1
|
Gantait A, Masih SA, Addesso R, Maxton A, Sofo A. Glucosinolates Mediated Regulation of Enzymatic Activity in Response to Oxidative Stress in Brassica spp. PLANTS (BASEL, SWITZERLAND) 2024; 13:3422. [PMID: 39683215 DOI: 10.3390/plants13233422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
Brassica crops are vital as they supply essential minerals, antioxidants, and bioactive substances like anthocyanins, glucosinolates, and carotenoids. However, biotic and abiotic elements that cause oxidative stress through heavy metals and other eco-toxicants pose a risk to Brassica plants. Increased generation of Reactive Oxygen Species (ROS) causes oxidative stress, which damages biomolecules and interferes with plant growth, productivity, and cellular equilibrium. Plants producing Brassica need an intricate enzyme defence mechanism to fend off oxidative stress. All the enzymes that have been addressed are found in mitochondria, peroxisomes, chloroplasts, and other cell components. They are in charge of removing ROS and preserving the cell's redox balance. Additionally, Brassica plants use secondary metabolites called Glucosinolates (GLs), which have the capacity to regulate enzymatic activity and act as antioxidants. By breaking down compounds like sulforaphane, GLs boost antioxidant enzymes and provide protection against oxidative stress. To develop methods for improving agricultural crop stress tolerance and productivity in Brassica, it is necessary to comprehend the dynamic interaction between GL metabolism and enzymatic antioxidant systems. This highlights the possibility of maximizing antioxidant defences and raising the nutritional and commercial value of Brassica across the globe by utilizing genetic diversity and environmental interactions.
Collapse
Affiliation(s)
- Aishmita Gantait
- Department of Genetics and Plant Breeding, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Sam A Masih
- Department of Molecular and Cellular Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Rosangela Addesso
- Department of Agricultural, Forestry, Food and Environmental Sciences (DAFE), University of Basilicata, 85100 Potenza, Italy
| | - Ann Maxton
- Department of Genetics and Plant Breeding, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Adriano Sofo
- Department of Agricultural, Forestry, Food and Environmental Sciences (DAFE), University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|
2
|
Shi W, Cheng J, Wen X, Wang J, Shi G, Yao J, Hou L, Sun Q, Xiang P, Yuan X, Dong S, Guo P, Guo J. Transcriptomic studies reveal a key metabolic pathway contributing to a well-maintained photosynthetic system under drought stress in foxtail millet ( Setaria italica L.). PeerJ 2018; 6:e4752. [PMID: 29761061 PMCID: PMC5947103 DOI: 10.7717/peerj.4752] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/22/2018] [Indexed: 11/20/2022] Open
Abstract
Drought stress is one of the most important abiotic factors limiting crop productivity. A better understanding of the effects of drought on millet (Setaria italica L.) production, a model crop for studying drought tolerance, and the underlying molecular mechanisms responsible for drought stress responses is vital to improvement of agricultural production. In this study, we exposed the drought resistant F1 hybrid, M79, and its parental lines E1 and H1 to drought stress. Subsequent physiological analysis demonstrated that M79 showed higher photosynthetic energy conversion efficiency and drought tolerance than its parents. A transcriptomic study using leaves collected six days after drought treatment, when the soil water content was about ∼20%, identified 3066, 1895, and 2148 differentially expressed genes (DEGs) in M79, E1 and H1 compared to the respective untreated controls, respectively. Further analysis revealed 17 Gene Ontology (GO) enrichments and 14 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in M79, including photosystem II (PSII) oxygen-evolving complex, peroxidase (POD) activity, plant hormone signal transduction, and chlorophyll biosynthesis. Co-regulation analysis suggested that these DEGs in M79 contributed to the formation of a regulatory network involving multiple biological processes and pathways including photosynthesis, signal transduction, transcriptional regulation, redox regulation, hormonal signaling, and osmotic regulation. RNA-seq analysis also showed that some photosynthesis-related DEGs were highly expressed in M79 compared to its parental lines under drought stress. These results indicate that various molecular pathways, including photosynthesis, respond to drought stress in M79, and provide abundant molecular information for further analysis of the underlying mechanism responding to this stress.
Collapse
Affiliation(s)
- Weiping Shi
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Jingye Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Yangzhou University, Yangzhou, China
| | - Xiaojie Wen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jixiang Wang
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Guanyan Shi
- Industrial Crop Institute, Shanxi Academy of Agricultural Sciences, Fenyang, China
| | - Jiayan Yao
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Liyuan Hou
- Department of Next Generation Sequencing, Vazyme Biotech Company Ltd., Nanjing, China
| | - Qian Sun
- Department of Next Generation Sequencing, Vazyme Biotech Company Ltd., Nanjing, China
| | - Peng Xiang
- Department of Next Generation Sequencing, Vazyme Biotech Company Ltd., Nanjing, China
| | - Xiangyang Yuan
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Shuqi Dong
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Pingyi Guo
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Jie Guo
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
3
|
Shi W, Cheng J, Wen X, Wang J, Shi G, Yao J, Hou L, Sun Q, Xiang P, Yuan X, Dong S, Guo P, Guo J. Transcriptomic studies reveal a key metabolic pathway contributing to a well-maintained photosynthetic system under drought stress in foxtail millet ( Setaria italica L.). PeerJ 2018. [PMID: 29761061 DOI: 10.7287/peerj.preprints.26860v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
Drought stress is one of the most important abiotic factors limiting crop productivity. A better understanding of the effects of drought on millet (Setaria italica L.) production, a model crop for studying drought tolerance, and the underlying molecular mechanisms responsible for drought stress responses is vital to improvement of agricultural production. In this study, we exposed the drought resistant F1 hybrid, M79, and its parental lines E1 and H1 to drought stress. Subsequent physiological analysis demonstrated that M79 showed higher photosynthetic energy conversion efficiency and drought tolerance than its parents. A transcriptomic study using leaves collected six days after drought treatment, when the soil water content was about ∼20%, identified 3066, 1895, and 2148 differentially expressed genes (DEGs) in M79, E1 and H1 compared to the respective untreated controls, respectively. Further analysis revealed 17 Gene Ontology (GO) enrichments and 14 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in M79, including photosystem II (PSII) oxygen-evolving complex, peroxidase (POD) activity, plant hormone signal transduction, and chlorophyll biosynthesis. Co-regulation analysis suggested that these DEGs in M79 contributed to the formation of a regulatory network involving multiple biological processes and pathways including photosynthesis, signal transduction, transcriptional regulation, redox regulation, hormonal signaling, and osmotic regulation. RNA-seq analysis also showed that some photosynthesis-related DEGs were highly expressed in M79 compared to its parental lines under drought stress. These results indicate that various molecular pathways, including photosynthesis, respond to drought stress in M79, and provide abundant molecular information for further analysis of the underlying mechanism responding to this stress.
Collapse
Affiliation(s)
- Weiping Shi
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Jingye Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Yangzhou University, Yangzhou, China
| | - Xiaojie Wen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jixiang Wang
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Guanyan Shi
- Industrial Crop Institute, Shanxi Academy of Agricultural Sciences, Fenyang, China
| | - Jiayan Yao
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Liyuan Hou
- Department of Next Generation Sequencing, Vazyme Biotech Company Ltd., Nanjing, China
| | - Qian Sun
- Department of Next Generation Sequencing, Vazyme Biotech Company Ltd., Nanjing, China
| | - Peng Xiang
- Department of Next Generation Sequencing, Vazyme Biotech Company Ltd., Nanjing, China
| | - Xiangyang Yuan
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Shuqi Dong
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Pingyi Guo
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Jie Guo
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
4
|
Luo X, Wu J, Li Y, Nan Z, Guo X, Wang Y, Zhang A, Wang Z, Xia G, Tian Y. Synergistic effects of GhSOD1 and GhCAT1 overexpression in cotton chloroplasts on enhancing tolerance to methyl viologen and salt stresses. PLoS One 2013; 8:e54002. [PMID: 23335985 PMCID: PMC3545958 DOI: 10.1371/journal.pone.0054002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 12/05/2012] [Indexed: 01/02/2023] Open
Abstract
In plants, CuZn superoxide dismutase (CuZnSOD, EC l.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), and catalase (CAT, EC l.11.1.6) are important scavengers of reactive oxygen species (ROS) to protect the cell from damage. In the present study, we isolated three homologous genes (GhSOD1, GhAPX1, and GhCAT1) from Gossypium hirsutum. Overexpressing cassettes containing chimeric GhSOD1, GhAPX1, or GhCAT1 were introduced into cotton plants by Agrobacterium transformation, and overexpressed products of these genes were transported into the chloroplasts by transit peptide, as expected. The five types of transgenic cotton plants that overexpressed GhSOD1, GhAPX1, GhCAT1, GhSOD1 and GhAPX1 stack (SAT), and GhSOD1 and GhCAT1 stack (SCT) were developed. Analyses in the greenhouse showed that the transgenic plants had higher tolerance to methyl viologen (MV) and salinity than WT plants. Interestingly, SCT plants suffered no damage under stress conditions. Based on analyses of enzyme activities, electrolyte leakage, chlorophyll content, photochemical yield (Fv/Fm), and biomass accumulation under stresses, the SCT plants that simultaneously overexpressed GhSOD1 and GhCAT1 appeared to benefit from synergistic effects of two genes and exhibited the highest tolerance to MV and salt stress among the transgenic lines, while the SAT plants simultaneously overexpressing GhSOD1 and GhAPX1 did not. In addition, transgenic plants overexpressing antioxidant enzymes in their chloroplasts had higher tolerance to salt stress than those expressing the genes in their cytoplasms, although overall enzyme activities were almost the same. Therefore, the synergistic effects of GhSOD1 and GhCAT1 in chloroplasts provide a new strategy for enhancing stress tolerance to avoid yield loss.
Collapse
Affiliation(s)
- Xiaoli Luo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Institute of Cotton Research, Shanxi Academy of Agricultural Sciences, Yuncheng, China
| | - Jiahe Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuanbao Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhirun Nan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xing Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yixue Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Anhong Zhang
- Institute of Cotton Research, Shanxi Academy of Agricultural Sciences, Yuncheng, China
| | - Zhian Wang
- Institute of Cotton Research, Shanxi Academy of Agricultural Sciences, Yuncheng, China
| | - Guixian Xia
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yingchuan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|