1
|
Khan MK, Pandey A, Hamurcu M, Avsaroglu ZZ, Ozbek M, Omay AH, Elbasan F, Omay MR, Gokmen F, Topal A, Gezgin S. Variability in Physiological Traits Reveals Boron Toxicity Tolerance in Aegilops Species. FRONTIERS IN PLANT SCIENCE 2021; 12:736614. [PMID: 34777419 PMCID: PMC8585849 DOI: 10.3389/fpls.2021.736614] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/30/2021] [Indexed: 05/31/2023]
Abstract
Boron (B) is an important micronutrient required for the normal growth and development of plants. However, its excess in the soil causes severe damage to plant tissues, which affects the final yield. Wheat, one of the main staple crops, has been reported to be largely affected by B toxicity stress in arid and semi-arid regions of the world. The prevalence of B toxicity stress can be addressed by utilizing wild wheat genotypes with a variant level of stress tolerance. Wild wheat relatives have been identified as a prominent source of several abiotic stress-tolerant genes. However, Aegilops species in the tertiary gene pool of wheat have not been well exploited as a source of B toxicity tolerance. This study explores the root and shoot growth, proline induction, and extent of lipid peroxidation in 19 Aegilops accessions comprising 6 different species and the B-tolerant check wheat cultivar Bolal 2973 grown under Control (3.1 μM B), toxic (1 mM B), and highly toxic (10 mM B) B stress treatment. B toxicity stress had a more decisive impact on growth parameters as compared to the malondialdehyde (MDA) and proline content. The obtained results suggested that even the genotypes with high shoot B (SB) accumulation can be tolerant to B toxicity stress, and the mechanism of B redistribution in leaves should be studied in detail. It has been proposed that the studied Aegilops accessions can be potentially used for genetically improving the B toxicity-tolerance trait due to a high level of variation in the response toward high B toxicity. Though a number of accessions showed suppression in the root and shoot growth, very few accessions with stress adaptive plasticity to B toxicity stress leading to an improvement of shoot growth parameters could be determined. The two accessions, Aegilops biuncialis accession TGB 026219 and Aegilops columnaris accession TGB 000107, were identified as the potential genotypes with B toxicity stress tolerance and can be utilized for developing a pre-breeding material in B tolerance-based breeding programs.
Collapse
Affiliation(s)
- Mohd. Kamran Khan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Turkey
| | - Anamika Pandey
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Turkey
| | - Mehmet Hamurcu
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Turkey
| | - Zuhal Zeynep Avsaroglu
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Turkey
| | - Merve Ozbek
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Turkey
| | - Ayse Humeyra Omay
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Turkey
| | - Fevzi Elbasan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Turkey
| | - Makbule Rumeysa Omay
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Turkey
| | - Fatma Gokmen
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Turkey
| | - Ali Topal
- Department of Field Crops, Faculty of Agriculture, Selcuk University, Konya, Turkey
| | - Sait Gezgin
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Turkey
| |
Collapse
|
2
|
Li Y, Fu J, Shen Q, Yang D. High-Molecular-Weight Glutenin Subunits: Genetics, Structures, and Relation to End Use Qualities. Int J Mol Sci 2020; 22:E184. [PMID: 33375389 PMCID: PMC7795185 DOI: 10.3390/ijms22010184] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
High-molecular-weight glutenin subunits (HMW-GSs) are storage proteins present in the starchy endosperm cells of wheat grain. Encoding the synthesis of HMW-GS, the Glu-1 loci located on the long arms of group 1 chromosomes of the hexaploid wheat (1A, 1B, and 1D) present multiple allelism. In hexaploid wheat cultivars, almost all of them express 3 to 5 HMW-GSs and the 1Ay gene is always silent. Though HMW-GSs are the minor components in gluten, they are crucial for dough properties, and certain HMW-GSs make more positive contributions than others. The HMW-GS acts as a "chain extender" and provides a disulfide-bonded backbone in gluten network. Hydrogen bonds mediated by glutamine side chains are also crucial for stabilizing the gluten structure. In most cases, HMW-GSs with additional or less cysteines are related to the formation of relatively more or less interchain disulfide bonds and HMW-GSs also affect the gluten secondary structures, which in turn impact the end use qualities of dough.
Collapse
Affiliation(s)
- Yi Li
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China; (Y.L.); (J.F.)
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
| | - Jiahui Fu
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China; (Y.L.); (J.F.)
| | - Qun Shen
- Key Laboratory of Plant Protein and Grain Processing, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China;
| | - Dong Yang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China; (Y.L.); (J.F.)
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
| |
Collapse
|
3
|
Kumar A, Kapoor P, Chunduri V, Sharma S, Garg M. Potential of Aegilops sp. for Improvement of Grain Processing and Nutritional Quality in Wheat ( Triticum aestivum). FRONTIERS IN PLANT SCIENCE 2019; 10:308. [PMID: 30936886 PMCID: PMC6431632 DOI: 10.3389/fpls.2019.00308] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Wheat is one of the most important staple crops in the world and good source of calories and nutrition. Its flour and dough have unique physical properties and can be processed to make unique products like bread, cakes, biscuits, pasta, noodles etc., which is not possible from other staple crops. Due to domestication, the genetic variability of the genes coding for different economically important traits in wheat is narrow. This genetic variability can be increased by utilizing its wild relatives. Its closest relative, genus Aegilops can be an important source of new alleles. Aegilops has played a very important role in evolution of tetraploid and hexaploid wheat. It consists of 22 species with C, D, M, N, S, T and U genomes with high allelic diversity relative to wheat. Its utilization for wheat improvement for various abiotic and biotic stresses has been reported by various scientific publications. Here in, for the first time, we review the potential of Aegilops for improvement of processing and nutritional traits in wheat. Among processing quality related gluten proteins; high molecular weight glutenins (HMW GS), being easiest to study have been explored in highest number of accessions or lines i.e., 681 belonging to 13 species and selected ones like Ae. searsii, Ae. geniculata and Ae. longissima have been linked with improved bread making quality of wheat. Gliadins and low molecular weight glutenins (LMW GS) have also been extensively explored for wheat improvement and Ae. umbellulata specific LMW GS have been linked with wheat bread making quality improvement. Aegilops has been explored for seed texture diversity and proteins like puroindolins (Pin) and grain softness proteins (GSP). For nutrition quality improvement, it has been screened for essential micronutrients like Fe, Zn, phytochemicals like carotenoids and dietary fibers like arabinoxylan and β-glucan. Ae. kotschyi and Ae. biuncialis transfer in wheat have been associated with higher Fe, Zn content. In this article we have tried to compile information available on exploration of nutritional and processing quality related traits in Aegilops section and their utilization for wheat improvement by different approaches.
Collapse
|
4
|
Cloning and characterization of a novel low-molecular-weight glutenin subunit gene with an unusual molecular structure of Aegilops uniaristata. J Genet 2018. [DOI: 10.1007/s12041-018-1020-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Gao H, Qi X, Hart DJ, Gao S, Wang H, Xu S, Zhang Y, Liu X, Liu Y, An Y. Three Novel Escherichia coli Vectors for Convenient and Efficient Molecular Biological Manipulations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6123-6131. [PMID: 29798665 DOI: 10.1021/acs.jafc.8b01960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We have constructed novel plasmids pANY2, pANY3, and pANY6 for flexible cloning with low false positives, efficient expression, and convenient purification of proteins. The pANY2 plasmid can be used for efficient isopropyl-β-d-thiogalactoside (IPTG) induced protein expression, while the pANY3 plasmid can be used for temperature-induced expression. The pANY6 plasmid contains a self-cleaving elastin-like protein (ELP) tag for purification of recombinant protein by simple ELP-mediated precipitation steps and removal of the ELP tag by self-cleavage. A urea-based denaturation and refolding processes for renaturation of insoluble inclusion bodies can be conveniently integrated into the ELP-mediated precipitation protocol, removing time-consuming dialysis steps. These novel vectors, together with the described strategies of gene cloning, protein expression, and purification, may have wide applications in biosciences, agricultural, food technologies, and so forth.
Collapse
Affiliation(s)
- Herui Gao
- College of Biosciences and Biotechnology , Shenyang Agricultural University , Shenyang 110161 , China
| | - Xianghui Qi
- School of Food and Biological Engineering , Jiangsu University , Zhenjiang 212013 , China
| | - Darren J Hart
- Institut de Biologie Structurale (IBS), CEA, CNRS , University Grenoble Alpes , Grenoble 38044 , France
| | - Song Gao
- College of Biosciences and Biotechnology , Shenyang Agricultural University , Shenyang 110161 , China
| | - Hongling Wang
- College of Biosciences and Biotechnology , Shenyang Agricultural University , Shenyang 110161 , China
| | - Shumin Xu
- College of Biosciences and Biotechnology , Shenyang Agricultural University , Shenyang 110161 , China
| | - Yifeng Zhang
- College of Biosciences and Biotechnology , Shenyang Agricultural University , Shenyang 110161 , China
| | - Xia Liu
- College of Biosciences and Biotechnology , Shenyang Agricultural University , Shenyang 110161 , China
| | - Yifei Liu
- College of Biosciences and Biotechnology , Shenyang Agricultural University , Shenyang 110161 , China
| | - Yingfeng An
- College of Biosciences and Biotechnology , Shenyang Agricultural University , Shenyang 110161 , China
| |
Collapse
|