1
|
Zhang J, Wang X, Han L, Zhang J, Xie Y, Li J, Wang ZY, Wen J, Mysore KS, Zhou C. The formation of stipule requires the coordinated actions of the legume orthologs of Arabidopsis BLADE-ON-PETIOLE and LEAFY. THE NEW PHYTOLOGIST 2022; 236:1512-1528. [PMID: 36031740 DOI: 10.1111/nph.18445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Stipule morphology is a classical botanical key character used in plant identification. Stipules are considerably diverse in size, function and architecture, such as leaf-like stipules, spines or tendrils. However, the molecular mechanism that regulates stipule identity remains largely unknown. We isolated mutants with abnormal stipules. The mutated gene encodes the NODULE ROOT1 (MtNOOT1), which is the ortholog of BLADE-ON-PETIOLE (BOP) in Medicago truncatula. We also obtained mutants of MtNOOT2, the homolog of MtNOOT1, but they do not show obvious defects in stipules. The mtnoot1 mtnoot2 double mutant shows a higher proportion of transformation from stipules to leaflet-like stipules than the single mutants, suggesting that they redundantly determine stipule identity. Further investigations show that MtNOOTs control stipule initiation together with SINGLE LEAFLET1 (SGL1), which functions in development of lateral leaflets. Increasing SGL1 activity in mtnoot1 mtnoot2 is sufficient for the transformation of stipules to leaves. Moreover, MtNOOTs inhibit SGL1 expression during stipule development, which is probably conserved in legume species. Our study proposes a genetic regulatory model for stipule development, specifically with regard to the MtNOOTs-SGL1 module, which functions in two phases of stipule development, first in the control of stipule initiation and second in stipule patterning.
Collapse
Affiliation(s)
- Juanjuan Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Xiao Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Lu Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Jing Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Yangyang Xie
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Jie Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Zeng-Yu Wang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Kirankumar S Mysore
- Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| |
Collapse
|
2
|
Kumar S, Sharma V, Kumari R. Fabaceae leaf morphogenetic evolution: the leaf-lamina architectural variation in the Fabaceae flora of Indian Western Ghats, compared with that genetically characterized in the Fabaceae model species Pisum sativum and Medicago truncatula. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2021. [DOI: 10.1007/s43538-021-00037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|