1
|
Chen Z, Li W, Zhang H, Huang X, Tao Y, Lang K, Zhang M, Chen W, Wang D. Association of noise exposure, plasma microRNAs with metabolic syndrome and its components among Chinese adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171123. [PMID: 38387587 DOI: 10.1016/j.scitotenv.2024.171123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
AIMS We aimed to evaluate the association of occupational noise with metabolic syndrome (MetS) and its components, and to assess the potential role of miRNAs in occupational noise-associated MetS. METHODS A total of 854 participants were enrolled in our study. Cumulative noise exposure (CNE) was estimated in conjunction with workplace noise test records and research participants' employment histories. Logistic regression models adjusted for potential confounders were used to assess the association of CNE and miRNAs with MetS and its components. RESULTS We observed linear positive dose-response associations between occupational noise exposure and the prevalence of MetS (OR: 1.031; 95 % CI: 1.008, 1.055). And linear and nonlinear relationship were also found for the association of occupational noise exposure with high blood pressure (OR: 1.024; 95 % CI: 1.007, 1.041) and reduced high-density lipoprotein (OR: 1.051; 95 % CI: 1.031, 1.072), respectively. MiR-200a-3p, miR-92a-3p and miR-21-5p were inversely associated with CNE, or the prevalence of MetS and its components (all P < 0.05). However, we did not find any statistically significant mediation effect of miRNAs in the associations of CNE with MetS. Furthermore, the prevalence of bilateral hearing loss in high-frequency increased (OR: 1.036; 95 % CI: 1.008, 1.067) with CNE level rising, and participants with bilateral hearing loss in high-frequency had a significantly higher risk of MetS (OR: 1.727; 95 % CI: 1.048, 2.819). CONCLUSION Our study suggests that occupational noise exposure is associated with MetS and its components, and the role of miRNAs in noise-induced increasing MetS risk needs to be confirmed in future studies.
Collapse
Affiliation(s)
- Zhaomin Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education, Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wenzhen Li
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong 999077, Hong Kong, China; Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen 518000, China
| | - Haozhe Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education, Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xuezan Huang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education, Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yueqing Tao
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Kaiji Lang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education, Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Meibian Zhang
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education, Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dongming Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education, Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|