1
|
Wang T, Ran B, Luo Y, Ma J, Li J, Li P, Li M, Li D. Functional study of the ST6GAL2 gene regulating skeletal muscle growth and development. Heliyon 2024; 10:e37311. [PMID: 39296044 PMCID: PMC11407927 DOI: 10.1016/j.heliyon.2024.e37311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
ST6GAL2, a member of the sialoglycosyltransferase family, primarily localizes within the cellular Golgi apparatus. However, the role of the ST6GAL2 gene in skeletal muscle growth and development remains elusive. In this study, the impact of the ST6GAL2 gene on the proliferation, differentiation, and apoptosis of primary chicken myoblasts at the cellular level was investigated. Quantitative fluorescent PCR was used to measure the expression levels of genes. Subsequently, using gene knockout mice, we assessed its effects on skeletal muscle growth and development in vivo. Our findings reveal that the ST6GAL2 gene promotes the expression of cell cycle and proliferation-related genes, including CCNB2 and PCNA, and apoptosis-related genes, such as Fas and Caspase-9. At the individual level, double knockout of ST6GAL2 inhibited the formation of both fast and slow muscle fibers in the quadriceps, extensor digitorum longus, and tibial anterior muscle, while promoting their formation in the gastrocnemius and soleus. These results collectively demonstrate that the ST6GAL2 gene facilitates the proliferation, apoptosis, and fusion processes of primary chicken myoblasts. Additionally, it promotes the enlargement of cross-sectional muscle fiber areas and regulates the formation of fast and slow muscle fibers at the individual level, albeit inhibiting muscle fusion. This study provides valuable insights into the role of the ST6GAL2 gene in promoting proliferation of skeletal muscle.
Collapse
Affiliation(s)
- Tao Wang
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Bo Ran
- Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Yingyu Luo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jideng Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Penghao Li
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Xi Nan Gynecological Hospital Co., Ltd., 66 Bisheng Road, Chengdu, 610000, China
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
2
|
Ma J, Zhu Y, Zhou X, Zhang J, Sun J, Li Z, Jin L, Long K, Lu L, Ge L. miR-205 Regulates the Fusion of Porcine Myoblast by Targeting the Myomaker Gene. Cells 2023; 12:cells12081107. [PMID: 37190016 DOI: 10.3390/cells12081107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/10/2023] [Accepted: 03/31/2023] [Indexed: 05/17/2023] Open
Abstract
Skeletal muscle formation is an extremely important step in animal growth and development. Recent studies have found that TMEM8c (also known as Myomaker, MYMK), a muscle-specific transmembrane protein, can promote myoblast fusion and plays a key role in the normal development of skeletal muscle. However, the effect of Myomaker on porcine (Sus scrofa) myoblast fusion and the underlying regulatory mechanisms remain largely unknown. Therefore, in this study, we focused on the role and corresponding regulatory mechanism of the Myomaker gene during skeletal muscle development, cell differentiation, and muscle injury repair in pigs. We obtained the entire 3' UTR sequence of porcine Myomaker using the 3' RACE approach and found that miR-205 inhibited porcine myoblast fusion by targeting the 3' UTR of Myomaker. In addition, based on a constructed porcine acute muscle injury model, we discovered that both the mRNA and protein expression of Myomaker were activated in the injured muscle, while miR-205 expression was significantly inhibited during skeletal muscle regeneration. The negative regulatory relationship between miR-205 and Myomaker was further confirmed in vivo. Taken together, the present study reveals that Myomaker plays a role during porcine myoblast fusion and skeletal muscle regeneration and demonstrates that miR-205 inhibits myoblast fusion through targeted regulation of the expression of Myomaker.
Collapse
Affiliation(s)
- Jideng Ma
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 402460, China
- Chongqing Key Laboratory of Pig Industry Sciences, Chongqing 402460, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Zhu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiankun Zhou
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinwei Zhang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 402460, China
- Chongqing Key Laboratory of Pig Industry Sciences, Chongqing 402460, China
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 402460, China
- Chongqing Key Laboratory of Pig Industry Sciences, Chongqing 402460, China
| | - Zhengjie Li
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Long Jin
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Keren Long
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lu Lu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 402460, China
- Chongqing Key Laboratory of Pig Industry Sciences, Chongqing 402460, China
- Technical Engineering Center for the Development and Utilization of Medical Animal Resources, Chongqing 402460, China
| |
Collapse
|
3
|
Wang H, He K, Zeng X, Zhou X, Yan F, Yang S, Zhao A. Isolation and identification of goose skeletal muscle satellite cells and preliminary study on the function of C1q and tumor necrosis factor-related protein 3 gene. Anim Biosci 2020; 34:1078-1087. [PMID: 33152229 PMCID: PMC8100491 DOI: 10.5713/ajas.20.0430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/02/2020] [Indexed: 11/30/2022] Open
Abstract
Objective Skeletal muscle satellite cells (SMSCs) are significant for the growth, regeneration, and maintenance of skeletal muscle after birth. However, currently, few studies have been performed on the isolation, culture and inducing differentiation of goose muscle satellite cells. Previous studies have shown that C1q and tumor necrosis factor-related protein 3 (CTRP3) participated in the process of muscle growth and development, but its role in the goose skeletal muscle development is not yet clear. This study aimed to isolate, culture, and identify the goose SMSCs in vitro. Additionally, to explore the function of CTRP3 in goose SMSCs. Methods Goose SMSCs were isolated using 0.25% trypsin from leg muscle (LM) of 15 to 20 day fertilized goose eggs. Cell differentiation was induced by transferring the cells to differentiation medium with 2% horse serum and 1% penicillin streptomycin. Immunofluorescence staining of Desmin and Pax7 was used to identify goose SMSCs. Quantitative realtime polymerase chain reaction and western blot were applied to explore developmental expression profile of CTRP3 in LM and the regulation of CTRP3 on myosin heavy chains (MyHC), myogenin (MyoG) expression and Notch signaling pathway related genes expression. Results The goose SMSCs were successfully isolated and cultured. The expression of Pax7 and Desmin were observed in the isolated cells. The expression of CTRP3 decreased significantly during leg muscle development. Overexpression of CTRP3 could enhance the expression of two myogenic differentiation marker genes, MyHC and MyoG. But knockdown of CTRP3 suppressed their expression. Furthermore, CTRP3 could repress the mRNA level of Notch signaling pathway-related genes, notch receptor 1, notch receptor 2 and hairy/enhancer-of-split related with YRPW motif 1, which previously showed a negative regulation in myoblast differentiation. Conclusion These findings provide a useful cell model for the future research on goose muscle development and suggest that CTRP3 may play an essential role in skeletal muscle growth of goose.
Collapse
Affiliation(s)
- Han Wang
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Zhejiang 311300, China
| | - Ke He
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Zhejiang 311300, China
| | - Xuehua Zeng
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Zhejiang 311300, China
| | - Xiaolong Zhou
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Zhejiang 311300, China
| | - Feifei Yan
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Zhejiang 311300, China
| | - Songbai Yang
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Zhejiang 311300, China
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Zhejiang 311300, China
| |
Collapse
|