1
|
Gowane GR, Sharma P, Kumar R, Misra SS, Alex R, Vohra V, Chhotaray S, Dass G, Chopra A, Kandalkar Y, Vijay V, Choudhary A, Magotra A, Rajendran R. Cross-population genetic analysis revealed genetic variation and selection in the Ovar-DRB1 gene of Indian sheep breeds. Anim Biotechnol 2023; 34:2928-2939. [PMID: 36153754 DOI: 10.1080/10495398.2022.2125404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
In sheep, MHC variability is studied widely to explore disease association. The aim of the current study was to explore the genetic diversity of Ovar-DRB diversity across sheep breeds of India. Here, Ovar-DRB1 locus was studied across 20 sheep breeds. DRB1 was amplified (301 bp) and sequenced using a PCR-sequence-based typing approach. Results revealed a high degree of heterozygosity across breeds (mean: 73.99%). Overall mean distance for DRB1 was highest in Sangamneri (0.18) and lowest in Madgyal sheep (0.10). There was a higher rate of transition, across breeds. Further, 39 alleles were isolated in different breeds, out of which 10 were new. To allow easy access and use of the immune-polymorphic database, an online database management system was launched (http://www.mhcdbms.in/). Nucleotide content across breeds for the DRB1 region revealed the richness of GC content (59.26%). Wu-Kabat index revealed vast genetic variation across peptide binding sites (PBS) of DRB1. Residues 6, 66, 69, 52, and 81, were polymorphic showing utility for antigen presentation. All breeds were under positive selection for DRB1 locus (dN > dS). Study revealed the importance of DRB locus diversity for beta chain specifically at PBS across sheep breeds of the Indian subcontinent and presented evidence of positive selection for DRB owing to its evolutionary significance.
Collapse
Affiliation(s)
- G R Gowane
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Priya Sharma
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Rajiv Kumar
- Animal Genetics & Breeding Division, ICAR-Central Sheep & Wool Research Institute, Avikanagar, India
| | - S S Misra
- Animal Genetics & Breeding Division, ICAR-Central Sheep & Wool Research Institute, Avikanagar, India
| | - Rani Alex
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, India
| | - V Vohra
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, India
| | - S Chhotaray
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Gopal Dass
- Animal Genetics & Breeding Division, ICAR-Central Institute for Research on Goats, Makhdoom, India
| | - Ashish Chopra
- Animal Genetics & Breeding Division, ICAR-Arid Region Campus, Central Sheep & Wool Research Institute Bikaner, Avikanagar, India
| | - Yogesh Kandalkar
- Deccani Sheep Breeding Unit, NWPSI at Mahatma Phule Krishi Vidyapith, Rahuri, India
| | - V Vijay
- Sonadi Seep Breeding Unit, NWPSI at Navaniya Maharana Pratap University of Agriculture and Technology, Udaipur, India
| | | | - Ankit Magotra
- Animal Genetics & Breeding Division, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - R Rajendran
- Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Theni, India
| |
Collapse
|
2
|
Qin S, Dunn PO, Yang Y, Liu H, He K. Polymorphism and varying selection within the MHC class I of four Anas species. Immunogenetics 2021; 73:395-404. [PMID: 34195858 DOI: 10.1007/s00251-021-01222-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
Ducks (Anatidae) are often vectors for the spread of pathogens because of their long-distance migrations. These migrations also expose ducks to a wide variety of pathogens in their wintering and breeding grounds, and, as a consequence, we might expect strong selection on their immune genes. Here, we studied exons 2 and 3 of the MHC class I in four species of Anas ducks (A. platyrhynchos, A. poecilorhyncha, A. formosa, and A. querquedula) using Illumina-sequencing. Both exons 2 and 3 code for the peptide-binding region of class I molecules; however, most previous studies of birds have only focused on exon 3. Here, we found stronger positive selection on exon 2 than exon 3, as indicated by more species with dN/dS > 1 and higher Wu-Kabat values. There was little evidence that divergence time influenced polymorphism, the numbers of identical alleles (partial α1 or α2 regions) among four Anas, or selection, suggesting that these widespread species might share similar levels of selection from pathogens. The high similarity of allele numbers, positively selected sites (PSS), conserved motifs, and variable protein sites (VPS) supported the persistence of trans-species polymorphism in Anas for at least 10 million years. Our study revealed exon 2 as a relatively unexplored source of variation in avian MHC class I, which should be considered in future studies.
Collapse
Affiliation(s)
- Shidi Qin
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Agriculture and Forestry University, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Hangzhou, China
| | - Peter O Dunn
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, USA
| | - Yang Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Agriculture and Forestry University, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Hangzhou, China
| | - Hongyi Liu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Ke He
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Agriculture and Forestry University, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Hangzhou, China.
| |
Collapse
|
3
|
Zhang L, Lin D, Yu S, Bai J, Jiang W, Su W, Huang Y, Yang S, Wu J. Polymorphism of duck MHC class molecules. Immunogenetics 2018; 71:49-59. [PMID: 30187087 DOI: 10.1007/s00251-018-1076-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/10/2018] [Indexed: 01/09/2023]
Abstract
Major histocompatibility complex class I (MHC I) molecules are critically involved in defense against pathogens, and their high polymorphism is advantageous to a range of immune responses, especially in duck displaying biased expression of one MHC I gene. Here, we examined MHC I polymorphism in two duck (Anas platyrhynchos) breeds from China: Shaoxing (SX) and Jinding (JD). Twenty-seven unique UAA alleles identified from the MHC I genes of these breeds were analyzed concerning amino acid composition, homology, and phylogenetic relationships. Based on amino acid sequence homology, allelic groups of Anas platyrhynchos MHC I (Anpl-MHC I) were established and their distribution was analyzed. Then, highly variable sites (HVSs) in peptide-binding domains (PBD) were estimated and located in the three-dimensional structure of Anpl-MHC I. The UAA alleles identified showed high polymorphism, based on full-length sequence homology. By adding the alleles found here to known Anpl-MHC I genes from domestic ducks, they could be divided into 17 groups and four novel groups were revealed for SX and JD ducks. The UAA alleles of the two breeds were not divergent from the MHC I of other duck breeds, and HVSs were mostly located in the peptide-binding groove (PBG), suggesting that they might determine peptide-binding characteristics and subsequently influence peptide presentation and recognition. The results from the present study enrich Anpl-MHC I polymorphism data and clarify the distribution of alleles with different peptide-binding specificities, which might also accelerate effective vaccine development and help control various infections in ducks.
Collapse
Affiliation(s)
- Lin Zhang
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, No. 8, Sangyuan Road, Jinan, Shandong, China.
| | - Dongmei Lin
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 199, Guangming South Street, Handan, Hebei, China
| | - Sen Yu
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, No. 8, Sangyuan Road, Jinan, Shandong, China
| | - Junping Bai
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, No. 8, Sangyuan Road, Jinan, Shandong, China
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 199, Guangming South Street, Handan, Hebei, China
| | - Wanchun Jiang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 199, Guangming South Street, Handan, Hebei, China
| | - Wenzheng Su
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, No. 8, Sangyuan Road, Jinan, Shandong, China
| | - Yanyan Huang
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, No. 8, Sangyuan Road, Jinan, Shandong, China
| | - Shaohua Yang
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, No. 8, Sangyuan Road, Jinan, Shandong, China
| | - Jiaqiang Wu
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, No. 8, Sangyuan Road, Jinan, Shandong, China.
| |
Collapse
|