1
|
Cheng S, Su L, Guo X, Shao D, Qin Y, Liu X, Chu Q, Zhou X, He Z. Genome-wide development of simple sequence repeats markers and genetic diversity analysis of chayote. BMC PLANT BIOLOGY 2024; 24:603. [PMID: 38926681 PMCID: PMC11201790 DOI: 10.1186/s12870-024-05317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Chayote is a high economic crop in the Cucurbitaceae family, playing an important role in food production, disease treatment and the production of degradable materials in industries. Due to the harsh environment, such as high temperature, drought and frost, some chayote resources are gradually disappearing. It is crucial to collect, characterize, and conserve chayote resources. However, the genetic diversity of chayote resources in China has not been studied so far. RESULTS In this study, we collected 35 individuals of chayote from 14 provinces in China. Subsequently, we found 363,156 SSR motifs from the chayote genome and designed 57 pairs of SSR primers for validation. Out of these, 48 primer pairs successfully amplified bands, with 42 of them showing polymorphism. These 42 primer pairs detected a total of 153 alleles, averaging 3.64 alleles per locus. The polymorphic information content ranged from 0.03 to 0.78, with an average value of 0.41, indicating a high level of polymorphism. Based on the analysis using STRUCTURE, PCoA, and UPGMA methods, the 35 chayote individuals were divided into two major clusters. Through further association analysis, 7 significantly associated SSR markers were identified, including four related to peel color and three related to spine. CONCLUSIONS These molecular markers will contribute to the analysis of genetic diversity and genetic breeding improvement of chayote in the future.
Collapse
Affiliation(s)
- Shaobo Cheng
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Lihong Su
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xin Guo
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Dalong Shao
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yanmei Qin
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xuanxuan Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Qianwen Chu
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xiaoting Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Zhongqun He
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, PR China.
| |
Collapse
|
2
|
Xu X, Wang N, Feng L, Wang J. Simple Sequence Repeat Fingerprint Identification of Essential-Oil-Bearing Rosa rugosa via High-Resolution Melting (HRM) Analysis. Biomolecules 2023; 13:1468. [PMID: 37892150 PMCID: PMC10605111 DOI: 10.3390/biom13101468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Oil-bearing Rosa rugosa are popular in the essential oil and perfume markets. The similar botanical characteristics between high-oil-yield or low-oil-yield cultivars are confusing and it is hard for farmers or breeders to identify the high-oil-yield cultivar by phenotype difference. High-resolution melting (HRM) analysis of simple sequence repeats (SSRs) can construct accurate DNA fingerprints quickly, which was shown to be effective for identification of closely related cultivars of R. rugosa. Optimization of HRM-SSR indicated that the 10 µL HRM reaction mixture containing 20 ng of genomic DNA of R. rugosa and 0.75 µL of 10 µmol/L of each primer with an annealing temperature of 64 °C was a robust SSR genotyping protocol. Using this protocol, 9 polymorphic SSR markers with 3-9 genotypes among the 19 R. rugosa cultivars were identified. The top three polymorphic makers SSR9, SSR12 and SSR19 constructed a fingerprint of all cultivars, and the rare insertion in the flanking sequences of the repeat motif of SSR19 generated three characteristic genotypes of three high-oil-yield cultivars. These results may be economical and practical for the identification of high-oil-yield R. rugosa and be helpful for the selection and breeding of oil-bearing roses.
Collapse
Affiliation(s)
| | | | - Liguo Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (X.X.); (N.W.)
| | - Jianwen Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (X.X.); (N.W.)
| |
Collapse
|
3
|
Huang Y, Li J, Yang Z, An W, Xie C, Liu S, Zheng X. Comprehensive analysis of complete chloroplast genome and phylogenetic aspects of ten Ficus species. BMC PLANT BIOLOGY 2022; 22:253. [PMID: 35606691 PMCID: PMC9125854 DOI: 10.1186/s12870-022-03643-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The large genus Ficus comprises approximately 800 species, most of which possess high ornamental and ecological values. However, its evolutionary history remains largely unknown. Plastome (chloroplast genome) analysis had become an essential tool for species identification and for unveiling evolutionary relationships between species, genus and other rank groups. In this work we present the plastomes of ten Ficus species. RESULTS The complete chloroplast (CP) genomes of eleven Ficus specimens belonging to ten species were determined and analysed. The full length of the Ficus plastome was nearly 160 kbp with a similar overall GC content, ranging from 35.88 to 36.02%. A total of 114 unique genes, distributed in 80 protein-coding genes, 30 tRNAs, and 4 rRNAs, were annotated in each of the Ficus CP genome. In addition, these CP genomes showed variation in their inverted repeat regions (IR). Tandem repeats and mononucleotide simple sequence repeat (SSR) are widely distributed across the Ficus CP genome. Comparative genome analysis showed low sequence variability. In addition, eight variable regions to be used as potential molecular markers were proposed for future Ficus species identification. According to the phylogenetic analysis, these ten Ficus species were clustered together and further divided into three clades based on different subgenera. Simultaneously, it also showed the relatedness between Ficus and Morus. CONCLUSION The chloroplast genome structure of 10 Ficus species was similar to that of other angiosperms, with a typical four-part structure. Chloroplast genome sizes vary slightly due to expansion and contraction of the IR region. And the variation of noncoding regions of the chloroplast genome is larger than that of coding regions. Phylogenetic analysis showed that these eleven sampled CP genomes were divided into three clades, clustered with species from subgenus Urostigma, Sycomorus, and Ficus, respectively. These results support the Berg classification system, in which the subgenus Ficus was further decomposed into the subgenus Sycomorus. In general, the sequencing and analysis of Ficus plastomes, especially the ones of species with no or limited sequences available yet, contribute to the study of genetic diversity and species evolution of Ficus, while providing useful information for taxonomic and phylogenetic studies of Ficus.
Collapse
Affiliation(s)
- Yuying Huang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232th Waihuangdong Road, Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, China
| | - Jing Li
- Traditional Chinese Medicine Gynecology Laboratory in Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510410, China
| | - Zerui Yang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232th Waihuangdong Road, Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, China
| | - Wenli An
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232th Waihuangdong Road, Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, China
| | - Chunzhu Xie
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232th Waihuangdong Road, Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, China
| | - Shanshan Liu
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232th Waihuangdong Road, Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, China
| | - Xiasheng Zheng
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232th Waihuangdong Road, Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Zwyrtková J, Blavet N, Doležalová A, Cápal P, Said M, Molnár I, Vrána J, Doležel J, Hřibová E. Draft Sequencing Crested Wheatgrass Chromosomes Identified Evolutionary Structural Changes and Genes and Facilitated the Development of SSR Markers. Int J Mol Sci 2022; 23:ijms23063191. [PMID: 35328613 PMCID: PMC8948999 DOI: 10.3390/ijms23063191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023] Open
Abstract
Crested wheatgrass (Agropyron cristatum), a wild relative of wheat, is an attractive source of genes and alleles for their improvement. Its wider use is hampered by limited knowledge of its complex genome. In this work, individual chromosomes were purified by flow sorting, and DNA shotgun sequencing was performed. The annotation of chromosome-specific sequences characterized the DNA-repeat content and led to the identification of genic sequences. Among them, genic sequences homologous to genes conferring plant disease resistance and involved in plant tolerance to biotic and abiotic stress were identified. Genes belonging to the important groups for breeders involved in different functional categories were found. The analysis of the DNA-repeat content identified a new LTR element, Agrocen, which is enriched in centromeric regions. The colocalization of the element with the centromeric histone H3 variant CENH3 suggested its functional role in the grass centromere. Finally, 159 polymorphic simple-sequence-repeat (SSR) markers were identified, with 72 of them being chromosome- or chromosome-arm-specific, 16 mapping to more than one chromosome, and 71 mapping to all the Agropyron chromosomes. The markers were used to characterize orthologous relationships between A. cristatum and common wheat that will facilitate the introgression breeding of wheat using A. cristatum.
Collapse
|
5
|
Wei X, Kong D, Zhu S, Li S, Zhou S, Wu W. Rapid Identification of Soybean Varieties by Terahertz Frequency-Domain Spectroscopy and Grey Wolf Optimizer-Support Vector Machine. FRONTIERS IN PLANT SCIENCE 2022; 13:823865. [PMID: 35360340 PMCID: PMC8963758 DOI: 10.3389/fpls.2022.823865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Different soybean varieties vary greatly in their nutritional value and composition. Screening for superior varieties is also essential for the development of the soybean seed industry. The objective of the paper was to analyze the feasibility of terahertz (THz) frequency-domain spectroscopy and chemometrics for soybean variety identification. Meanwhile, a grey wolf optimizer-support vector machine (GWO-SVM) soybean variety identification model was proposed. Firstly, the THz frequency-domain spectra of experimental samples (6 varieties, 270 in total) were collected. Principal component analysis (PCA) was used to analyze the THz spectra. After that, 203 samples from the calibration set were used to establish a soybean variety identification model. Finally, 67 samples from the test set were used for prediction validation. The experimental results demonstrated that THz frequency-domain spectroscopy combined with GWO-SVM could quickly and accurately identify soybean varieties. Compared with discriminant partial least squares (DPLS) and particles swarm optimization support vector machine, GWO-SVM combined with the second derivative could establish a better soybean variety identification model. The overall correct identification rate of its prediction set was 97.01%.
Collapse
Affiliation(s)
- Xiao Wei
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- College of Engineering and Technology, Southwest University, Chongqing, China
| | - Dandan Kong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Shiping Zhu
- College of Engineering and Technology, Southwest University, Chongqing, China
| | - Song Li
- College of Engineering and Technology, Southwest University, Chongqing, China
| | - Shengling Zhou
- College of Engineering and Technology, Southwest University, Chongqing, China
| | - Weiji Wu
- China Tianjin Grain and Oil Wholesale Trade Market, Tianjin, China
| |
Collapse
|
6
|
Genome survey sequencing and characterization of simple sequence repeat (SSR) markers in Platostoma palustre (Blume) A.J.Paton (Chinese mesona). Sci Rep 2022; 12:355. [PMID: 35013469 PMCID: PMC8748427 DOI: 10.1038/s41598-021-04264-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 11/30/2021] [Indexed: 12/25/2022] Open
Abstract
Platostoma palustre (Blume) A.J.Paton is an annual herbaceous persistent plant of the Labiatae family. However, there is a lack of genomic data for this plant, which severely restricts its genetic improvement. In this study, we performed genome survey sequencing of P. palustre and developed simple sequence repeat (SSR) markers based on the resulting sequence. K-mer analysis revealed that the assembled genome size was approximately 1.21 Gb. A total of 15,498 SSR motifs were identified and characterized in this study; among them, dinucleotide, and hexanucleotide repeats had the highest and lowest, respectively. Among the dinucleotide repeat motifs, AT/TA repeat motifs were the most abundant, and GC/CG repeat motifs were rather rare, accounting for 44.28% and 0.63%, respectively. Genetic similarity coefficient analysis by the UPMGA methods clustered 12 clones, of P. palustre and related species into two subgroups. These results provide helpful information for further research on P. palustre resources and variety improvements.
Collapse
|
7
|
Liu Y, Zhang M, Chen X, Chen X, Hu Y, Gao J, Pan W, Xin Y, Wu J, Du Y, Zhang X. Developing an efficient DNA barcoding system to differentiate between Lilium species. BMC PLANT BIOLOGY 2021; 21:465. [PMID: 34645404 PMCID: PMC8513328 DOI: 10.1186/s12870-021-03229-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Lilium is an important ornamental bulb, possesses medicinal properties, and is also edible. Species within the Lilium genus share very similar morphology and macroscopic characteristics, thus they cannot be easily and clearly distinguished from one another. To date, no efficient species-specific markers have been developed for classifying wild lily species, which poses an issue with further characterizing its medicinal properties. RESULTS To develop a simple and reliable identification system for Lilium, 45 representative species from 6 sections were used to develop a DNA barcoding system, which was based on DNA sequence polymorphisms. In this study, we assessed five commonly used DNA barcode candidates (ITS, rbcL, ycf1b, matK and psbA-trnH) and five novel barcode candidates obtained from highly variable chloroplast genomic regions (trnL-trnF, trnS-trnG, trnF-ndhJ, trnP-psaJ-rpI33 and psbB-psbH). We showed that a set of three novel DNA barcodes (ITS + trnP-psaJ-rpI33 + psbB-psbH) could be efficiently used as a genetic marker to distinguish between lily species, as assessed by methods including DNAsp, BI and ML tree, and Pair Wise Group (PWG). CONCLUSIONS A rapid and reliable DNA barcoding method was developed for all 45 wild Lilium species by using ITS, trnP-psaJ-rpI33, and psbB-psbH as DNA barcoding markers. The method can be used in the classification of wild Lilium species, especially endangered species, and also provides an effective method for selective lily breeding.
Collapse
Affiliation(s)
- Yixin Liu
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Mingfang Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xuqing Chen
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xi Chen
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yue Hu
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Junlian Gao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Wenqiang Pan
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, 100193, China
| | - Yin Xin
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, 100193, China
| | - Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, 100193, China.
| | - Yunpeng Du
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Xiuhai Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
8
|
Maheswari P, Kunhikannan C, Yasodha R. Chloroplast genome analysis of Angiosperms and phylogenetic relationships among Lamiaceae members with particular reference to teak (Tectona grandis L.f). J Biosci 2021. [DOI: 10.1007/s12038-021-00166-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Jia B, Wang G, Zheng J, Yang W, Chang S, Zhang J, Liu Y, Li Q, Ge C, Chen G, Liu D, Yang F. Development of novel EST microsatellite markers for genetic diversity analysis and correlation analysis of velvet antler growth characteristics in Sika deer. Hereditas 2020; 157:24. [PMID: 32591015 PMCID: PMC7320565 DOI: 10.1186/s41065-020-00137-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sika deer is one of the most popular and valued animals in China. However, few studies have been conducted on the microsatellite of Sika deer, which has hampered the progress of genetic selection breeding. To develop and characterize a set of microsatellites for Sika deer which provide helpful information for protection of Sika deer natural resources and effectively increase the yield and quantity of velvet antler. RESULTS We conducted a transcriptome survey of Sika deer using next-generation sequencing technology. One hundred eighty-two thousand two hundred ninety-five microsatellite markers were identified in the transcriptome, 170 of 200 loci were successfully amplified across panels of 140 individuals from Shuangyang Sika deer population. And 29 loci were found to be obvious polymorphic. Number of alleles is from 3 to 14. The expected heterozygosity ranged from 0.3087 to 0.7644. The observed heterozygosity ranged from 0 to 0.7698. The polymorphism information content values of those microsatellites varied ranged from 0.2602 to 0.7507. The marker-trait association was tested for 6 important and kernel characteristics of two-branched velvet antler in Shuangyang Sika deer through one-way analysis of variance. The results showed that marker-trait associations were identified with 8 different markers, especially M009 and M027. CONCLUSIONS This study not only provided a large scale of microsatellites which were valuable for future genetic mapping and trait association in Sika deer, but also offers available information for molecular breeding in Sika deer.
Collapse
Affiliation(s)
- Boyin Jia
- College of Animal Science and Technology, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Guiwu Wang
- Institute of Wild Economic Animals and Plants and State Key Laboratory for Molecular Biology of Special Economical Animals, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun, 130112, China
| | - Junjun Zheng
- Institute of Wild Economic Animals and Plants and State Key Laboratory for Molecular Biology of Special Economical Animals, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun, 130112, China
| | - Wanyun Yang
- Institute of Wild Economic Animals and Plants and State Key Laboratory for Molecular Biology of Special Economical Animals, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun, 130112, China
| | - Shuzhuo Chang
- Institute of Wild Economic Animals and Plants and State Key Laboratory for Molecular Biology of Special Economical Animals, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun, 130112, China
| | - Jiali Zhang
- College of Animal Science and Technology, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yuan Liu
- College of Animal Science and Technology, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Qining Li
- College of Animal Science and Technology, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Chenxia Ge
- College of Vocational and Technical Education, Changchun Sci-Tech University, 1699 Donghua Street, Changchun, 130606, China
| | - Guang Chen
- Key laboratory of Straw Biology and Utilization, The Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Dongdong Liu
- Key laboratory of Straw Biology and Utilization, The Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China. .,College of Engineering and Technology, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| | - Fuhe Yang
- Institute of Wild Economic Animals and Plants and State Key Laboratory for Molecular Biology of Special Economical Animals, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun, 130112, China.
| |
Collapse
|