1
|
Escobar JA, Gallardo-Hernandez AG, Gonzalez-Olvera MA, Revilla-Monsalve C, Hernandez D, Leder R. High order sliding mode control for restoration of a population of predators in a Lotka-Volterra system. J Biol Phys 2023; 49:509-520. [PMID: 37801181 PMCID: PMC10651824 DOI: 10.1007/s10867-023-09643-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
Human-induced extinction and rapid ecological changes require the development of techniques that can help avoid extinction of endangered species. The most used strategy to avoid extinction is reintroduction of the endangered species, but only 31% of these attempts are successful and they require up to 15 years for their results to be evaluated. In this research, we propose a novel strategy that improves the chances of survival of endangered predators, like lynx, by controlling only the availability of prey. To simulate the prey-predator relationship we used a Lotka-Volterra model to analyze the effects of varying prey availability on the size of the predator population. We calculate the number of prey necessary to support the predator population using a high-order sliding mode control (HOSMC) that maintains the predator population at the desired level. In the wild, nature introduces significant and complex uncertainties that affect species' survival. This complexity suggests that HOSMC is a good choice of controller because it is robust to variability and does not require prior knowledge of system parameters. These parameters can also be time varying. The output measurement required by the HOSMC is the number of predators. It can be obtained using continuous monitoring of environmental DNA that measures the number of lynxes and prey in a specific geographic area. The controller efficiency in the presence of these parametric uncertainties was demonstrated with a numerical simulation, where random perturbations were forced in all four model parameters at each simulation step, and the controller provides the specific prey input that will maintain the predator population. The simulation demonstrates how HOSMC can increase and maintain an endangered population (lynx) in just 21-26 months by regulating the food supply (hares), with an acceptable maximal steady-state error of 3%.
Collapse
Affiliation(s)
- Jesica A Escobar
- Automatic Control, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Zacatenco, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ana Gabriela Gallardo-Hernandez
- Unidad de Investigación Médica en Enfermedades Metabólicas, Instituto Mexicano del Seguro Social, Cuauhtémoc 330 Col. Doctores, CDMX, Mexico City, Mexico.
| | | | - Cristina Revilla-Monsalve
- Unidad de Investigación Médica en Enfermedades Metabólicas, Instituto Mexicano del Seguro Social, Cuauhtémoc 330 Col. Doctores, CDMX, Mexico City, Mexico
| | - Debbie Hernandez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, 64849, NL, Mexico
| | - Ron Leder
- Engineering in Medicine and Biology Society, IEEE, Mexico City, Mexico
| |
Collapse
|
2
|
Schuster S. Reinhart Heinrich: In memoriam of an exceptional scholar. Biosystems 2023; 231:104965. [PMID: 37423594 DOI: 10.1016/j.biosystems.2023.104965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023]
Abstract
In the Mathematical Biology community, Reinhart Heinrich (1946-2006) is well-known as one of the founders of Metabolic Control Analysis. Moreover, he made significant contributions to the modelling of erythrocyte metabolism and signal transduction cascades, optimality principles in metabolism, theoretical membrane biophysics and other topics. Here, the historical context of his scientific work is outlined and numerous personal memories of the scholarship of, and cooperation with, Reinhart Heinrich are narrated. Attention is drawn again to the pros and cons of normalized and non-normalized control coefficients. The role of the Golden Ratio in a dynamic optimization problem in genetic regulation of metabolism is discussed. Overall, this article is aimed at keeping alive the memory of a unique university teacher, researcher and friend.
Collapse
Affiliation(s)
- Stefan Schuster
- Department of Bioinformatics, Matthias Schleiden Institute, Friedrich Schiller University Jena, Ernst-Abbe-Pl. 2, 07743 Jena, Germany.
| |
Collapse
|
3
|
On the Dynamics of Higgins–Selkov, Selkov and Brusellator Oscillators. Symmetry (Basel) 2022. [DOI: 10.3390/sym14030438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
A complete algebraic characterization of the first integrals of the Higgins–Selkov, Selkov and Brusellator oscillators is given here. The existence of symmetries sometimes forces the existence of such first integrals. The nonexistence of centers for such oscillators is also proved. In order to determine the Puiseux integrability of such systems, the multiple Puiseux solutions are also studied.
Collapse
|
4
|
Garde R, Ibrahim B, Kovács ÁT, Schuster S. Differential equation-based minimal model describing metabolic oscillations in Bacillus subtilis biofilms. ROYAL SOCIETY OPEN SCIENCE 2020; 7:190810. [PMID: 32257302 PMCID: PMC7062081 DOI: 10.1098/rsos.190810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 01/15/2020] [Indexed: 06/11/2023]
Abstract
Biofilms offer an excellent example of ecological interaction among bacteria. Temporal and spatial oscillations in biofilms are an emerging topic. In this paper, we describe the metabolic oscillations in Bacillus subtilis biofilms by applying the smallest theoretical chemical reaction system showing Hopf bifurcation proposed by Wilhelm and Heinrich in 1995. The system involves three differential equations and a single bilinear term. We specifically select parameters that are suitable for the biological scenario of biofilm oscillations. We perform computer simulations and a detailed analysis of the system including bifurcation analysis and quasi-steady-state approximation. We also discuss the feedback structure of the system and the correspondence of the simulations to biological observations. Our theoretical work suggests potential scenarios about the oscillatory behaviour of biofilms and also serves as an application of a previously described chemical oscillator to a biological system.
Collapse
Affiliation(s)
- Ravindra Garde
- Department of Bioinformatics, Matthias Schleiden Institute, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Bashar Ibrahim
- Department of Bioinformatics, Matthias Schleiden Institute, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally 32093, Kuwait
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally 32093, Kuwait
| | - Ákos T. Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Søltofts Plads Building 221, 2800 Kgs. Lyngby, Denmark
| | - Stefan Schuster
- Department of Bioinformatics, Matthias Schleiden Institute, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany
| |
Collapse
|
5
|
Verveyko DV, Verisokin AY, Postnikov EB. Mathematical model of chaotic oscillations and oscillatory entrainment in glycolysis originated from periodic substrate supply. CHAOS (WOODBURY, N.Y.) 2017; 27:083104. [PMID: 28863490 DOI: 10.1063/1.4996554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We study the influence of periodic influx on a character of glycolytic oscillations within the forced Selkov system. We demonstrate that such a simple system demonstrates a rich variety of dynamical regimes (domains of entrainment of different order (Arnold tongues), quasiperiodic oscillations, and chaos), which can be qualitatively collated with the known experimental data. We determine detailed dynamical regimes exploring the map of Lyapunov characteristic exponents obtained in numerical simulations of the Selkov system with periodic influx. In addition, a special study of the chaotic regime and the scenario of its origin in this system was evaluated and discussed.
Collapse
Affiliation(s)
- D V Verveyko
- Department of Theoretical Physics, Kursk State University, Radishcheva st., 33, 305000 Kursk, Russia
| | - A Yu Verisokin
- Department of Theoretical Physics, Kursk State University, Radishcheva st., 33, 305000 Kursk, Russia
| | - E B Postnikov
- Department of Theoretical Physics, Kursk State University, Radishcheva st., 33, 305000 Kursk, Russia
| |
Collapse
|
6
|
Reimers AM, Reimers AC. The steady-state assumption in oscillating and growing systems. J Theor Biol 2016; 406:176-86. [PMID: 27363728 DOI: 10.1016/j.jtbi.2016.06.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 01/29/2023]
Abstract
The steady-state assumption, which states that the production and consumption of metabolites inside the cell are balanced, is one of the key aspects that makes an efficient analysis of genome-scale metabolic networks possible. It can be motivated from two different perspectives. In the time-scales perspective, we use the fact that metabolism is much faster than other cellular processes such as gene expression. Hence, the steady-state assumption is derived as a quasi-steady-state approximation of the metabolism that adapts to the changing cellular conditions. In this article we focus on the second perspective, stating that on the long run no metabolite can accumulate or deplete. In contrast to the first perspective it is not immediately clear how this perspective can be captured mathematically and what assumptions are required to obtain the steady-state condition. By presenting a mathematical framework based on the second perspective we demonstrate that the assumption of steady-state also applies to oscillating and growing systems without requiring quasi-steady-state at any time point. However, we also show that the average concentrations may not be compatible with the average fluxes. In summary, we establish a mathematical foundation for the steady-state assumption for long time periods that justifies its successful use in many applications. Furthermore, this mathematical foundation also pinpoints unintuitive effects in the integration of metabolite concentrations using nonlinear constraints into steady-state models for long time periods.
Collapse
Affiliation(s)
- Alexandra-M Reimers
- Freie Universität Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany; International Max Planck Research School for Computational Biology and Scientific Computing, Max Planck Institute for Molecular Genetics, Ihnestr 63-73, 14195 Berlin, Germany.
| | - Arne C Reimers
- Centrum Wiskunde & Informatica, Science Park 123, 1098 XG Amsterdam, Netherlands.
| |
Collapse
|
7
|
Bodenstein C, Heiland I, Schuster S. Calculating activation energies for temperature compensation in circadian rhythms. Phys Biol 2011; 8:056007. [PMID: 21891835 DOI: 10.1088/1478-3975/8/5/056007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Many biological species possess a circadian clock, which helps them anticipate daily variations in the environment. In the absence of external stimuli, the rhythm persists autonomously with a period of approximately 24 h. However, single pulses of light, nutrients, chemicals or temperature can shift the clock phase. In the case of light- and temperature-cycles, this allows entrainment of the clock to cycles of exactly 24 h. Circadian clocks have the remarkable property of temperature compensation, that is, the period of the circadian rhythm remains relatively constant within a physiological range of temperatures. For several organisms, temperature-regulated processes within the circadian clock have been identified in recent years. However, how these processes contribute to temperature compensation is not fully understood. Here, we theoretically investigate temperature compensation in general oscillatory systems. It is known that every oscillator can be locally temperature compensated around a reference temperature, if reactions are appropriately balanced. A balancing is always possible if the control coefficient with respect to the oscillation period of at least one reaction in the oscillator network is positive. However, for global temperature compensation, the whole physiological temperature range is relevant. Here, we use an approach which leads to an optimization problem subject to the local balancing principle. We use this approach to analyse different circadian clock models proposed in the literature and calculate activation energies that lead to temperature compensation.
Collapse
Affiliation(s)
- C Bodenstein
- Department of Bioinformatics, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, D-07743 Jena, Germany.
| | | | | |
Collapse
|
8
|
Bodenstein C, Knoke B, Marhl M, Perc M, Schuster S. Using Jensen's inequality to explain the role of regular calcium oscillations in protein activation. Phys Biol 2010; 7:036009. [PMID: 20834115 DOI: 10.1088/1478-3975/7/3/036009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Oscillations of cytosolic Ca(2 +) are very important for cellular signalling in excitable and non-excitable cells. The information of various extracellular stimuli is encoded into oscillating patterns of Ca(2 +) that subsequently lead to the activation of different Ca(2 +)-sensitive target proteins in the cell. The question remains, however, why this information is transmitted by means of an oscillating rather than a constant signal. Here we show that, in fact, Ca(2 +) oscillations can achieve a better activation of target proteins than a comparable constant signal with the same amount of Ca(2 +) used. For this we use Jensen's inequality that describes the relation between the function value of the average of a set of argument values and the average of the function values of the arguments from that set. We analyse the role of the cooperativity of the binding of Ca(2 +) and of zero-order ultrasensitivity, which are two properties that are often observed in experiments on the activation of Ca(2 +)-sensitive target proteins. Our results apply to arbitrary oscillation shapes and a very general decoding model, thus generalizing the observations of several previous studies. We compare our results with data from experimental studies investigating the activation of nuclear factor of activated T cells (NFAT) and Ras by oscillatory and constant signals. Although we are restricted to specific approximations due to the lack of detailed kinetic data, we find good qualitative agreement with our theoretical predictions.
Collapse
Affiliation(s)
- C Bodenstein
- Department of Bioinformatics, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, D-07743 Jena, Germany.
| | | | | | | | | |
Collapse
|
9
|
Knoke B, Bodenstein C, Marhl M, Perc M, Schuster S. Jensen’s inequality as a tool for explaining the effect of oscillations on the average cytosolic calcium concentration. Theory Biosci 2010; 129:25-38. [DOI: 10.1007/s12064-010-0080-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 01/21/2010] [Indexed: 10/19/2022]
|