1
|
Yin H, Liu N, Zhou X, Chen J, Duan L. The advance of CCN3 in fibrosis. J Cell Commun Signal 2023:10.1007/s12079-023-00778-3. [PMID: 37378812 DOI: 10.1007/s12079-023-00778-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
The extracellular matrix (ECM) is comprised of various extracellular macromolecules, including collagen, enzymes, and glycoproteins, which offer structural and biochemical support to neighboring cells. After tissue injury, extracellular matrix proteins deposit in the damaged tissue to promote tissue healing. However, an imbalance between ECM production and degradation can result in excessive deposition, leading to fibrosis and subsequent organ dysfunction. Acting as a regulatory protein within the extracellular matrix, CCN3 plays a crucial role in numerous biological processes, such as cell proliferation, angiogenesis, tumorigenesis, and wound healing. Many studies have demonstrated that CCN3 can reduce the production of ECM in tissues through diverse mechanisms thereby exerting an inhibitory effect on fibrosis. Consequently, CCN3 emerges as a promising therapeutic target for ameliorating fibrosis.
Collapse
Affiliation(s)
- Hui Yin
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, Nanchang, 330006, China
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- JXHC Key Laboratory of Rheumatology and Immunology, Nanchang, China
| | - Na Liu
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, Nanchang, 330006, China
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Xianming Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Chen
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, Nanchang, 330006, China
| | - Lihua Duan
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, Nanchang, 330006, China.
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China.
- JXHC Key Laboratory of Rheumatology and Immunology, Nanchang, China.
| |
Collapse
|
2
|
Ravi S, Sayed CJ. Fibrotic Signaling Pathways of Skin Fibroblasts in Nephrogenic Systemic Fibrosis. CURRENT GERIATRICS REPORTS 2019. [DOI: 10.1007/s13670-019-00306-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Balanced regulation of the CCN family of matricellular proteins: a novel approach to the prevention and treatment of fibrosis and cancer. J Cell Commun Signal 2015; 9:327-39. [PMID: 26698861 DOI: 10.1007/s12079-015-0309-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022] Open
Abstract
The CCN family of matricellular signaling proteins is emerging as a unique common link across multiple diseases and organs related to injury and repair. They are now being shown to play a central role in regulating the pathways to the initiation and resolution of normal wound healing and fibrosis in response to multiple forms of injury. Similarly, it is also emerging that they play a key role in regulating the establishment, growth, metastases and tissue regeneration in many forms of cancer via the interaction of cancer cells with the tumor stroma. Evidence has been recently provided that these proteins do not act independently but are co-regulated working in a yin/yang manner to alter the outcome of both normal physiological processes as well as pathology. The purpose of this review is to twofold. First, it will summarize work to date supporting CCN2 as a therapeutic target in the formation and progression of renal, skin, and other organ fibrosis, as well as cancer stroma formation. Second, it will highlight recent evidence for CCN3 as a counter-regulator and a potential therapeutic agent in these diseases with an exciting, novel potential to both treat and then restore tissue homeostasis in those afflicted by these devastating disorders.
Collapse
|
4
|
Abrahams AC, Habib SM, Dendooven A, Riser BL, van der Veer JW, Toorop RJ, Betjes MGH, Verhaar MC, Watson CJE, Nguyen TQ, Boer WH. Patients with encapsulating peritoneal sclerosis have increased peritoneal expression of connective tissue growth factor (CCN2), transforming growth factor-β1, and vascular endothelial growth factor. PLoS One 2014; 9:e112050. [PMID: 25384022 PMCID: PMC4226475 DOI: 10.1371/journal.pone.0112050] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/29/2014] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Encapsulating peritoneal sclerosis (EPS) is a devastating complication of peritoneal dialysis (PD). The pathogenesis is not exactly known and no preventive strategy or targeted medical therapy is available. CCN2 has both pro-fibrotic and pro-angiogenic actions and appears an attractive target. Therefore, we studied peritoneal expression of CCN2, as well as TGFβ1 and VEGF, in different stages of peritoneal fibrosis. MATERIALS AND METHODS Sixteen PD patients were investigated and compared to 12 hemodialysis patients and four pre-emptively transplanted patients. Furthermore, expression was investigated in 12 EPS patients in comparison with 13 PD and 12 non-PD patients without EPS. Peritoneal tissue was taken during kidney transplantation procedure or during EPS surgery. In a subset of patients, CCN2 protein levels in peritoneal effluent and plasma were determined. Samples were examined by qPCR, histology, immunohistochemistry, and ELISA. RESULTS Peritoneal CCN2 expression was 5-fold higher in PD patients compared to pre-emptively transplanted patients (P < 0.05), but did not differ from hemodialysis patients. Peritoneal expression of TGFβ1 and VEGF were not different between the three groups; neither was peritoneal thickness. Peritoneum of EPS patients exhibited increased expression of CCN2 (35-fold, P < 0.001), TGFβ1 (24-fold, P < 0.05), and VEGF (77-fold, P < 0.001) compared to PD patients without EPS. In EPS patients, CCN2 protein was mainly localized in peritoneal endothelial cells and fibroblasts. CCN2 protein levels were significantly higher in peritoneal effluent of EPS patients compared to levels in dialysate of PD patients (12.0 ± 4.5 vs. 0.91 ± 0.92 ng/ml, P < 0.01), while plasma CCN2 levels were not increased. CONCLUSIONS Peritoneal expression of CCN2, TGFβ1, and VEGF are significantly increased in EPS patients. In early stages of peritoneal fibrosis, only CCN2 expression is slightly increased. Peritoneal CCN2 overexpression in EPS patients is a locally driven response. The potential of CCN2 as biomarker and target for CCN2-inhibiting agents to prevent or treat EPS warrants further study.
Collapse
Affiliation(s)
- Alferso C. Abrahams
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| | - Sayed M. Habib
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Amélie Dendooven
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bruce L. Riser
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, IL, United States of America
| | - Jan Willem van der Veer
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Raechel J. Toorop
- Department of Vascular Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michiel G. H. Betjes
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christopher J. E. Watson
- Department of Surgery, Box 202, Addenbrooke's Hospital, and Cambridge NIHR Biomedical Research Centre, Cambridge, United Kingdom
| | - Tri Q. Nguyen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Walther H. Boer
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
5
|
Idée JM, Fretellier N, Robic C, Corot C. The role of gadolinium chelates in the mechanism of nephrogenic systemic fibrosis: A critical update. Crit Rev Toxicol 2014; 44:895-913. [PMID: 25257840 DOI: 10.3109/10408444.2014.955568] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jean-Marc Idée
- Guerbet, Research & Innovation Division , Aulnay-sous-Bois , France
| | | | | | | |
Collapse
|
6
|
Riser BL, Najmabadi F, Garchow K, Barnes JL, Peterson DR, Sukowski EJ. Treatment with the matricellular protein CCN3 blocks and/or reverses fibrosis development in obesity with diabetic nephropathy. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2908-21. [PMID: 25193594 DOI: 10.1016/j.ajpath.2014.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 06/28/2014] [Accepted: 07/02/2014] [Indexed: 01/14/2023]
Abstract
Fibrosis is at the core of the high morbidity and mortality rates associated with the complications of diabetes and obesity, including diabetic nephropathy (DN), without any US Food and Drug Administration-approved drugs with this specific target. We recently provided the first evidence that the matricellular protein CCN3 (official symbol NOV) functions in a reciprocal manner, acting on the profibrotic family member CCN2 to inhibit fibrosis in a mesangial cell model of DN. Herein, we used the BT/BR ob/ob mouse as a best model of human obesity and DN progression to determine whether recombinant human CCN3 could be used therapeutically, and the mechanisms involved. Eight weeks of thrice-weekly i.p. injections (0.604 and 6.04 μg/kg of recombinant human CCN3) beginning in early-stage DN completely blocked and/or reversed the up-regulation of mRNA expression of kidney cortex fibrosis genes (CCN2, Col1a2, TGF-β1, and PAI-1) seen in placebo-treated diabetic mice. The treatment completely blocked glomerular fibrosis, as determined by altered mesangial expansion and deposition of laminin. Furthermore, it protected against, or reversed, podocyte loss and kidney function reduction (rise in plasma creatinine concentration); albuminuria was also greatly reduced. This study demonstrates the potential efficacy of recombinant human CCN3 treatment in DN and points to mechanisms operating at multiple levels or pathways, upstream (eg, protecting against cell injury) and downstream (eg, regulating CCN2 activity and extracellular matrix metabolism).
Collapse
Affiliation(s)
- Bruce L Riser
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois; Department of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois; BLR Bio LLC, Kenosha, Wisconsin.
| | - Feridoon Najmabadi
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Kendra Garchow
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Jeffrey L Barnes
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Darryl R Peterson
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois; Department of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Ernest J Sukowski
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| |
Collapse
|
7
|
Ren Z, Hou Y, Ma S, Tao Y, Li J, Cao H, Ji L. Effects of CCN3 on fibroblast proliferation, apoptosis and extracellular matrix production. Int J Mol Med 2014; 33:1607-12. [PMID: 24715059 DOI: 10.3892/ijmm.2014.1735] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 03/14/2014] [Indexed: 11/06/2022] Open
Abstract
CCN2 and CCN3 belong to the CCN family of proteins, which show a high level of structural similarity.Previous studies have shown that CCN2 mediates the ability of transforming growth factor (TGF)‑β to stimulate collagen synthesis, leading to keloid formation. CCN2 and CCN3 are opposing factors in regulating the promoter activity and secretion of this extracellular matrix (ECM) protein. Thus, we hypothesize that CCN3 possesses an anti‑scarring effect. However, the exact mechanism of CCN3 in this anti‑scarring effect remains unclear. The aim of this study was to investigate the mechanism of CCN3 in reducing scar formation. Palatal fibroblasts were obtained from the explants of the oral palatal mucosa of 8‑week‑old male Sprague‑Dawley rats. CCN3 overexpression vector was constructed and then transfected into cells. The inhibitory effects of CCN3 on cell growth were detected via the 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide (MTT) assay. Apoptosis was measured using an Annexin V‑fluorescein isothiocyanate (FITC)/propidium iodide (PI) apoptosis detection kit and flow cytometry. The expression levels of collagen I, collagen III and α‑smooth muscle actin (α‑SMA) were determined by western blot analysis and RT‑PCR. Following treatment with TGF‑β1, we detected the expression of CCN3 and Smad1 in the fibroblasts. CCN3 significantly inhibited the growth and induction of apoptosis of fibroblasts. The expression of collagen I, collagen III and α‑SMA was lower in the CCN3‑transfected group as compared to the control and vector groups. TGF‑β1 stimulation efficiently suppressed the expression of CCN3 at the mRNA and protein levels, and CCN3 was required for TGF‑β1‑induced Smad1 phosphorylation. Results of this study demonstrated that CCN3 is involved in the proliferation and apoptosis of fibroblasts and the synthesis of ECM proteins. Therefore, CCN3 may play an important role in the development of scar tissue, and may represent a novel therapeutic target for reducing scar formation.
Collapse
Affiliation(s)
- Zhanping Ren
- Department of Cranio‑Maxillofacial Trauma Plastic Surgery, Stomatology Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Yuxia Hou
- Department of Orthodontics, Stomatology Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Siwei Ma
- Department of Cranio‑Maxillofacial Trauma Plastic Surgery, Stomatology Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Yongwei Tao
- Department of Cranio‑Maxillofacial Trauma Plastic Surgery, Stomatology Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Jinfeng Li
- Department of Cranio‑Maxillofacial Trauma Plastic Surgery, Stomatology Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Huiqin Cao
- Department of Cranio‑Maxillofacial Trauma Plastic Surgery, Stomatology Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Lingling Ji
- Department of Orthodontics, Stomatology Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
8
|
Thompson K, Murphy-Marshman H, Leask A. ALK5 inhibition blocks TGFβ-induced CCN1 expression in human foreskin fibroblasts. J Cell Commun Signal 2014; 8:59-63. [PMID: 24567145 DOI: 10.1007/s12079-014-0229-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 02/05/2014] [Indexed: 11/25/2022] Open
Abstract
The potent profibrotic cytokine TGFβ induces connective tissue growth factor (CCN2/CTGF) is induced in fibroblasts in a fashion sensitive to SB-431542, a specific pharmacological inhibitor of TGFβ type I receptor (ALK5). In several cell types, TGFβ induces CCN1 but suppresses CCN3, which opposes CCN1/CCN2 activities. However, whether SB-431542 alters TGFβ-induced CCN1 or CCN3 in human foreskin fibroblasts in unclear. Here we show that TGFβ induces CCN1 but suppresses CCN3 expression in human foreskin fibroblasts in a SB-431542-sensitive fashion. These results emphasize that CCN1/CCN2 and CCN3 are reciprocally regulated and support the notion that blocking ALK5 or addition of CCN3 may be useful anti-fibrotic approaches.
Collapse
Affiliation(s)
- Katherine Thompson
- Department of Dentistry, University of Western Ontario, London, ON, Canada, N6A 5C1
| | | | | |
Collapse
|