1
|
Gokhman VE, Kuznetsova VG. Structure and Evolution of Ribosomal Genes of Insect Chromosomes. INSECTS 2024; 15:593. [PMID: 39194798 DOI: 10.3390/insects15080593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024]
Abstract
Currently, clusters of 45S and 5S ribosomal DNA (rDNA) have been studied in about 1000 and 100 species of the class Insecta, respectively. Although the number of insect species with known 45S rDNA clusters (also referred to as nucleolus-organizing regions, or NORs) constitutes less than 0.1 percent of the described members of this enormous group, certain conclusions can already be drawn. Since haploid karyotypes with single 45S and 5S rDNA clusters predominate in both basal and derived insect groups, this character state is apparently ancestral for the class Insecta in general. Nevertheless, the number, chromosomal location, and other characteristics of both 45S and 5S rDNA sites substantially vary across different species, and sometimes even within the same species. There are several main factors and molecular mechanisms that either maintain these parameters or alter them on the short-term and/or long-term scale. Chromosome structure (i.e., monocentric vs. holokinetic chromosomes), excessive numbers of rRNA gene copies per cluster, interactions with transposable elements, pseudogenization, and meiotic recombination are perhaps the most important among them.
Collapse
Affiliation(s)
| | - Valentina G Kuznetsova
- Department of Karyosystematics, Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russia
| |
Collapse
|
2
|
Dutrillaux AM, Carton B, Cacheux L, Dutrillaux B. Interstitial NORs, Fragile Sites, and Chromosome Evolution: A Not So Simple Relationship - The Example of Melolontha melolontha and Genus Protaetia (Coleoptera: Scarabaeidae). Cytogenet Genome Res 2016; 149:304-311. [DOI: 10.1159/000448931] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2016] [Indexed: 11/19/2022] Open
Abstract
In the present study, the origin of recurrent rearrangements involving chromosome 6 in 3.2% of cells of Melolontha melolontha (Coleoptera, Scarabaeidae) was investigated. Various chromosome staining techniques, including C-banding, Giemsa and silver staining, as well as fluorescence in situ hybridization with a human 28S rDNA probe, were applied to M. melolontha chromosome spreads. In addition, related species of the genera Melolontha and Protaetia were studied. On chromosome 6 of M. melolontha, there is a fragile site-like structure which corresponds to an interstitial nucleolus organizer region (NOR). Despite this instability, the NOR remains unique and interstitial in this species, as well as in the other species studied. It is proposed that the intercalary position of the NOR both facilitates the detection of its fragile site-like instability and correlates with its relative stability during evolution. We explain this apparent paradox by strong counter-selection for imbalances of the chromosome fragment distal to the interstitial NORs, which would recurrently occur in the progeny of translocation carriers. Thus, the frequent telomeric position of the NORs in most animal and plant taxa would have no functional rationale but would be the consequence of selection against the meiotic transmission of chromosome imbalances.
Collapse
|
3
|
Chromosomal variations in Coccinia grandis (L.) Voigt, an actively evolving dioecious cucurbit exhibiting floral plymorphism. THE NUCLEUS 2014. [DOI: 10.1007/s13237-014-0114-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
4
|
Arcanjo A, Cabral-de-Mello DC, Martins C, de Cássia de Moura R, de Souza MJ. Chromosomal diversification of diploid number, heterochromatin and rDNAs in two species of Phanaeus beetles (Scarabaeidae, Scarabaeinae). Genet Mol Biol 2013; 36:341-6. [PMID: 24130440 PMCID: PMC3795170 DOI: 10.1590/s1415-47572013005000031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/24/2013] [Indexed: 12/31/2022] Open
Abstract
The genus Phanaeus is included in the tribe Phanaeini, one of the most diverse tribes within the subfamily Scarabaeinae in terms of chromosomal characteristics. However, so far the species of this genus were not studied with differential cytogenetic techniques, limiting any inference of the probable mechanisms responsible for this diversity. In this work, several techniques were applied with the aim of cytogenetically characterizing two Phanaeus species. The karyotype found for Phanaeus (Notiophanaeus) chalcomelas was 2n = 12, neo-XY, and that of P. (N.) splendidulus was 2n = 20, Xyp, considered primitive for the family Scarabaeidae. The chromosomes of both species showed a high amount of constitutive heterochromatin (CH), with blocks rich in base pairs GC (CMA3+). Moreover, in P. (N.) chalcomelas the marks revealed by C-banding and fluorochrome staining were different in size, showing CH variability. Sites of 18S ribosomal DNA (rDNA) were identified in one autosomal pair of P. (N.) chalcomelas and in five autosomal pairs of P. (N.) splendidulus. On the other hand, only one autosomal pair exhibited 5S rDNA sequences in these species. The results suggest that the karyotype differentiation of the Phanaeus species studied here involved pericentric inversions and centric fusions, as well as mechanisms related to amplification and dispersion of CH and rDNA sequences.
Collapse
Affiliation(s)
- Amanda Arcanjo
- Departamento de Genética, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, PE, Brazil . ; Departamento de Biologia, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, PE, Brazil
| | | | | | | | | |
Collapse
|
5
|
Dutrillaux B, Dutrillaux AM. A South American Origin of the GenusDynastes(Coleoptera: Scarabaeidae: Dynastinae) Demonstrated by Chromosomal Analyses. Cytogenet Genome Res 2013; 141:37-42. [DOI: 10.1159/000351210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2013] [Indexed: 11/19/2022] Open
|
6
|
Karagyan G, Lachowska D, Kalashian M. Karyotype analysis of four jewel-beetle species (Coleoptera, Buprestidae) detected by standard staining, C-banding, AgNOR-banding and CMA3/DAPI staining. COMPARATIVE CYTOGENETICS 2012; 6:183-97. [PMID: 24260661 PMCID: PMC3833796 DOI: 10.3897/compcytogen.v6i2.2950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/17/2012] [Indexed: 05/16/2023]
Abstract
The male karyotypes of Acmaeodera pilosellae persica Mannerheim, 1837 with 2n=20 (18+neoXY), Sphenoptera scovitzii Faldermann, 1835 (2n=38-46), Dicerca aenea validiuscula Semenov, 1895 - 2n=20 (18+Xyp) and Sphaerobothris aghababiani Volkovitsh et Kalashian, 1998 - 2n=16 (14+Xyp) were studied using conventional staining and different chromosome banding techniques: C-banding, AgNOR-banding, as well as fluorochrome Chromomycin A3 (CMA3) and DAPI. It is shown that C-positive segments are weakly visible in all four species which indicates a small amount of constitutive heterochromatin (CH). There were no signals after DAPI staining and some positive signals were discovered using CMA3 staining demonstrating absence of AT-rich DNA and presence of GC-rich clusters of CH. Nucleolus organizing regions (NORs) were revealed using Ag-NOR technique; argentophilic material mostly coincides with positive signals obtained using CMA3 staining.
Collapse
Affiliation(s)
- Gayane Karagyan
- Institute of Zoology of Scientific Center of Zoology and Hydroecology, National Academy of Sciences of Armenia, P. Sevak 7, Yerevan 0014, Armenia
| | - Dorota Lachowska
- Department of Entomology, Institute of Zoology Jagiellonian University, Ingardena 6, 30-060 Krakow, Poland
| | - Mark Kalashian
- Institute of Zoology of Scientific Center of Zoology and Hydroecology, National Academy of Sciences of Armenia, P. Sevak 7, Yerevan 0014, Armenia
| |
Collapse
|
7
|
Dutrillaux AM, Dutrillaux B. Chromosome Analysis of 82 Species of Scarabaeoidea (Coleoptera), with Special Focus on NOR Localization. Cytogenet Genome Res 2012; 136:208-19. [DOI: 10.1159/000336694] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2011] [Indexed: 11/19/2022] Open
|
8
|
Cabral-de-Mello DC, Oliveira SG, de Moura RC, Martins C. Chromosomal organization of the 18S and 5S rRNAs and histone H3 genes in Scarabaeinae coleopterans: insights into the evolutionary dynamics of multigene families and heterochromatin. BMC Genet 2011. [PMID: 21999519 DOI: 10.1186/14712156-12-88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND Scarabaeinae beetles show a high level of macro-chromosomal variability, although the karyotypic organization of heterochromatin and multigene families (rDNAs and histone genes) is poorly understood in this group. To better understand the chromosomal organization and evolution in this group, we analyzed the karyotypes, heterochromatin distribution and chromosomal locations of the rRNAs and histone H3 genes in beetles belonging to eight tribes from the Scarabaeinae subfamily (Coleoptera, Scarabaeidae). RESULTS The number of 18S rRNA gene (a member of the 45S rDNA unit) sites varied from one to 16 and were located on the autosomes, sex chromosomes or both, although two clusters were most common. Comparison of the 45S rDNA cluster number and the diploid numbers revealed a low correlation value. However, a comparison between the number of 45S rDNA sites per genome and the quantity of heterochromatin revealed (i) species presenting heterochromatin restricted to the centromeric/pericentromeric region that contained few rDNA sites and (ii) species with a high quantity of heterochromatin and a higher number of rDNA sites. In contrast to the high variability for heterochromatin and 45S rDNA cluster, the presence of two clusters (one bivalent cluster) co-located on autosomal chromosomes with the 5S rRNA and histone H3 genes was highly conserved. CONCLUSIONS Our results indicate that the variability of the 45S rDNA chromosomal clusters is not associated with macro-chromosomal rearrangements but are instead related to the spread of heterochromatin. The data obtained also indicate that both heterochromatin and the 45S rDNA loci could be constrained by similar evolutionary forces regulating spreading in the distinct Scarabaeinae subfamily lineages. For the 5S rRNA and the histone H3 genes, a similar chromosomal organization could be attributed to their association/co-localization in the Scarabaeinae karyotypes. These data provide evidence that different evolutionary forces act at the heterochromatin and the 45S rDNA loci compared to the 5S rRNA and histone H3 genes during the evolution of the Scarabainae karyotypes.
Collapse
Affiliation(s)
- Diogo C Cabral-de-Mello
- UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Departamento de Biologia, Rio Claro, São Paulo, Brazil.
| | | | | | | |
Collapse
|
9
|
Cabral-de-Mello DC, Oliveira SG, de Moura RC, Martins C. Chromosomal organization of the 18S and 5S rRNAs and histone H3 genes in Scarabaeinae coleopterans: insights into the evolutionary dynamics of multigene families and heterochromatin. BMC Genet 2011; 12:88. [PMID: 21999519 PMCID: PMC3209441 DOI: 10.1186/1471-2156-12-88] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/15/2011] [Indexed: 11/22/2022] Open
Abstract
Background Scarabaeinae beetles show a high level of macro-chromosomal variability, although the karyotypic organization of heterochromatin and multigene families (rDNAs and histone genes) is poorly understood in this group. To better understand the chromosomal organization and evolution in this group, we analyzed the karyotypes, heterochromatin distribution and chromosomal locations of the rRNAs and histone H3 genes in beetles belonging to eight tribes from the Scarabaeinae subfamily (Coleoptera, Scarabaeidae). Results The number of 18S rRNA gene (a member of the 45S rDNA unit) sites varied from one to 16 and were located on the autosomes, sex chromosomes or both, although two clusters were most common. Comparison of the 45S rDNA cluster number and the diploid numbers revealed a low correlation value. However, a comparison between the number of 45S rDNA sites per genome and the quantity of heterochromatin revealed (i) species presenting heterochromatin restricted to the centromeric/pericentromeric region that contained few rDNA sites and (ii) species with a high quantity of heterochromatin and a higher number of rDNA sites. In contrast to the high variability for heterochromatin and 45S rDNA cluster, the presence of two clusters (one bivalent cluster) co-located on autosomal chromosomes with the 5S rRNA and histone H3 genes was highly conserved. Conclusions Our results indicate that the variability of the 45S rDNA chromosomal clusters is not associated with macro-chromosomal rearrangements but are instead related to the spread of heterochromatin. The data obtained also indicate that both heterochromatin and the 45S rDNA loci could be constrained by similar evolutionary forces regulating spreading in the distinct Scarabaeinae subfamily lineages. For the 5S rRNA and the histone H3 genes, a similar chromosomal organization could be attributed to their association/co-localization in the Scarabaeinae karyotypes. These data provide evidence that different evolutionary forces act at the heterochromatin and the 45S rDNA loci compared to the 5S rRNA and histone H3 genes during the evolution of the Scarabainae karyotypes.
Collapse
Affiliation(s)
- Diogo C Cabral-de-Mello
- UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Departamento de Biologia, Rio Claro, São Paulo, Brazil.
| | | | | | | |
Collapse
|
10
|
Cabral-de-Mello DC, Moura RC, Martins C. Cytogenetic Mapping of rRNAs and Histone H3 Genes in 14 Species of Dichotomius (Coleoptera, Scarabaeidae, Scarabaeinae) Beetles. Cytogenet Genome Res 2011; 134:127-35. [PMID: 21555878 DOI: 10.1159/000326803] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2011] [Indexed: 11/19/2022] Open
Affiliation(s)
- D C Cabral-de-Mello
- Instituto de Biociências, Departamento de Morfologia, UniversidadeEstadual Paulista (UNESP), Botucatu, SP, Brazil.
| | | | | |
Collapse
|
11
|
Cabral-de-Mello D, Moura R, Carvalho R, Souza M. Cytogenetic analysis of two related Deltochilum (Coleoptera, Scarabaeidae) species: Diploid number reduction, extensive heterochromatin addition and differentiation. Micron 2010; 41:112-7. [PMID: 19914839 DOI: 10.1016/j.micron.2009.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 10/08/2009] [Accepted: 10/09/2009] [Indexed: 10/20/2022]
|