1
|
Li Z, Wang M, Zeng S, Wang Z, Ying Y, Chen Q, Zhang C, He W, Sheng C, Wang Y, Zhang Z, Xu C, Wang H. Investigating the Shared Genetic Architecture Between Leukocyte Telomere Length and Prostate Cancer. World J Mens Health 2024; 42:42.e84. [PMID: 39344121 DOI: 10.5534/wjmh.240062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/31/2024] [Accepted: 06/18/2024] [Indexed: 10/01/2024] Open
Abstract
PURPOSE Evidence of an association between leukocyte telomere length (LTL) and prostate cancer (PCa) is accumulating; however, their shared genetic basis remains unclear. MATERIALS AND METHODS Using summary statistics obtained from the genome-wide association study (GWAS), we quantified the global and local genetic correlations between two traits. Subsequently, we identified potential pleiotropic loci, common tissue-enriched regions, and risk gene loci while inferring assumed causal relationships. RESULTS Our study demonstrated a global genetic correlation between LTL and PCa (genetic correlation=0.066, p=0.017), which was further confirmed in local genomic regions. Cross-trait GWAS meta-analysis revealed 44 shared loci, including 10 novel pleiotropic single nucleotide polymorphisms appearing concurrently in significant local genetic correlation regions. Notably, two new loci (rs9419958; rs3730668) were additionally validated to co-localize. For the first time, we identified a significant shared genetic enrichment of both traits in the small intestine tissue at the terminal ileum, with functional genes in this region affecting both LTL and PCa. Concurrently, Mendelian randomization analysis indicated a positive causal relationship between LTL and PCa. CONCLUSIONS In conclusion, our study makes a significant contribution to the ongoing debate concerning the potential association between longer LTL and a higher risk of PCa. Additionally, we provide new evidence for the development of therapeutic targets for PCa and propose new directions for future risk prediction in this regard.
Collapse
Affiliation(s)
- Zhizhou Li
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Maoyu Wang
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shuxiong Zeng
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ziwei Wang
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yidie Ying
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qing Chen
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chen Zhang
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wei He
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chaoyang Sheng
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yi Wang
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhensheng Zhang
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chuanliang Xu
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Huiqing Wang
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
2
|
Zhang X, Cui S, Ding Y, Li Y, Wu B, Gao J, Li M, Xu L, Xia H. Downregulation of B4GALT5 attenuates cardiac fibrosis through Lumican and Akt/GSK-3β/β-catenin pathway. Eur J Pharmacol 2024; 963:176263. [PMID: 38081351 DOI: 10.1016/j.ejphar.2023.176263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Virtually all forms of cardiac disease exhibit cardiac fibrosis as a common trait, which ultimately leads to adverse ventricular remodeling and heart failure. To improve the prognosis of heart disease, it is crucial to halt the progression of cardiac fibrosis. Protein function is intricately linked with protein glycosylation, a vital post-translational modification. As a fundamental member of the β1,4-galactosyltransferase gene family (B4GALT), β1,4-galactosyltransferase V (B4GALT5) is associated with various disorders. In this study, significant levels of B4GALT5 expression were observed in cardiac fibrosis induced by transverse aortic constriction (TAC) or TGFβ1 and the activation of cardiac fibroblasts (CFs). Subsequently, by administering AAV9-shB4GALT5 injections to TAC animals, we were able to demonstrate that in vivo B4GALT5 knockdown decreased the transformation of CFs into myofibroblasts (myoFBs) and reduced the deposition of cardiac collagen fibers. In vitro tests revealed the same results. Conversely, both in vivo and in vitro experiments indicated that overexpression of B4GALT5 stimulates CFs activation and exacerbates cardiac fibrosis. Initially, we elucidated the primary mechanism by which B4GALT5 regulates the Akt/GSK-3β/β-catenin pathway and directly interacts with laminin, thereby affecting cardiac fibrosis. Our findings demonstrate that B4GALT5 promotes cardiac fibrosis through the Akt/GSK-3β/β-catenin pathway and reveal laminin as the target protein of B4GALT5.
Collapse
Affiliation(s)
- Xutao Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Shengyu Cui
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Yuewen Ding
- Department of Anesthesiology, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, China
| | - Yuhua Li
- Intensive Care Unit, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Bing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Jixian Gao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Ming Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Lin Xu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, China.
| |
Collapse
|
3
|
Liu SC, Gong LL, Huang FC, Xu N, Yang KX, Liu XH, Li WL. RNF114 facilitates the proliferation, stemness, and metastasis of colorectal cancer. Pathol Res Pract 2023; 248:154716. [PMID: 37523804 DOI: 10.1016/j.prp.2023.154716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Colorectal cancer (CRC), the fourth of the world's major common malignancy, poses a serious threat to the physical and mental health of the population. Nevertheless, the prognosis of CRC patients remains unsatisfactory. Consequently, it is still imperative to continuously discover the CRC mechanisms. METHODS The expression profiles of mRNAs were recognized by whole transcriptome sequencing to identity differentially expressed mRNA (DE-mRNA). TCGA COAD cohort, PPOGgene and Kaplan-Meier Plotter databases were utilized to validate RNF114 relevance to CRC prognosis. The effect of RNF114 on the malignant biological behavior of CRC was explored in CRC cells and subcutaneous tumor models and lung metastasis model after exogenous regulation of RNF114. RESULTS A total of 1358 DE-mRNAs were identified, including 617 up-regulated and 741 down-regulated DE-mRNAs, and they were mainly involved in the term of receptor ligand activity, Wnt signaling pathway and pathway in cancer. Notably, RNF114 was hyper-expressed in tissues and cell of CRC, and significantly correlated with tumor invasion depth and TNM stage of CRC patients. RNF114 expression were significantly associated with overall survival, and had superior diagnostic value in CRC. In vitro, knockdown of RNF114 statistically diminished the proliferation, stemness, invasion and wound healing of CRC cells and facilitated their apoptosis, and the opposite result was observed for overexpression of RNF114. In vivo, knockdown of RNF114 effectively diminished the mass and volume of tumors, and lung metastasis in animal model. CONCLUSIONS In summary, we identified DE-mRNAs in CRC, and elucidated that RNF114 facilitates CRC process. The discovery will contribute to theoretical foundation for RNF114 as a potential therapeutic target and biomarker, and offer new perspectives for CRC research.
Collapse
Affiliation(s)
- Shi-Cheng Liu
- Department of Colorectal Surgery, the Third Affiliated Hospital of Kunming Medical University (the Tumor Hospital of Yunnan), China
| | - Le-Lan Gong
- Department of Colorectal Surgery, the Third Affiliated Hospital of Kunming Medical University (the Tumor Hospital of Yunnan), China
| | - Feng-Chang Huang
- Department of Oncology, the First Affiliated Hospital of Kunming Medical University, China
| | - Ning Xu
- Department of Oncology, the First Affiliated Hospital of Kunming Medical University, China
| | - Ke-Xin Yang
- Department of Colorectal Surgery, the Third Affiliated Hospital of Kunming Medical University (the Tumor Hospital of Yunnan), China
| | - Xi-Hong Liu
- Department of Oncology, the First Affiliated Hospital of Kunming Medical University, China
| | - Wen-Liang Li
- Department of Colorectal Surgery, the Third Affiliated Hospital of Kunming Medical University (the Tumor Hospital of Yunnan), China.
| |
Collapse
|
4
|
Zigo M, Kerns K, Sutovsky P. The Ubiquitin-Proteasome System Participates in Sperm Surface Subproteome Remodeling during Boar Sperm Capacitation. Biomolecules 2023; 13:996. [PMID: 37371576 PMCID: PMC10296210 DOI: 10.3390/biom13060996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Sperm capacitation is a complex process endowing biological and biochemical changes to a spermatozoon for a successful encounter with an oocyte. The present study focused on the role of the ubiquitin-proteasome system (UPS) in the remodeling of the sperm surface subproteome. The sperm surface subproteome from non-capacitated and in vitro capacitated (IVC) porcine spermatozoa, with and without proteasomal inhibition, was selectively isolated. The purified sperm surface subproteome was analyzed using high-resolution, quantitative liquid chromatography-mass spectrometry (LC-MS) in four replicates. We identified 1680 HUGO annotated proteins, out of which we found 91 to be at least 1.5× less abundant (p < 0.05) and 141 to be at least 1.5× more abundant (p < 0.05) on the surface of IVC spermatozoa. These proteins were associated with sperm capacitation, hyperactivation, metabolism, acrosomal exocytosis, and fertilization. Abundances of 14 proteins were found to be significantly different (p < 0.05), exceeding a 1.5-fold abundance between the proteasomally inhibited (100 µM MG132) and vehicle control (0.2% ethanol) groups. The proteins NIF3L1, CSE1L, NDUFB7, PGLS, PPP4C, STK39, and TPRG1L were found to be more abundant; while BPHL, GSN, GSPT1, PFDN4, STYXL1, TIMM10, and UBXN4 were found to be less abundant in proteasomally inhibited IVC spermatozoa. Despite the UPS having a narrow range of targets, it modulated sperm metabolism and binding by regulating susceptible surface proteins. Changes in CSE1L, PFDN4, and STK39 during in vitro capacitation were confirmed using immunocytochemistry, image-based flow cytometry, and Western blotting. The results confirmed the active participation of the UPS in the extensive sperm surface proteome remodeling that occurs during boar sperm capacitation. This work will help us to identify new pharmacological mechanisms to positively or negatively modulate sperm fertilizing ability in food animals and humans.
Collapse
Affiliation(s)
- Michal Zigo
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA;
| | - Karl Kerns
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA;
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA;
| | - Peter Sutovsky
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA;
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
5
|
Wei CY, Zhu MX, Zhang PF, Huang XY, Wan JK, Yao XZ, Hu ZT, Chai XQ, Peng R, Yang X, Gao C, Gao J, Wang SW, Zheng YM, Tang Z, Gao Q, Zhou J, Fan JB, Ke AW, Fan J. PKCα/ZFP64/CSF1 axis resets the tumor microenvironment and fuels anti-PD1 resistance in hepatocellular carcinoma. J Hepatol 2022; 77:163-176. [PMID: 35219791 DOI: 10.1016/j.jhep.2022.02.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/28/2022] [Accepted: 02/09/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Despite remarkable advances in treatment, most patients with hepatocellular carcinoma (HCC) respond poorly to anti-programmed cell death 1 (anti-PD1) therapy. A deeper insight into the tolerance mechanism of HCC against this therapy is urgently needed. METHODS We performed next-generation sequencing, multiplex immunofluorescence, and dual-color immunohistochemistry and constructed an orthotopic HCC xenograft tumor model to identify the key gene associated with anti-PD1 tolerance. A spontaneously tumorigenic transgenic mouse model, an in vitro coculture system, mass cytometry, and multiplex immunofluorescence were used to explore the biological function of zinc finger protein 64 (ZFP64) on tumor progression and immune escape. Molecular and biochemical strategies like RNA-sequencing, chromatin immunoprecipitation-sequencing and mass spectrometry were used to gain insight into the underlying mechanisms of ZFP64. RESULTS We showed that ZFP64 is frequently upregulated in tumor tissues from patients with anti-PD1-resistant HCC. Elevated ZFP64 drives anti-PD1 resistance by shifting macrophage polarization toward an alternative activation phenotype (M2) and fostering an inhibitory tumor microenvironment. Mechanistically, we primarily demonstrated that protein kinase C alpha (PKCα) directly phosphorylates ZFP64 at S226, leading to its nuclear translocation and the transcriptional activation of macrophage colony-stimulating factor (CSF1). HCC-derived CSF1 transforms macrophages to the M2 phenotype to drive immune escape and anti-PD1 tolerance. Notably, Gö6976, a protein kinase inhibitor, and lenvatinib, a multi-kinase inhibitor, reset the tumor microenvironment and restore sensitivity to anti-PD1 by blocking the PKCα/ZFP64/CSF1 axis. CONCLUSIONS We propose that the PKCα/ZFP64/CSF1 axis is critical for triggering immune evasion and anti-PD1 tolerance. Inhibiting this axis with Gö6976 or lenvatinib overcomes anti-PD1 resistance in HCC. LAY SUMMARY Despite remarkable treatment progress, most patients with hepatocellular carcinoma respond poorly to anti-PD1 therapy (a type of immunotherapy). A deeper insight into the tolerance mechanisms to this therapy is urgently needed. Herein, we unravel a previously unexplored mechanism linking tumor progression, macrophage polarization, and anti-PD1 resistance, and offer an attractive novel target for anti-PD1 combination therapy, which may benefit patients with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Chuan-Yuan Wei
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China; Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Meng-Xuan Zhu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Peng-Fei Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Xiao-Yong Huang
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Jin-Kai Wan
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
| | - Xiu-Zhong Yao
- Department of Radiology, Zhongshan Hospital of Fudan University, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
| | - Ze-Tao Hu
- Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, 200433, P. R. China
| | - Xiao-Qiang Chai
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Rui Peng
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Xuan Yang
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Chao Gao
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Jian Gao
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Si-Wei Wang
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Yi-Min Zheng
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Zheng Tang
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Jia-Bin Fan
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China.
| | - Ai-Wu Ke
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China.
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China.
| |
Collapse
|
6
|
Jin Y, Yang S, Gao X, Chen D, Luo T, Su S, Shi Y, Yang G, Dong L, Liang J. DEAD-Box Helicase 27 Triggers Epithelial to Mesenchymal Transition by Regulating Alternative Splicing of Lipoma-Preferred Partner in Gastric Cancer Metastasis. Front Genet 2022; 13:836199. [PMID: 35601484 PMCID: PMC9114675 DOI: 10.3389/fgene.2022.836199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
DEAD-box helicase 27 (DDX27) was previously identified as an important mediator during carcinogenesis, while its role in gastric cancer (GC) is not yet fully elucidated. Here, we aimed to investigate the mechanism and clinical significance of DDX27 in GC. Public datasets were analyzed to determine DDX27 expression profiling. The qRT-PCR, Western blot, and immunohistochemistry analyses were employed to investigate the DDX27 expression in GC cell lines and clinical samples. The role of DDX27 in GC metastasis was explored in vitro and in vivo. Mass spectrometry, RNA-seq, and alternative splicing analysis were conducted to demonstrate the DDX27-mediated molecular mechanisms in GC. We discovered that DDX27 was highly expressed in GCs, and a high level of DDX27 indicated poor prognosis. An increased DDX27 expression could promote GC metastasis, while DDX27 knockdown impaired GC aggressiveness. Mechanically, the LLP expression was significantly altered after DDX27 downregulation, and further results indicated that LPP may be regulated by DDX27 via alternative splicing. In summary, our study indicated that DDX27 contributed to GC malignant progression via a prometastatic DDX27/LPP/EMT regulatory axis.
Collapse
Affiliation(s)
- Yirong Jin
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Suzhen Yang
- Department of Digestive Disease and Gastrointestinal Motility Research Room, Xi’an Jiaotong University, Xi’an, China
| | - Xiaoliang Gao
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Di Chen
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Tingting Luo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an, China
| | - Song Su
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Yanting Shi
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Gang Yang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Lei Dong
- Department of Digestive Disease and Gastrointestinal Motility Research Room, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Lei Dong, ; Jie Liang,
| | - Jie Liang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
- *Correspondence: Lei Dong, ; Jie Liang,
| |
Collapse
|
7
|
Han Y, Li Z, Wu Q, Liu H, Sun Z, Wu Y, Luo J. B4GALT5 high expression associated with poor prognosis of hepatocellular carcinoma. BMC Cancer 2022; 22:392. [PMID: 35410157 PMCID: PMC9004124 DOI: 10.1186/s12885-022-09442-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 03/22/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND B4GALT5 is postulated to be an important protein in sugar metabolism that catalyzes the synthesis of lactosylceramide (LacCer). However, its role in hepatocellular carcinoma (HCC) remains unknown. METHOD We characterized the expression of B4GALT5 in HCC tissue compared to normal tissue, and explored its function of B4GALT5 in HCC by enrichment analysis based on its co-expressed gene set. Next, we checked whether B4GALT5 expression is correlated to immune infiltration level and clinical prognosis in hepatocellular carcinoma. Finally, we verified the expression of B4GALT5 using clinical samples evaluated by RT-PCR, and conducted in vitro experiments with B4GALT5-knockdown HCC cells to investigate the function of B4GALT5 in the HCC cell proliferation, migration and invasion. RESULTS We found B4GALT5 mRNA and protein expression levels were significantly high in HCC tissue compared to normal tissue. The enrichment analysis of the gene sets that co-expressed with B4GALT5 showed specificity in HCC-related pathways and functions. Also, the expression pattern of B4GALT5 was significantly related to the immune infiltration level, especially CD4+ T cell and macrophage cells. B4GALT5 higher mRNA expression was associated with poor overall survival (OS) in HCC patients. Furthermore, In vitro experiments showed that depletion of B4GALT5 significantly inhibited HCC cell proliferation, migration and invasion. This study revealed the function and its mediated pathways of B4GALT5 in HCC, indicating that B4GALT5 may serve as a prognostic biomarker of HCC.
Collapse
Affiliation(s)
- Yang Han
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.,Graduate School, Dalian Medical University, Dalian, China
| | - Zhe Li
- Department of Breast Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Wu
- Department of Histology and Embryology, Heze Medical College, Heze, China
| | - Hui Liu
- School of Computer Science and Technology, Nanjing Tech University, Nanjing, China
| | - Zhiqiang Sun
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yong Wu
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.
| | - Judong Luo
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.
| |
Collapse
|
8
|
Tahmaz I, Shahmoradi Ghahe S, Topf U. Prefoldin Function in Cellular Protein Homeostasis and Human Diseases. Front Cell Dev Biol 2022; 9:816214. [PMID: 35111762 PMCID: PMC8801880 DOI: 10.3389/fcell.2021.816214] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/29/2021] [Indexed: 01/05/2023] Open
Abstract
Cellular functions are largely performed by proteins. Defects in the production, folding, or removal of proteins from the cell lead to perturbations in cellular functions that can result in pathological conditions for the organism. In cells, molecular chaperones are part of a network of surveillance mechanisms that maintains a functional proteome. Chaperones are involved in the folding of newly synthesized polypeptides and assist in refolding misfolded proteins and guiding proteins for degradation. The present review focuses on the molecular co-chaperone prefoldin. Its canonical function in eukaryotes involves the transfer of newly synthesized polypeptides of cytoskeletal proteins to the tailless complex polypeptide 1 ring complex (TRiC/CCT) chaperonin which assists folding of the polypeptide chain in an energy-dependent manner. The canonical function of prefoldin is well established, but recent research suggests its broader function in the maintenance of protein homeostasis under physiological and pathological conditions. Interestingly, non-canonical functions were identified for the prefoldin complex and also for its individual subunits. We discuss the latest findings on the prefoldin complex and its subunits in the regulation of transcription and proteasome-dependent protein degradation and its role in neurological diseases, cancer, viral infections and rare anomalies.
Collapse
Affiliation(s)
- Ismail Tahmaz
- Laboratory of Molecular Basis of Aging and Rejuvenation, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Somayeh Shahmoradi Ghahe
- Laboratory of Molecular Basis of Aging and Rejuvenation, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Ulrike Topf
- Laboratory of Molecular Basis of Aging and Rejuvenation, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
9
|
Wang L. A Novel Glycosyltransferase-Related Gene Signature for Overall Survival Prediction in Patients with Ovarian Cancer. Int J Gen Med 2022; 14:10337-10350. [PMID: 34992448 PMCID: PMC8717217 DOI: 10.2147/ijgm.s332945] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/14/2021] [Indexed: 12/21/2022] Open
Abstract
Background Ovarian cancer is a highly malignant epithelial tumor. Recently, it has been reported the role of glycosyltransferases (GTs) in various cancers. However, the prognostic value of GTs-related genes in ovarian cancer remained largely unknown. Methods RNA-sequencing (RNA-seq) data and corresponding clinical characteristics of patients with ovarian cancer were extracted from the public database of the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx). We constructed the least absolute shrinkage and selection operator (LASSO) Cox regression model to explore a multigene signature comprising GTs-related genes in the TCGA and GTEx cohort. Patients with ovarian cancer in International Cancer Genome Consortium (ICGC) database were applied for further validation. We also performed functional analysis on the differentially expressed genes (DEGs) of high-risk and low-risk groups in the TCGA cohort. Additionally, the immune status between the two risk groups was assessed, respectively. Results Our results showed that 64 GTs-related genes were differentially expressed between tumor tissues and normal tissues in the TCGA and GTEx cohort. A prognostic model of 15 candidate genes was constructed, which classified patients into high- and low-risk groups. Compared with low-risk patients, high-risk patients had an obvious worse overall survival (OS) (P < 0.0001 in the TCGA and GTEx cohort and P = 0.042 in the ICGC cohort). Multivariate Cox regression analysis revealed that the risk score was an independent factor for OS of ovarian cancer. Functional analysis indicated that these DEGs were also enriched in immune-related pathways, and the immune status was significantly different between the two risk groups in TCGA cohort. Conclusion In conclusion, a novel GTs-related gene signature may be used for the prognosis of ovarian cancer. Targeting GTs-related gene can act as a therapeutic alternative for ovarian cancer.
Collapse
Affiliation(s)
- Liang Wang
- Department of Gynecology and Obstetrics, Tianjin NanKai Hospital, Tianjin, 300100, People's Republic of China
| |
Collapse
|
10
|
Liang W, Shi C, Hong W, Li P, Zhou X, Fu W, Lin L, Zhang J. Super-enhancer-driven lncRNA-DAW promotes liver cancer cell proliferation through activation of Wnt/β-catenin pathway. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1351-1363. [PMID: 34853732 PMCID: PMC8608597 DOI: 10.1016/j.omtn.2021.10.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/06/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022]
Abstract
Aberrant expression of long non-coding RNAs (lncRNAs) has been reported in multiple cancers. However, the underlying mechanisms mediated by super-enhancers remain elusive. Here we sought to define the role of a novel lncRNA termed lncRNA-DAW in tumorigenesis. Our results revealed that lncRNA-DAW was driven by a liver-specific super-enhancer and transcriptionally activated by HNF4G, leading to frequent elevation in hepatocellular carcinoma (HCC) specimens. Ectopic expression of lncRNA-DAW promoted both in vivo and in vitro tumor growth. By using RNA sequencing, Wnt2 was screened out as a downstream effector of lncRNA-DAW. We next found that lncRNA-DAW physically interacted with EZH2, a negative regulator of Wnt2. This interplay subsequently potentiated CDK1-EZH2 interaction, leading to the phosphorylation and ubiquitination of EZH2. The lncRNA-DAW-mediated EZH2 degradation facilitated the de-repression of Wnt2 transcription, which eventually activated the Wnt/β-catenin pathway. Furthermore, we verified that Wnt2 potentiated in vitro and in vivo cancer cell growth by activating the Wnt/β-catenin pathway. Finally, Wnt2 amplification was confirmed as a common event in liver cancer, and the expression of lncRNA-DAW was positively correlated with Wnt2 in HCC specimens. Collectively, we are the first to identify lncRNA-DAW as a novel candidate oncogene in liver cancer, and this lncRNA may serve as a novel clinical diagnosis biomarker for liver cancer.
Collapse
Affiliation(s)
- Weicheng Liang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China.,Biotherapy Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Chuanjian Shi
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Weilong Hong
- Department of Emergency, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Panlong Li
- Biotherapy Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Xue Zhou
- Department of Ultrasonic Medicine, Guangzhou Women and Children's Medical Center, Guangzhou, P.R. China
| | - Weiming Fu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Lizhu Lin
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Jinfang Zhang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China.,Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| |
Collapse
|
11
|
Wang Y, Zhou K, Wang X, Liu Y, Guo D, Bian Z, Su L, Liu K, Gu X, Guo X, Wang L, Zhang H, Tao K, Xing J. Multiple-level copy number variations in cell-free DNA for prognostic prediction of HCC with radical treatments. Cancer Sci 2021; 112:4772-4784. [PMID: 34490703 PMCID: PMC8586684 DOI: 10.1111/cas.15128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023] Open
Abstract
Copy number variations (CNVs) in cell-free DNA (cfDNA) are emerging as noninvasive biomarkers for various cancers. However, multiple-level analysis of cfDNA CNVs for hepatocellular carcinoma (HCC) patients with radical treatments remains uninvestigated. Here, CNVs at genome-wide, chromosomal-arm, and bin levels were analyzed in cfDNA from 117 HCC patients receiving radical treatments. Then, the relationship between cfDNA CNVs and clinical outcomes was explored. Our results showed that a concordant profile of CNVs was observed between cfDNA and tumor tissue DNA. Three genome-wide CNV indicators including tumor fraction (TFx), prediction score (P-score), and stability score (S-score) were calculated and demonstrated to exhibit significant correlation with poorer overall survival (OS) and recurrence-free survival (RFS). Furthermore, the high-frequency cfDNA CNVs at chromosomal-arm level including the loss of 4q, 17p, and 19p and the gain of 8q and 1q clearly predicted HCC prognosis. Finally, a bin-level risk score was constructed to improve the ability of CNVs in predicting prognosis. Altogether, our study indicates that the multiple-level cfDNA CNVs are significantly associated with OS and RFS in HCC patients with radical treatments, suggesting that cfDNA CNVs detected by low-coverage whole-genome sequencing (WGS) may be used as potential prognostic biomarkers of HCC patients.
Collapse
Affiliation(s)
- Yang Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kaixiang Zhou
- Department of Physiology and Pathophysiology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Xiangxu Wang
- Department of Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yang Liu
- Department of Physiology and Pathophysiology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Dongnan Guo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Zhenyuan Bian
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liping Su
- Department of Physiology and Pathophysiology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Kun Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiwen Gu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Xu Guo
- Department of Physiology and Pathophysiology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hongmei Zhang
- Department of Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinliang Xing
- Department of Physiology and Pathophysiology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
12
|
Li S, Ma J, Zheng A, Song X, Chen S, Jin F. DEAD-box helicase 27 enhances stem cell-like properties with poor prognosis in breast cancer. J Transl Med 2021; 19:334. [PMID: 34362383 PMCID: PMC8344201 DOI: 10.1186/s12967-021-03011-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022] Open
Abstract
Background Although the rapid development of diagnosis and treatment has improved prognosis in early breast cancer, challenges from different therapeutic response remain due to breast cancer heterogeneity. DEAD-box helicase 27 (DDX27) had been proved to influence ribosome biogenesis and identified as a promoter in gastric and colorectal cancer associated with stem cell-like properties, while the impact of DDX27 on breast cancer prognosis and biological functions is unclear. We aimed to explore the influence of DDX27 on stem cell-like properties and prognosis in breast cancer. Methods The expression of DDX27 was evaluated in 24 pairs of fresh breast cancer and normal tissue by western blot. We conducted Immunohistochemical (IHC) staining in paraffin sections of 165 breast cancer patients to analyze the expression of DDX27 and its correlation to stemness biomarker. The Cancer Genome Atlas-Breast Cancer (TCGA-BRCA) database and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database were used to analyze the expression of DDX27 in breast cancer. Kaplan–Meier survival analysis were used to investigate the implication of DDX27 on breast cancer prognosis. Western blot, CCK-8 assay, Transwell assay and wound-healing assay were carried out to clarify the regulation of DDX27 on stem cell-like properties in breast cancer cells. Gene Set Enrichment Analysis (GSEA) was performed to analyze the potential molecular mechanisms of DDX27 in breast cancer. Results DDX27 was significantly high expressed in breast cancer compared with normal tissue. High expression of DDX27 was related to larger tumor size (p = 0.0005), positive lymph nodes (p = 0.0008), higher histological grade (p = 0.0040), higher ki-67 (p = 0.0063) and later TNM stage (p < 0.0001). Patients with high DDX27 expression turned out a worse prognosis on overall survival (OS, p = 0.0087) and disease-free survival (DFS, p = 0.0235). Overexpression of DDX27 could enhance the expression of biomarkers related to stemness and promote stem cell-like activities such as proliferation and migration in breast cancer cells. Conclusion DDX27 can enhance stem cell-like properties and cause poor prognosis in breast cancer, also may be expected to become a potential biomarker for breast cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03011-0.
Collapse
Affiliation(s)
- Shan Li
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jinfei Ma
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ang Zheng
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xinyue Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Si Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China.
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
13
|
Peng G, Chai H, Ji W, Lu Y, Wu S, Zhao H, Li P, Hu Q. Correlating genomic copy number alterations with clinicopathologic findings in 75 cases of hepatocellular carcinoma. BMC Med Genomics 2021; 14:150. [PMID: 34103027 PMCID: PMC8185937 DOI: 10.1186/s12920-021-00998-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 06/02/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Oligonucleotide array comparative genomic hybridization (aCGH) analysis has been used for detecting somatic copy number alterations (CNAs) in various types of tumors. This study aimed to assess the clinical utility of aCGH for cases of hepatocellular carcinoma (HCC) and to evaluate the correlation between CNAs and clinicopathologic findings. METHODS aCGH was performed on 75 HCC cases with paired DNA samples from tumor and adjacent nontumor tissues. Survival outcomes from these cases were analyzed based on Barcelona-Clinic Liver Cancer Stage (BCLC), Edmondson-Steiner grade (E-S), and recurrence status. Correlation of CNAs with clinicopathologic findings was analyzed by Wilcoxon rank test and clustering vs. K means. RESULTS The survival outcomes indicated that BCLC stages and recurrence status could be predictors and E-S grades could be a modifier for HCC. The most common CNAs involved gains of 1q and 8q and a loss of 16q (50%), losses of 4q and 17p and a gain of 5p (40%), and losses of 8p and 13q (30%). Analyses of genomic profiles and clusters identified that losses of 4q13.2q35.2 and 10q22.3q26.13 seen in cases of stage A, grade III and nonrecurrence were likely correlated with good survival, while loss of 1p36.31p22.1 and gains of 2q11.2q21.2 and 20p13p11.1 seen in cases of stage C, grade III and recurrence were possibly correlated with worst prognosis. CONCLUSIONS These results indicated that aCGH analysis could be used to detect recurrent CNAs and involved key genes and pathways in patients with HCC. Further analysis on a large case series to validate the correlation of CNAs with clinicopathologic findings of HCC could provide information to interpret CNAs and predict prognosis.
Collapse
Affiliation(s)
- Gang Peng
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT, USA
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, USA
| | - Hongyan Chai
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, USA
| | - Weizhen Ji
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, USA
| | - Yufei Lu
- Department of Cell Biology and Genetics, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Shengming Wu
- Department of Pathology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Hongyu Zhao
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT, USA
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, USA
| | - Peining Li
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, USA.
| | - Qiping Hu
- Department of Cell Biology and Genetics, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
14
|
Rizzo R, Russo D, Kurokawa K, Sahu P, Lombardi B, Supino D, Zhukovsky MA, Vocat A, Pothukuchi P, Kunnathully V, Capolupo L, Boncompain G, Vitagliano C, Zito Marino F, Aquino G, Montariello D, Henklein P, Mandrich L, Botti G, Clausen H, Mandel U, Yamaji T, Hanada K, Budillon A, Perez F, Parashuraman S, Hannun YA, Nakano A, Corda D, D'Angelo G, Luini A. Golgi maturation-dependent glycoenzyme recycling controls glycosphingolipid biosynthesis and cell growth via GOLPH3. EMBO J 2021; 40:e107238. [PMID: 33749896 DOI: 10.15252/embj.2020107238] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/24/2021] [Accepted: 02/10/2021] [Indexed: 01/08/2023] Open
Abstract
Glycosphingolipids are important components of the plasma membrane where they modulate the activities of membrane proteins including signalling receptors. Glycosphingolipid synthesis relies on competing reactions catalysed by Golgi-resident enzymes during the passage of substrates through the Golgi cisternae. The glycosphingolipid metabolic output is determined by the position and levels of the enzymes within the Golgi stack, but the mechanisms that coordinate the intra-Golgi localisation of the enzymes are poorly understood. Here, we show that a group of sequentially-acting enzymes operating at the branchpoint among glycosphingolipid synthetic pathways binds the Golgi-localised oncoprotein GOLPH3. GOLPH3 sorts these enzymes into vesicles for intra-Golgi retro-transport, acting as a component of the cisternal maturation mechanism. Through these effects, GOLPH3 controls the sub-Golgi localisation and the lysosomal degradation rate of specific enzymes. Increased GOLPH3 levels, as those observed in tumours, alter glycosphingolipid synthesis and plasma membrane composition thereby promoting mitogenic signalling and cell proliferation. These data have medical implications as they outline a novel oncogenic mechanism of action for GOLPH3 based on glycosphingolipid metabolism.
Collapse
Affiliation(s)
- Riccardo Rizzo
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy.,Institute of Nanotechnology, National Research Council (CNR-NANOTEC), Lecce, Italy
| | - Domenico Russo
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan
| | - Pranoy Sahu
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Bernadette Lombardi
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Domenico Supino
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Mikhail A Zhukovsky
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Anthony Vocat
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Prathyush Pothukuchi
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Vidya Kunnathully
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Laura Capolupo
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Carlo Vitagliano
- Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, Naples, Italy
| | | | - Gabriella Aquino
- Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, Naples, Italy
| | - Daniela Montariello
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Petra Henklein
- Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Berlin, Germany
| | - Luigi Mandrich
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Gerardo Botti
- Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, Naples, Italy
| | - Henrik Clausen
- Faculty of Health Sciences, Centre for Glycomics, Department of Cellular and Molecular Medicine Nørre Alle 20, University of Copenhagen, Copenhagen N, Denmark
| | - Ulla Mandel
- Faculty of Health Sciences, Centre for Glycomics, Department of Cellular and Molecular Medicine Nørre Alle 20, University of Copenhagen, Copenhagen N, Denmark
| | - Toshiyuki Yamaji
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kentaro Hanada
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Alfredo Budillon
- Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, Naples, Italy
| | - Franck Perez
- Institute Curie - CNRS UMR1 44, Research Center, Paris, France
| | | | - Yusuf A Hannun
- Stony Brook University Medical Center, New York, NY, USA
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan
| | - Daniela Corda
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Giovanni D'Angelo
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy.,École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alberto Luini
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
15
|
Mo SJ, Zhao HC, Tian YZ, Zhao HL. The Role of Prefoldin and Its Subunits in Tumors and Their Application Prospects in Nanomedicine. Cancer Manag Res 2020; 12:8847-8856. [PMID: 33061580 PMCID: PMC7520118 DOI: 10.2147/cmar.s270237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Prefoldin (PFDN) is a hexameric chaperone complex that is widely found in eukaryotes and archaea and consists of six different subunits (PFDN1-6). Its main function is to transfer actin and tubulin monomers to the eukaryotic cell cytoplasmic chaperone protein (c-CPN) specific binding during the assembly of the cytoskeleton, to stabilize the newly synthesized peptides so that they can be folded correctly. The current study found that each subunit of PFDN has different functions, which are closely related to the occurrence, development and prognosis of tumors. However, the best characteristics of each subunit have not been fully affirmed. The connection between research and tumors can change the understanding of PFDN and further extend its potential prognostic role and structural function to cancer research and clinical practice. This article mainly reviews the role of canonical PFDN and its subunits in tumors and other diseases, and discusses the potential prospects of the unique structure and function of PFDN in nanomedicine.
Collapse
Affiliation(s)
- Shao-Jian Mo
- Department of General Surgery, The Affiliated Bethune Hospital of Shanxi Medical University, Taiyuan 030032, People's Republic of China
| | - Hai-Chao Zhao
- Department of General Surgery, The Affiliated Bethune Hospital of Shanxi Medical University, Taiyuan 030032, People's Republic of China
| | - Yan-Zhang Tian
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, People's Republic of China
| | - Hao-Liang Zhao
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, People's Republic of China
| |
Collapse
|
16
|
Liang J, Xia L, Oyang L, Lin J, Tan S, Yi P, Han Y, Luo X, Wang H, Tang L, Pan Q, Tian Y, Rao S, Su M, Shi Y, Cao D, Zhou Y, Liao Q. The functions and mechanisms of prefoldin complex and prefoldin-subunits. Cell Biosci 2020; 10:87. [PMID: 32699605 PMCID: PMC7370476 DOI: 10.1186/s13578-020-00446-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022] Open
Abstract
The correct folding is a key process for a protein to acquire its functional structure and conformation. Prefoldin is a well-known chaperone protein that regulates the correct folding of proteins. Prefoldin plays a crucial role in the pathogenesis of common neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, and Huntington's disease). The important role of prefoldin in emerging fields (such as nanoparticles, biomaterials) and tumors has attracted widespread attention. Also, each of the prefoldin subunits has different and independent functions from the prefoldin complex. It has abnormal expression in different tumors and plays an important role in tumorigenesis and development, especially c-Myc binding protein MM-1. MM-1 can inhibit the activity of c-Myc through various mechanisms to regulate tumor growth. Therefore, an in-depth analysis of the complex functions of prefoldin and their subunits is helpful to understand the mechanisms of protein misfolding and the pathogenesis of diseases caused by misfolded aggregation.
Collapse
Affiliation(s)
- Jiaxin Liang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Longzheng Xia
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Linda Oyang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Jinguan Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Shiming Tan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Pin Yi
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Yaqian Han
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Xia Luo
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Lu Tang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
- Department of Medical Microbiology Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794 USA
| | - Qing Pan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
- Department of Medical Microbiology Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794 USA
| | - Yutong Tian
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
- Department of Medical Microbiology Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794 USA
| | - Shan Rao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Min Su
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Yingrui Shi
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Deliang Cao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
- Department of Medical Microbiology Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794 USA
| | - Yujuan Zhou
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Qianjin Liao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| |
Collapse
|
17
|
Wu MJ, Gao YL, Liu JX, Zheng CH, Wang J. Integrative Hypergraph Regularization Principal Component Analysis for Sample Clustering and Co-Expression Genes Network Analysis on Multi-Omics Data. IEEE J Biomed Health Inform 2020; 24:1823-1834. [DOI: 10.1109/jbhi.2019.2948456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Zhu ZZ, Bao LL, Zhao K, Xu Q, Zhu JY, Zhu KX, Wen BJ, Ye YQ, Wan XX, Wang LL, He SQ, Cong WM. Copy Number Aberrations of Multiple Genes Identified as Prognostic Markers for Extrahepatic Metastasis-free Survival of Patients with Hepatocellular Carcinoma. Curr Med Sci 2019; 39:759-765. [PMID: 31612394 DOI: 10.1007/s11596-019-2103-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 06/21/2019] [Indexed: 12/22/2022]
Abstract
Extrahepatic metastasis confers unfavorable patient prognosis in patients with hepatocellular carcinoma (HCC), however, reliable markers allowing prediction of extrahepatic metastasis at the time of initial diagnosis are still lacking. This study was to identify gene-level copy number aberrations (CNAs) related to extrahepatic metastasis-free survival of HCC patients, and further examine the associations between CNAs and gene expression. Array comparative genomic hybridization (aCGH) and expression array were used to analyze gene CNAs and expression levels, respectively. The associations between CNAs of a panel of 20 genes and extrahepatic metastasis-free survival were analyzed in 66 patients with follow-up period of 1.6-90.5 months. The gene expression levels between HCCs with and without gene CNA were compared in 109 patients with HCC. We observed that gains at MDM4 and BCL2L1, and losses at APC and FBXW7 were independent prognostic markers for extrahepatic metastasis-free survival of HCC patients. Integration analysis of aCGH and expression data showed that MDM4 and BCL2L1 were significantly upregulated in HCCs with gene gain, while APC and FBXW7 were significantly downregulated in HCCs with gene loss. We concluded that gene gains at MDM4 and BCL2L1, and losses at APC and FBXW7, with concordant expression changes, were associated with extrahepatic metastasis-free survival of HCC patients and have potential to act as novel prognostic markers.
Collapse
Affiliation(s)
- Zhong-Zheng Zhu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Ling-Ling Bao
- Department of Oncology, No. 113 Hospital of People's Liberation Army, Anhui Medical University, Ningbo, 315040, China
| | - Kun Zhao
- Department of Education, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Jia-Yi Zhu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ke-Xuan Zhu
- Department of Burns and Plastic Surgery, General Hospital of Liaoning Provincial Armed Police Force of PLA, Shenyang, 110034, China
| | - Bing-Ji Wen
- Department of Oncology, No. 113 Hospital of People's Liberation Army, Anhui Medical University, Ningbo, 315040, China
| | - Ying-Quan Ye
- Department of Oncology, No. 113 Hospital of People's Liberation Army, Anhui Medical University, Ningbo, 315040, China
| | - Xiao-Xi Wan
- Department of Oncology, No. 113 Hospital of People's Liberation Army, Anhui Medical University, Ningbo, 315040, China
| | - Liang-Liang Wang
- Department of Oncology, No. 113 Hospital of People's Liberation Army, Anhui Medical University, Ningbo, 315040, China
| | - Song-Qin He
- Department of Oncology, No. 113 Hospital of People's Liberation Army, Anhui Medical University, Ningbo, 315040, China
| | - Wen-Ming Cong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| |
Collapse
|
19
|
LncRNA-NEF antagonized epithelial to mesenchymal transition and cancer metastasis via cis-regulating FOXA2 and inactivating Wnt/β-catenin signaling. Oncogene 2018; 37:1445-1456. [DOI: 10.1038/s41388-017-0041-y] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/28/2017] [Accepted: 10/01/2017] [Indexed: 01/01/2023]
|
20
|
Cai W, Xiong Chen Z, Rane G, Satendra Singh S, Choo Z, Wang C, Yuan Y, Zea Tan T, Arfuso F, Yap CT, Pongor LS, Yang H, Lee MB, Cher Goh B, Sethi G, Benoukraf T, Tergaonkar V, Prem Kumar A. Wanted DEAD/H or Alive: Helicases Winding Up in Cancers. J Natl Cancer Inst 2017; 109:2957323. [PMID: 28122908 DOI: 10.1093/jnci/djw278] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/08/2016] [Accepted: 10/20/2016] [Indexed: 12/23/2022] Open
Abstract
Cancer is one of the most studied areas of human biology over the past century. Despite having attracted much attention, hype, and investments, the search to find a cure for cancer remains an uphill battle. Recent discoveries that challenged the central dogma of molecular biology not only further increase the complexity but also demonstrate how various types of noncoding RNAs such as microRNA and long noncoding RNA, as well as their related processes such as RNA editing, are important in regulating gene expression. Parallel to this aspect, an increasing number of reports have focused on a family of proteins known as DEAD/H-box helicases involved in RNA metabolism, regulation of long and short noncoding RNAs, and novel roles as "editing helicases" and their association with cancers. This review summarizes recent findings on the roles of RNA helicases in various cancers, which are broadly classified into adult solid tumors, childhood solid tumors, leukemia, and cancer stem cells. The potential small molecule inhibitors of helicases and their therapeutic value are also discussed. In addition, analyzing next-generation sequencing data obtained from public portals and reviewing existing literature, we provide new insights on the potential of DEAD/H-box helicases to act as pharmacological drug targets in cancers.
Collapse
Affiliation(s)
- Wanpei Cai
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Zhi Xiong Chen
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Grishma Rane
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Shikha Satendra Singh
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Zhang'e Choo
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Chao Wang
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Yi Yuan
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Tuan Zea Tan
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Frank Arfuso
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Celestial T Yap
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Lorinc S Pongor
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Henry Yang
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Martin B Lee
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Boon Cher Goh
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Gautam Sethi
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Touati Benoukraf
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Vinay Tergaonkar
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Alan Prem Kumar
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| |
Collapse
|
21
|
Barthelemy J, Hanenberg H, Leffak M. FANCJ is essential to maintain microsatellite structure genome-wide during replication stress. Nucleic Acids Res 2016; 44:6803-16. [PMID: 27179029 PMCID: PMC5001596 DOI: 10.1093/nar/gkw433] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 05/06/2016] [Indexed: 12/15/2022] Open
Abstract
Microsatellite DNAs that form non-B structures are implicated in replication fork stalling, DNA double strand breaks (DSBs) and human disease. Fanconi anemia (FA) is an inherited disorder in which mutations in at least nineteen genes are responsible for the phenotypes of genome instability and cancer predisposition. FA pathway proteins are active in the resolution of non-B DNA structures including interstrand crosslinks, G quadruplexes and DNA triplexes. In FANCJ helicase depleted cells, we show that hydroxyurea or aphidicolin treatment leads to loss of microsatellite polymerase chain reaction signals and to chromosome recombination at an ectopic hairpin forming CTG/CAG repeat in the HeLa genome. Moreover, diverse endogenous microsatellite signals were also lost upon replication stress after FANCJ depletion, and in FANCJ null patient cells. The phenotype of microsatellite signal instability is specific for FANCJ apart from the intact FA pathway, and is consistent with DSBs at microsatellites genome-wide in FANCJ depleted cells following replication stress.
Collapse
Affiliation(s)
- Joanna Barthelemy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Helmut Hanenberg
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany Department of Otorhinolaryngology & Head/Neck Surgery, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Michael Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|