing hydrogen peroxide. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Dement’eva OV, Kartseva ME, Ogarev VA, Sukhov VM, Rudoy VM. Metal nanoparticles on polymer surfaces. 7. The growth kinetics of gold nanoparticles embedded into surface layers of glassy polymers. COLLOID JOURNAL 2017. [DOI: 10.1134/s1061933x1606003x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Novel Nanocomposite of Chitosan-protected Platinum Nanoparticles Immobilized on Nickel Hydroxide: Facile Synthesis and Application as Glucose Electrochemical Sensor. J CHEM SCI 2016. [DOI: 10.1007/s12039-016-1146-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|