1
|
Bhupenchandra I, Chongtham SK, Gangarani Devi A, Dutta P, Lamalakshmi E, Mohanty S, Choudhary AK, Das A, Sarika K, Kumar S, Yumnam S, Sagolsem D, Rupert Anand Y, Bhutia DD, Victoria M, Vinodh S, Tania C, Dhanachandra Sharma A, Deb L, Sahoo MR, Seth CS, Swapnil P, Meena M. Harnessing weedy rice as functional food and source of novel traits for crop improvement. PLANT, CELL & ENVIRONMENT 2024. [PMID: 38436101 DOI: 10.1111/pce.14868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
A relative of cultivated rice (Oryza sativa L.), weedy or red rice (Oryza spp.) is currently recognized as the dominant weed, leading to a drastic loss of yield of cultivated rice due to its highly competitive abilities like producing more tillers, panicles, and biomass with better nutrient uptake. Due to its high nutritional value, antioxidant properties (anthocyanin and proanthocyanin), and nutrient absorption ability, weedy rice is gaining immense research attentions to understand its genetic constitution to augment future breeding strategies and to develop nutrition-rich functional foods. Consequently, this review focuses on the unique gene source of weedy rice to enhance the cultivated rice for its crucial features like water use efficiency, abiotic and biotic stress tolerance, early flowering, and the red pericarp of the seed. It explores the debating issues on the origin and evolution of weedy rice, including its high diversity, signalling aspects, quantitative trait loci (QTL) mapping under stress conditions, the intricacy of the mechanism in the expression of the gene flow, and ecological challenges of nutrient removal by weedy rice. This review may create a foundation for future researchers to understand the gene flow between cultivated crops and weedy traits and support an improved approach for the applicability of several models in predicting multiomics variables.
Collapse
Affiliation(s)
- Ingudam Bhupenchandra
- ICAR-Farm Science Centre Tamenglong, ICAR Research Complex for NEH Region, Manipur Centre, Imphal, Manipur, India
| | - Sunil Kumar Chongtham
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Ayam Gangarani Devi
- ICAR Research Complex for North Eastern Hill Region, Tripura Centre Lembucherra, Tripura, India
| | - Pranab Dutta
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
| | - Elangbam Lamalakshmi
- ICAR Research Complex for North Eastern Hill Region, Sikkim Centre, Tadong, Sikkim, India
| | - Sansuta Mohanty
- Molecular Biology and Biotechnology Department, Faculty of Agricultural Sciences, Siksha O Anusandhan University, Bhubaneswar, Odisha, India
| | - Anil K Choudhary
- Division of Crop Production, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Anup Das
- ICAR Research Complex for North Eastern Hill Region, Lembucherra, Tripura, India
| | - Konsam Sarika
- ICAR Research Complex for North Eastern Hill Region, Manipur Centre, Imphal, Manipur, India
| | - Sumit Kumar
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- Department of Plant Pathology, B.M. College of Agriculture, Khandwa, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, Madhya Pradesh, India
| | - Sonika Yumnam
- All India Coordinated Research Project on Chickpea, Central Agricultural University, Imphal, Manipur, India
| | - Diana Sagolsem
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Y Rupert Anand
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Dawa Dolma Bhutia
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - M Victoria
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - S Vinodh
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Chongtham Tania
- ICAR Research Complex for North Eastern Hill Region, Manipur Centre, Imphal, Manipur, India
| | | | - Lipa Deb
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
| | - Manas Ranjan Sahoo
- ICAR Research Complex for North Eastern Hill Region, Manipur Centre, Imphal, Manipur, India
| | | | - Prashant Swapnil
- Department of Botany, School of Basic Science, Central University of Punjab, Bhatinda, Punjab, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| |
Collapse
|
2
|
Bansal M, Adamski NM, Toor PI, Kaur S, Sharma A, Srivastava P, Bansal U, Uauy C, Chhuneja P. A robust KASP marker for selection of four pairs of linked leaf rust and stripe rust resistance genes introgressed on chromosome arm 5DS from different wheat genomes. Mol Biol Rep 2021; 48:5209-5216. [PMID: 34213711 DOI: 10.1007/s11033-021-06525-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/25/2021] [Indexed: 11/24/2022]
Abstract
Stripe rust and leaf rust are among the most devastating diseases of wheat, limiting its production globally. Wheat wild relatives harbour genetic diversity for new genes and alleles for all major wheat diseases. However, the use of this genetic variation from wild progenitor and non-progenitor species has been limited in the breeding programs. Reasons include limited recombination of donor and recipient genomes and the lack of tertiary gene pool markers. Here, we describe the development of a SNP based marker from the flow-sorted and sequenced Aegilops umbellulata chromosome 5U which can be used for marker assisted selection of four pair of alien leaf rust and stripe rust resistance genes. Lr57-Yr40_CAPS16 marker was reported earlier to be linked with alien leaf and stripe rust resistance genes introgressed on wheat chromosome 5DS. Due to its dominant nature and laborious to work with, a new SNP-based KASP marker, XTa5DS-2754099_kasp23, was developed from the same CAPS marker contig. XTa5DS-2754099_kasp23 was tested in Aegilops umbellulata, Ae. geniculata, Ae. peregrina and Ae. caudata derived alien introgression lines, which harbour four pairs of linked leaf and stripe rust genes; Lr76-Yr70, Lr57-Yr40, LrP- YrP, LrAc-YrAc, respectively. This KASP marker was found to be effective for the selection of the aforesaid four pairs of leaf rust and stripe rust resistance genes. Further, we tested and validated XTa5DS-2754099_kasp23 on commercial varieties and advanced breeding lines from four countries (India, Egypt, Australia and UK) including hexaploid and durum wheat. Our results provide evidence that KASP marker, XTa5DS-2754099_kasp23 can be used in marker-assisted selection of the four pairs of rust resistance alien genes in wheat breeding programmes.
Collapse
Affiliation(s)
- Mitaly Bansal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | | | - Puneet Inder Toor
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | - Urmil Bansal
- University of Sydney Plant Breeding Institute-Cobbitty, PMB 4011, Narellan, NSW, 2567, Australia
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India.
| |
Collapse
|
3
|
Baker L, Grewal S, Yang CY, Hubbart-Edwards S, Scholefield D, Ashling S, Burridge AJ, Przewieslik-Allen AM, Wilkinson PA, King IP, King J. Exploiting the genome of Thinopyrum elongatum to expand the gene pool of hexaploid wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2213-2226. [PMID: 32313991 PMCID: PMC7311493 DOI: 10.1007/s00122-020-03591-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/31/2020] [Indexed: 05/23/2023]
Abstract
One hundred and thirty four introgressions from Thinopyrum elongatum have been transferred into a wheat background and were characterised using 263 SNP markers. Species within the genus Thinopyrum have been shown to carry genetic variation for a very wide range of traits including biotic and abiotic stresses and quality. Research has shown that one of the species within this genus, Th. elongatum, has a close relationship with the genomes of wheat making it a highly suitable candidate to expand the gene pool of wheat. Homoeologous recombination, in the absence of the Ph1 gene, has been exploited to transfer an estimated 134 introgressions from Th. elongatum into a hexaploid wheat background. The introgressions were detected and characterised using 263 single nucleotide polymorphism markers from a 35 K Axiom® Wheat-Relative Genotyping Array, spread across seven linkage groups and validated using genomic in situ hybridisation. The genetic map had a total length of 187.8 cM and the average chromosome length was 26.8 cM. Comparative analyses of the genetic map of Th. elongatum and the physical map of hexaploid wheat confirmed previous work that indicated good synteny at the macro-level, although Th. elongatum does not contain the 4A/5A/7B translocation found in wheat.
Collapse
Affiliation(s)
- Lauren Baker
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Surbhi Grewal
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Cai-Yun Yang
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Stella Hubbart-Edwards
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Duncan Scholefield
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Stephen Ashling
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Amanda J Burridge
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | | | - Paul A Wilkinson
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Ian P King
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Julie King
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK.
| |
Collapse
|
4
|
Song Z, Dai S, Bao T, Zuo Y, Xiang Q, Li J, Liu G, Yan Z. Analysis of Structural Genomic Diversity in Aegilops umbellulata, Ae. markgrafii, Ae. comosa, and Ae. uniaristata by Fluorescence In Situ Hybridization Karyotyping. FRONTIERS IN PLANT SCIENCE 2020; 11:710. [PMID: 32655588 PMCID: PMC7325912 DOI: 10.3389/fpls.2020.00710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 05/05/2020] [Indexed: 05/14/2023]
Abstract
Fluorescence in situ hybridization karyotypes have been widely used for evolutionary analysis on chromosome organization and genetic/genomic diversity in the wheat alliance (tribe Triticeae of Poaceae). The karyotpic diversity of Aegilops umbellulata, Ae. markgrafii, Ae. comosa subsp. comosa and subsp. subventricosa, and Ae. uniaristata was evaluated by the fluorescence in situ hybridization (FISH) probes oligo-pSc119.2 and pTa71 in combination with (AAC)5, (ACT)7, and (CTT)12, respectively. Abundant intra- and interspecific genetic variation was discovered in Ae. umbellulata, Ae. markgrafii, and Ae. comosa, but not Ae. uniaristata. Chromosome 7 of Ae. umbellulata had more variants (six variants) than the other six U chromosomes (2-3 variants) as revealed by probes oligo-pSc119.2 and (AAC)5. Intraspecific variation in Ae. markgrafii and Ae. comosa was revealed by oligo-pSc119.2 in combination with (ACT)7 and (CTT)12, respectively. At least five variants were found in every chromosome of Ae. markgrafii and Ae. comosa, and up to 18, 10, and 15 variants were identified for chromosomes 2 of Ae. markgrafii, 4 of Ae. comosa subsp. comosa, and 6 of Ae. comosa subsp. subventricosa. The six Ae. uniaristata accessions showed identical FISH signal patterns. A large number of intra-specific polymorphic FISH signals were observed between the homologous chromosomes of Ae. markgrafii and Ae. comosa, especially chromosomes 1, 2, 4, and 7 of Ae. markgrafii, chromosome 4 of Ae. comosa subsp. comosa, and chromosome 6 of Ae. comosa subsp. subventricosa. Twelve Ae. comosa and 24 Ae. markgrafii accessions showed heteromorphism between homologous chromosomes. Additionally, a translocation between the short arms of chromosomes 1 and 7 of Ae. comosa PI 551038 was identified. The FISH karyotypes can be used to clearly identify the chromosome variations of each chromosome in these Aegilops species and also provide valuable information for understanding the evolutionary relationships and structural genomic variation among Aegilops species.
Collapse
Affiliation(s)
- Zhongping Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Shoufen Dai
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Tingyu Bao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Yuanyuan Zuo
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Qin Xiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Jian Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Gang Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Zehong Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| |
Collapse
|
5
|
Grewal S, Othmeni M, Walker J, Hubbart-Edwards S, Yang CY, Scholefield D, Ashling S, Isaac P, King IP, King J. Development of Wheat- Aegilops caudata Introgression Lines and Their Characterization Using Genome-Specific KASP Markers. FRONTIERS IN PLANT SCIENCE 2020; 11:606. [PMID: 32477394 PMCID: PMC7240103 DOI: 10.3389/fpls.2020.00606] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/21/2020] [Indexed: 05/23/2023]
Abstract
Aegilops caudata L. [syn. Ae. markgrafii (Greuter) Hammer], is a diploid wild relative of wheat (2n = 2x = 14, CC) and a valuable source for new genetic diversity for wheat improvement. It has a variety of disease resistance factors along with tolerance for various abiotic stresses and can be used for wheat improvement through the generation of genome-wide introgressions resulting in different wheat-Ae. caudata recombinant lines. Here, we report the generation of nine such wheat-Ae. caudata recombinant lines which were characterized using wheat genome-specific KASP (Kompetitive Allele Specific PCR) markers and multi-color genomic in situ hybridization (mcGISH). Of these, six lines have stable homozygous introgressions from Ae. caudata and will be used for future trait analysis. Using cytological techniques and molecular marker analysis of the recombinant lines, 182 KASP markers were physically mapped onto the seven Ae. caudata chromosomes, of which 155 were polymorphic specifically with only one wheat subgenome. Comparative analysis of the physical positions of these markers in the Ae. caudata and wheat genomes confirmed that the former had chromosomal rearrangements with respect to wheat, as previously reported. These wheat-Ae. caudata recombinant lines and KASP markers are useful resources that can be used in breeding programs worldwide for wheat improvement. Additionally, the genome-specific KASP markers could prove to be a valuable tool for the rapid detection and marker-assisted selection of other Aegilops species in a wheat background.
Collapse
Affiliation(s)
- Surbhi Grewal
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Manel Othmeni
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Jack Walker
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Stella Hubbart-Edwards
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Cai-yun Yang
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Duncan Scholefield
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Stephen Ashling
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Peter Isaac
- IDna Genetics Ltd., Norwich Research Park, Norwich, United Kingdom
| | - Ian P. King
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Julie King
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
6
|
Tanaka S, Yoshida K, Sato K, Takumi S. Diploid genome differentiation conferred by RNA sequencing-based survey of genome-wide polymorphisms throughout homoeologous loci in Triticum and Aegilops. BMC Genomics 2020; 21:246. [PMID: 32192452 PMCID: PMC7083043 DOI: 10.1186/s12864-020-6664-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/10/2020] [Indexed: 12/26/2022] Open
Abstract
Background Triticum and Aegilops diploid species have morphological and genetic diversity and are crucial genetic resources for wheat breeding. According to the chromosomal pairing-affinity of these species, their genome nomenclatures have been defined. However, evaluations of genome differentiation based on genome-wide nucleotide variations are still limited, especially in the three genomes of the genus Aegilops: Ae. caudata L. (CC genome), Ae. comosa Sibth. et Sm. (MM genome), and Ae. uniaristata Vis. (NN genome). To reveal the genome differentiation of these diploid species, we first performed RNA-seq-based polymorphic analyses for C, M, and N genomes, and then expanded the analysis to include the 12 diploid species of Triticum and Aegilops. Results Genetic divergence of the exon regions throughout the entire chromosomes in the M and N genomes was larger than that between A- and Am-genomes. Ae. caudata had the second highest genetic diversity following Ae. speltoides, the putative B genome donor of common wheat. In the phylogenetic trees derived from the nuclear and chloroplast genome-wide polymorphism data, the C, D, M, N, U, and S genome species were connected with short internal branches, suggesting that these diploid species emerged during a relatively short period in the evolutionary process. The highly consistent nuclear and chloroplast phylogenetic topologies indicated that nuclear and chloroplast genomes of the diploid Triticum and Aegilops species coevolved after their diversification into each genome, accounting for most of the genome differentiation among the diploid species. Conclusions RNA-sequencing-based analyses successfully evaluated genome differentiation among the diploid Triticum and Aegilops species and supported the chromosome-pairing-based genome nomenclature system, except for the position of Ae. speltoides. Phylogenomic and epigenetic analyses of intergenic and centromeric regions could be essential for clarifying the mechanisms behind this inconsistency.
Collapse
Affiliation(s)
- Sayaka Tanaka
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, 657-8501, Japan
| | - Kentaro Yoshida
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, 657-8501, Japan.
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
7
|
Zuo Y, Xiang Q, Dai S, Song Z, Bao T, Hao M, Zhang L, Liu G, Li J, Liu D, Wei Y, Zheng Y, Yan Z. Development and characterization of Triticum turgidum - Aegilops comosa and T. turgidum - Ae. markgrafii amphidiploids. Genome 2020; 63:263-273. [PMID: 32160479 DOI: 10.1139/gen-2019-0215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Aegilops comosa and Ae. markgrafii are diploid progenitors of polyploidy species of Aegilops sharing M and C genomes, respectively. Transferring valuable genes/traits from Aegilops into wheat is an alternative strategy for wheat genetic improvement. The amphidiploids between diploid species of Aegilops and tetraploid wheat can act as bridges to overcome obstacles from direct hybridization and can be developed by the union of unreduced gametes. In this study, we developed seven Triticum turgidum - Ae. comosa and two T. turgidum - Ae. markgrafii amphidiploids. The unreduced gametes mechanisms, including first-division restitution (FDR) and single-division meiosis (SDM), were observed in triploid F1 hybrids of T. turgidum - Ae. comosa (STM) and T. turgidum - Ae. markgrafii (STC). Only FDR was observed in STC hybrids, whereas FDR or both FDR and SDM were detected in the STM hybrids. All seven pairs of M chromosomes of Ae. comosa and C chromosomes of Ae. markgrafii were distinguished by fluorescent in situ hybridization (FISH) probes pSc119.2 and pTa71 combinations with pTa-535 and (CTT)12/(ACT)7, respectively. Meanwhile, the chromosomes of tetraploid wheat and diploid Aegilops parents were distinguished by the same FISH probes. The amphidiploids possessed specific valuable traits such as multiple tillers, large seed size related traits, and stripe rust resistance that could be utilized in the genetic improvement of wheat.
Collapse
Affiliation(s)
- Yuanyuan Zuo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, P.R. China
| | - Qin Xiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, P.R. China
| | - Shoufen Dai
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, P.R. China
| | - Zhongping Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, P.R. China
| | - Tingyu Bao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, P.R. China
| | - Ming Hao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, P.R. China
| | - Lianquan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, P.R. China
| | - Gang Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, P.R. China
| | - Jian Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, P.R. China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, P.R. China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, P.R. China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, P.R. China
| | - Zehong Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, P.R. China
| |
Collapse
|
8
|
Narang D, Kaur S, Steuernagel B, Ghosh S, Dhillon R, Bansal M, Uauy C, Wulff BBH, Chhuneja P. Fine mapping of Aegilops peregrina co-segregating leaf and stripe rust resistance genes to distal-most end of 5DS. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1473-1485. [PMID: 30706082 DOI: 10.1007/s00122-019-03293-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Novel rust resistance genes LrP and YrP from Ae. peregrina identified on chromosome 5D and the linked markers will aid deployment of these genes in combination with other major/minor genes. Aegilops peregrina, a wild tetraploid relative of wheat with genome constitution UUSS, displays genetic variation for resistance to leaf and stripe (yellow) rust. The wheat Ae. peregrina introgression line, IL pau16058, harbouring leaf and stripe rust resistance, was crossed with wheat cv. WL711 to generate an F2:3 mapping population. Inheritance studies on this population indicated the transfer of dominant co-segregating resistance to leaf and stripe rust. Ethyl methane sulphonate mutagenesis of IL pau16058 identified independent loss-of-function mutants for leaf and stripe rust resistance, indicating that the leaf and stripe rust resistance is controlled by independent genes, herein designated LrP and YrP, respectively. A high-resolution genetic map of LrP and YrP was constructed using the Illumina Infinium iSelect 90K wheat array and resistance gene enrichment sequencing (RenSeq) markers. The map spans 4.19 cM on the distal-most region of the short arm of chromosome 5D, consisting of eight SNP markers and one microsatellite marker. LrP and YrP co-segregated with markers BS00163889 and 5DS44573_snp and was flanked distally by the SNP marker BS00129707 and proximally by 5DS149010, defining a 15.71 Mb region in the RefSeq v1.0 genome assembly.
Collapse
Affiliation(s)
- Deepika Narang
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | | | - Sreya Ghosh
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Roopan Dhillon
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Mitaly Bansal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| |
Collapse
|
9
|
Edet OU, Gorafi YSA, Nasuda S, Tsujimoto H. DArTseq-based analysis of genomic relationships among species of tribe Triticeae. Sci Rep 2018; 8:16397. [PMID: 30401925 PMCID: PMC6219600 DOI: 10.1038/s41598-018-34811-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/26/2018] [Indexed: 11/10/2022] Open
Abstract
Precise utilization of wild genetic resources to improve the resistance of their cultivated relatives to environmental growth limiting factors, such as salinity stress and diseases, requires a clear understanding of their genomic relationships. Although seriously criticized, analyzing these relationships in tribe Triticeae has largely been based on meiotic chromosome pairing in hybrids of wide crosses, a specialized and labourious strategy. In this study, DArTseq, an efficient genotyping-by-sequencing platform, was applied to analyze the genomes of 34 Triticeae species. We reconstructed the phylogenetic relationships among diploid and polyploid Aegilops and Triticum species, including hexaploid wheat. Tentatively, we have identified the diploid genomes that are likely to have been involved in the evolution of five polyploid species of Aegilops, which have remained unresolved for decades. Explanations which cast light on the progenitor of the A genomes and the complex genomic status of the B/G genomes of polyploid Triticum species in the Emmer and Timopheevi lineages of wheat have also been provided. This study has, therefore, demonstrated that DArTseq genotyping can be effectively applied to analyze the genomes of plants, especially where their genome sequence information are not available.
Collapse
Affiliation(s)
- Offiong U Edet
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan.,United Graduate School of Agricultural Sciences, Tottori University, Tottori, 680-8553, Japan
| | - Yasir S A Gorafi
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan.,Agricultural Research Corporation (ARC), P. O. Box 126, Wad Madani, Sudan
| | - Shuhei Nasuda
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Hisashi Tsujimoto
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan.
| |
Collapse
|
10
|
Toor PI, Kaur S, Bansal M, Yadav B, Chhuneja P. Mapping of stripe rust resistance gene in an Aegilops caudate introgression line in wheat and its genetic association with leaf rust resistance. J Genet 2017; 95:933-938. [PMID: 27994192 DOI: 10.1007/s12041-016-0718-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A pair of stripe rust and leaf rust resistance genes was introgressed from Aegilops caudata, a nonprogenitor diploid species with the CC genome, to cultivated wheat. Inheritance and genetic mapping of stripe rust resistance gene in backcrossrecombinant inbred line (BC-RIL) population derived from the cross of a wheat-Ae. caudata introgression line (IL) T291- 2(pau16060) with wheat cv. PBW343 is reported here. Segregation of BC-RILs for stripe rust resistance depicted a single major gene conditioning adult plant resistance (APR) with stripe rust reaction varying from TR-20MS in resistant RILs signifying the presence of some minor genes as well. Genetic association with leaf rust resistance revealed that two genes are located at a recombination distance of 13%. IL T291-2 had earlier been reported to carry introgressions on wheat chromosomes 2D, 3D, 4D, 5D, 6D and 7D. Genetic mapping indicated the introgression of stripe rust resistance gene on wheat chromosome 5DS in the region carrying leaf rust resistance gene LrAc, but as an independent introgression. Simple sequence repeat (SSR) and sequence-tagged site (STS) markers designed from the survey sequence data of 5DS enriched the target region harbouring stripe and leaf rust resistance genes. Stripe rust resistance locus, temporarily designated as YrAc, mapped at the distal most end of 5DS linked with a group of four colocated SSRs and two resistance gene analogue (RGA)-STS markers at a distance of 5.3 cM. LrAc mapped at a distance of 9.0 cM from the YrAc and at 2.8 cM from RGA-STS marker Ta5DS_2737450, YrAc and LrAc appear to be the candidate genes for marker-assisted enrichment of the wheat gene pool for rust resistance.
Collapse
Affiliation(s)
- Puneet Inder Toor
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141 004, India.
| | | | | | | | | |
Collapse
|
11
|
Gong W, Han R, Li H, Song J, Yan H, Li G, Liu A, Cao X, Guo J, Zhai S, Cheng D, Zhao Z, Liu C, Liu J. Agronomic Traits and Molecular Marker Identification of Wheat- Aegilops caudata Addition Lines. FRONTIERS IN PLANT SCIENCE 2017; 8:1743. [PMID: 29075275 PMCID: PMC5644244 DOI: 10.3389/fpls.2017.01743] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 09/25/2017] [Indexed: 05/05/2023]
Abstract
Aegilops caudata is an important gene source for wheat breeding. Intensive evaluation of its utilization value is an essential first step prior to its application in breeding. In this research, the agronomical and quality traits of Triticum aestivum-Ae. caudata additions B-G (homoeologous groups not identified) were analyzed and evaluated. Disease resistance tests showed that chromosome D of Ae. caudata might possess leaf rust resistance, and chromosome E might carry stem rust and powdery mildew resistance genes. Investigations into agronomical traits suggested that the introduction of the Ae. caudata chromosome in addition line F could reduce plant height. Grain quality tests showed that the introduction of chromosomes E or F into wheat could increase its protein and wet gluten content. Therefore, wheat-Ae. caudata additions D-F are all potentially useful candidates for chromosome engineering activities to create useful wheat-alien chromosome introgressions. A total of 55 EST-based molecular markers were developed and then used to identify the chromosome homoeologous group of each of the Ae. caudata B-G chromosomes. Marker analysis indicated that the Ae. caudata chromosomes in addition lines B to G were structurally altered, therefore, a large population combined with intensive screening pressure should be taken into consideration when inducing and screening for wheat-Ae. caudata compensating translocations. Marker data also indicated that the Ae. caudata chromosomes in addition lines C-F were 5C, 6C, 7C, and 3C, respectively, while the homoeologous group of chromosomes B and G of Ae. caudata are as yet undetermined and need further research.
Collapse
Affiliation(s)
- Wenping Gong
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture/National Engineering Laboratory for Wheat and Maize, Jinan, China
| | - Ran Han
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture/National Engineering Laboratory for Wheat and Maize, Jinan, China
| | - Haosheng Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture/National Engineering Laboratory for Wheat and Maize, Jinan, China
| | - Jianmin Song
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture/National Engineering Laboratory for Wheat and Maize, Jinan, China
| | - Hongfei Yan
- College of Plant Protection, Agricultural University of Hebei, Baoding, China
| | - Genying Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture/National Engineering Laboratory for Wheat and Maize, Jinan, China
- College of Life Science, Shandong Normal University, Jinan, China
| | - Aifeng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture/National Engineering Laboratory for Wheat and Maize, Jinan, China
| | - Xinyou Cao
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture/National Engineering Laboratory for Wheat and Maize, Jinan, China
- College of Life Science, Shandong Normal University, Jinan, China
| | - Jun Guo
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture/National Engineering Laboratory for Wheat and Maize, Jinan, China
| | - Shengnan Zhai
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture/National Engineering Laboratory for Wheat and Maize, Jinan, China
| | - Dungong Cheng
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture/National Engineering Laboratory for Wheat and Maize, Jinan, China
| | - Zhendong Zhao
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture/National Engineering Laboratory for Wheat and Maize, Jinan, China
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture/National Engineering Laboratory for Wheat and Maize, Jinan, China
- College of Life Science, Shandong Normal University, Jinan, China
- *Correspondence: Cheng Liu
| | - Jianjun Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture/National Engineering Laboratory for Wheat and Maize, Jinan, China
- Jianjun Liu
| |
Collapse
|
12
|
Molnár I, Vrána J, Burešová V, Cápal P, Farkas A, Darkó É, Cseh A, Kubaláková M, Molnár-Láng M, Doležel J. Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:452-467. [PMID: 27402341 DOI: 10.1111/tpj.13266] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 05/09/2023]
Abstract
Goat grasses (Aegilops spp.) contributed to the evolution of bread wheat and are important sources of genes and alleles for modern wheat improvement. However, their use in alien introgression breeding is hindered by poor knowledge of their genome structure and a lack of molecular tools. The analysis of large and complex genomes may be simplified by dissecting them into single chromosomes via flow cytometric sorting. In some species this is not possible due to similarities in relative DNA content among chromosomes within a karyotype. This work describes the distribution of GAA and ACG microsatellite repeats on chromosomes of the U, M, S and C genomes of Aegilops, and the use of microsatellite probes to label the chromosomes in suspension by fluorescence in situ hybridization (FISHIS). Bivariate flow cytometric analysis of chromosome DAPI fluorescence and fluorescence of FITC-labelled microsatellites made it possible to discriminate all chromosomes and sort them with negligible contamination by other chromosomes. DNA of purified chromosomes was used as a template for polymerase chain reation (PCR) using Conserved Orthologous Set (COS) markers with known positions on wheat A, B and D genomes. Wheat-Aegilops macrosyntenic comparisons using COS markers revealed significant rearrangements in the U and C genomes, while the M and S genomes exhibited structure similar to wheat. Purified chromosome fractions provided an attractive resource to investigate the structure and evolution of the Aegilops genomes, and the COS markers assigned to Aegilops chromosomes will facilitate alien gene introgression into wheat.
Collapse
Affiliation(s)
- István Molnár
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462, Martonvásár, Hungary
| | - Jan Vrána
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic
| | - Veronika Burešová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic
| | - Petr Cápal
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic
| | - András Farkas
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462, Martonvásár, Hungary
| | - Éva Darkó
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462, Martonvásár, Hungary
| | - András Cseh
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462, Martonvásár, Hungary
| | - Marie Kubaláková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic
| | - Márta Molnár-Láng
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462, Martonvásár, Hungary
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic
| |
Collapse
|
13
|
Molnár I, Vrána J, Farkas A, Kubaláková M, Cseh A, Molnár-Láng M, Doležel J. Flow sorting of C-genome chromosomes from wild relatives of wheat Aegilops markgrafii, Ae. triuncialis and Ae. cylindrica, and their molecular organization. ANNALS OF BOTANY 2015; 116:189-200. [PMID: 26043745 PMCID: PMC4512188 DOI: 10.1093/aob/mcv073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/27/2015] [Accepted: 04/15/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Aegilops markgrafii (CC) and its natural hybrids Ae. triuncialis (U(t)U(t)C(t)C(t)) and Ae. cylindrica (D(c)D(c)C(c)C(c)) represent a rich reservoir of useful genes for improvement of bread wheat (Triticum aestivum), but the limited information available on their genome structure and the shortage of molecular (cyto-) genetic tools hamper the utilization of the extant genetic diversity. This study provides the complete karyotypes in the three species obtained after fluorescent in situ hybridization (FISH) with repetitive DNA probes, and evaluates the potential of flow cytometric chromosome sorting. METHODS The flow karyotypes obtained after the analysis of 4',6-diamidino-2-phenylindole (DAPI)-stained chromosomes were characterized and the chromosome content of the peaks on the flow karyotypes was determined by FISH. Twenty-nine conserved orthologous set (COS) markers covering all seven wheat homoeologous chromosome groups were used for PCR with DNA amplified from flow-sorted chromosomes and genomic DNA. KEY RESULTS FISH with repetitive DNA probes revealed that chromosomes 4C, 5C, 7C(t), T6U(t)S.6U(t)L-5C(t)L, 1C(c) and 5D(c) could be sorted with purities ranging from 66 to 91 %, while the remaining chromosomes could be sorted in groups of 2-5. This identified a partial wheat-C-genome homology for group 4 and 5 chromosomes. In addition, 1C chromosomes were homologous with group 1 of wheat; a small segment from group 2 indicated 1C-2C rearrangement. An extensively rearranged structure of chromosome 7C relative to wheat was also detected. CONCLUSIONS The possibility of purifying Aegilops chromosomes provides an attractive opportunity to investigate the structure and evolution of the Aegilops C genome and to develop molecular tools to facilitate the identification of alien chromatin and support alien introgression breeding in bread wheat.
Collapse
Affiliation(s)
- István Molnár
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462 Martonvásár, Hungary and
| | - Jan Vrána
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - András Farkas
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462 Martonvásár, Hungary and
| | - Marie Kubaláková
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - András Cseh
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462 Martonvásár, Hungary and
| | - Márta Molnár-Láng
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462 Martonvásár, Hungary and
| | - Jaroslav Doležel
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| |
Collapse
|
14
|
Danilova TV, Friebe B, Gill BS. Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the Triticeae. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:715-30. [PMID: 24408375 PMCID: PMC3931928 DOI: 10.1007/s00122-013-2253-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/13/2013] [Indexed: 05/04/2023]
Abstract
A cytogenetic map of wheat was constructed using FISH with cDNA probes. FISH markers detected homoeology and chromosomal rearrangements of wild relatives, an important source of genes for wheat improvement. To transfer agronomically important genes from wild relatives to bread wheat (Triticum aestivum L., 2n = 6 x = 42, AABBDD) by induced homoeologous recombination, it is important to know the chromosomal relationships of the species involved. Fluorescence in situ hybridization (FISH) can be used to study chromosome structure. The genomes of allohexaploid bread wheat and other species from the Triticeae tribe are colinear to some extent, i.e., composed of homoeoloci at similar positions along the chromosomes, and with genic regions being highly conserved. To develop cytogenetic markers specific for genic regions of wheat homoeologs, we selected more than 60 full-length wheat cDNAs using BLAST against mapped expressed sequence tags and used them as FISH probes. Most probes produced signals on all three homoeologous chromosomes at the expected positions. We developed a wheat physical map with several cDNA markers located on each of the 14 homoeologous chromosome arms. The FISH markers confirmed chromosome rearrangements within wheat genomes and were successfully used to study chromosome structure and homoeology in wild Triticeae species. FISH analysis detected 1 U-6 U chromosome translocation in the genome of Aegilops umbellulata, showed colinearity between chromosome A of Ae. caudata and group-1 wheat chromosomes, and between chromosome arm 7S#3 L of Thinopyrum intermedium and the long arm of the group-7 wheat chromosomes.
Collapse
Affiliation(s)
- Tatiana V. Danilova
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS 66506 USA
| | - Bernd Friebe
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS 66506 USA
| | - Bikram S. Gill
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS 66506 USA
- Faculty of Science, Genomics and Biotechnology Section, Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
15
|
Danilova TV, Friebe B, Gill BS. Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the Triticeae. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014. [PMID: 24408375 DOI: 10.1007/s00122‐013‐2253‐z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A cytogenetic map of wheat was constructed using FISH with cDNA probes. FISH markers detected homoeology and chromosomal rearrangements of wild relatives, an important source of genes for wheat improvement. To transfer agronomically important genes from wild relatives to bread wheat (Triticum aestivum L., 2n = 6 x = 42, AABBDD) by induced homoeologous recombination, it is important to know the chromosomal relationships of the species involved. Fluorescence in situ hybridization (FISH) can be used to study chromosome structure. The genomes of allohexaploid bread wheat and other species from the Triticeae tribe are colinear to some extent, i.e., composed of homoeoloci at similar positions along the chromosomes, and with genic regions being highly conserved. To develop cytogenetic markers specific for genic regions of wheat homoeologs, we selected more than 60 full-length wheat cDNAs using BLAST against mapped expressed sequence tags and used them as FISH probes. Most probes produced signals on all three homoeologous chromosomes at the expected positions. We developed a wheat physical map with several cDNA markers located on each of the 14 homoeologous chromosome arms. The FISH markers confirmed chromosome rearrangements within wheat genomes and were successfully used to study chromosome structure and homoeology in wild Triticeae species. FISH analysis detected 1 U-6 U chromosome translocation in the genome of Aegilops umbellulata, showed colinearity between chromosome A of Ae. caudata and group-1 wheat chromosomes, and between chromosome arm 7S#3 L of Thinopyrum intermedium and the long arm of the group-7 wheat chromosomes.
Collapse
Affiliation(s)
- Tatiana V Danilova
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, 66506, USA
| | | | | |
Collapse
|