1
|
Kondo S, Kubota S, Takigawa M. Analyses of the Posttranscriptional Regulation of CCN Genes: Approach to Multiple Steps of CCN2 Gene Expression. Methods Mol Biol 2023; 2582:127-155. [PMID: 36370348 DOI: 10.1007/978-1-0716-2744-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cells generally control the concentration of mRNA via transcriptional and posttranscriptional regulation, so the separate contributions of synthesis and degradation (decay) cannot be discriminated by the quantification of mRNA. To elucidate the contribution of posttranscriptional regulation, all experimental procedures for the analysis of the total transcript level, transcriptional induction, degradation of the target mRNA, and inhibition of mRNA translation are performed either individually or in combination. From our experience, measurement of the steady-state levels of mRNA using quantitative real-time polymerase chain reaction is an essential first step in quantifying the ccn2 gene expression. Subsequently, the effect of transcription rates should be assessed by reporter assays of the ccn2 promoter and nuclear run-on assays. The stability of ccn2 mRNAs is then evaluated in the presence of a metabolic inhibitor actinomycin D, followed by mRNA degradation assays in vitro. Finally, repression of ccn2 mRNA translation can be estimated by comparing the expression of mRNA and protein changes. We herein report the strategic methods used in a series of analyses to elucidate the possible involvement of the posttranscriptional regulatory mechanism of the ccn2 gene and show how this approach can, in theory, be used to elucidate the posttranscriptional regulation of other genes belonging to the CCN family.
Collapse
Affiliation(s)
- Seiji Kondo
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
2
|
Noh B, Blasco-Conesa MP, Lai YJ, Ganesh BP, Urayama A, Moreno-Gonzalez I, Marrelli SP, McCullough LD, Moruno-Manchon JF. G-quadruplexes Stabilization Upregulates CCN1 and Accelerates Aging in Cultured Cerebral Endothelial Cells. FRONTIERS IN AGING 2022; 2:797562. [PMID: 35822045 PMCID: PMC9261356 DOI: 10.3389/fragi.2021.797562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/07/2021] [Indexed: 11/27/2022]
Abstract
Senescence in the cerebral endothelium has been proposed as a mechanism that can drive dysfunction of the cerebral vasculature, which precedes vascular dementia. Cysteine-rich angiogenic inducer 61 (Cyr61/CCN1) is a matricellular protein secreted by cerebral endothelial cells (CEC). CCN1 induces senescence in fibroblasts. However, whether CCN1 contributes to senescence in CEC and how this is regulated requires further study. Aging has been associated with the formation of four-stranded Guanine-quadruplexes (G4s) in G-rich motifs of DNA and RNA. Stabilization of the G4 structures regulates transcription and translation either by upregulation or downregulation depending on the gene target. Previously, we showed that aged mice treated with a G4-stabilizing compound had enhanced senescence-associated (SA) phenotypes in their brains, and these mice exhibited enhanced cognitive deficits. A sequence in the 3'-UTR of the human CCN1 mRNA has the ability to fold into G4s in vitro. We hypothesize that G4 stabilization regulates CCN1 in cultured primary CEC and induces endothelial senescence. We used cerebral microvessel fractions and cultured primary CEC from young (4-months old, m/o) and aged (18-m/o) mice to determine CCN1 levels. SA phenotypes were determined by high-resolution fluorescence microscopy in cultured primary CEC, and we used Thioflavin T to recognize RNA-G4s for fluorescence spectra. We found that cultured CEC from aged mice exhibited enhanced levels of SA phenotypes, and higher levels of CCN1 and G4 stabilization. In cultured CEC, CCN1 induced SA phenotypes, such as SA β-galactosidase activity, and double-strand DNA damage. Furthermore, CCN1 levels were upregulated by a G4 ligand, and a G-rich motif in the 3'-UTR of the Ccn1 mRNA was folded into a G4. In conclusion, we demonstrate that CCN1 can induce senescence in cultured primary CEC, and we provide evidence that G4 stabilization is a novel mechanism regulating the SASP component CCN1.
Collapse
Affiliation(s)
- Brian Noh
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Maria P. Blasco-Conesa
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yun-Ju Lai
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
- Solomont School of Nursing, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA, United States
| | - Bhanu Priya Ganesh
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Akihiko Urayama
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Ines Moreno-Gonzalez
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Cell Biology, Faculty of Sciences, Instituto de Investigacion Biomedica de Malaga-IBIMA, Malaga University, Malaga, Spain
- Networking Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Sean P. Marrelli
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jose Felix Moruno-Manchon
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
3
|
Analysis of Posttranscriptional Regulation of CCN Genes. Methods Mol Biol 2016. [PMID: 27734378 DOI: 10.1007/978-1-4939-6430-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cells generally control the concentration of mRNA by transcriptional and posttranscriptional regulation, so the separate contributions of synthesis and degradation ("decay") cannot be discriminated by the quantification of mRNA. To elucidate the contribution of posttranscriptional regulation, all experimental procedures for the analysis of the total transcript level, transcriptional induction, and degradation of the target mRNA are performed either individually, or in combination. From our experience, measurement of the steady-state levels of the mRNA using quantitative real-time polymerase chain reaction is an essential first step in quantifying ccn2 gene expression level. Subsequently, the effect of transcription rates should be assessed by reporter assays of the ccn2 promoter and nuclear run-on assays. Finally, the stability of ccn2 mRNAs is evaluated in the presence of a metabolic inhibitor actinomycin D, followed by mRNA degradation assays in vitro. Here, we describe the strategic methods used in a series of analyses to elucidate the possible involvement of the posttranscriptional regulatory mechanism of the ccn2 gene and show how this approach can in theory be applied to elucidating the posttranscriptional regulation of other genes belonging to the CCN family.
Collapse
|
4
|
Yan L, Lee S, Lazzaro DR, Aranda J, Grant MB, Chaqour B. Single and Compound Knock-outs of MicroRNA (miRNA)-155 and Its Angiogenic Gene Target CCN1 in Mice Alter Vascular and Neovascular Growth in the Retina via Resident Microglia. J Biol Chem 2015; 290:23264-81. [PMID: 26242736 DOI: 10.1074/jbc.m115.646950] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Indexed: 01/09/2023] Open
Abstract
The response of the retina to ischemic insult typically leads to aberrant retinal neovascularization, a major cause of blindness. The epigenetic regulation of angiogenic gene expression by miRNAs provides new prospects for their therapeutic utility in retinal neovascularization. Here, we focus on miR-155, a microRNA functionally important in inflammation, which is of paramount importance in the pathogenesis of retinal neovascularization. Whereas constitutive miR-155-deficiency in mice results in mild vascular defects, forced expression of miR-155 causes endothelial hyperplasia and increases microglia count and activation. The mouse model of oxygen-induced retinopathy, which recapitulates ischemia-induced aberrant neovessel growth, is characterized by increased expression of miR-155 and localized areas of microglia activation. Interestingly, miR-155 deficiency in mice reduces microglial activation, curtails abnormal vessel growth, and allows for rapid normalization of the retinal vasculature following ischemic insult. miR-155 binds to the 3'-UTR and represses the expression of the CCN1 gene, which encodes an extracellular matrix-associated integrin-binding protein that both promotes physiological angiogenesis and harnesses growth factor-induced abnormal angiogenic responses. Single CCN1 deficiency or double CCN1 and miR-155 knock-out in mice causes retinal vascular malformations typical of faulty maturation, mimicking the vascular alterations of miR-155 gain of function. During development, the miR-155/CCN1 regulatory axis balances the proangiogenic and proinflammatory activities of microglia to allow for their function as guideposts for sprout fusion and anastomosis. Under ischemic conditions, dysregulated miR-155 and CCN1 expression increases the inflammatory load and microglial activation, prompting aberrant angiogenic responses. Thus, miR-155 functions in tandem with CCN1 to modulate inflammation-induced vascular homeostasis and repair.
Collapse
Affiliation(s)
- Lulu Yan
- From the Departments of Cell Biology
| | | | | | | | - Maria B Grant
- the Departments of Ophthalmology and Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Brahim Chaqour
- From the Departments of Cell Biology, Ophthalmology, and the SUNY Eye Institute, SUNY Downstate Medical Center, Brooklyn, New York 11203 and
| |
Collapse
|
5
|
The 3'UTR of the pseudogene CYP4Z2P promotes tumor angiogenesis in breast cancer by acting as a ceRNA for CYP4Z1. Breast Cancer Res Treat 2015; 150:105-18. [PMID: 25701119 DOI: 10.1007/s10549-015-3298-2] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/03/2015] [Indexed: 12/31/2022]
Abstract
Pseudogenes are now known to regulate their protein-coding counterparts. Additionally, disturbances of 3'UTRs could increase the risk of cancer susceptibility by acting as modulators of gene expression. The aim of this study was to investigate the roles of the pseudogene CYP4Z2P-3'UTR and functional gene CYP4Z1-3'UTR in breast cancer angiogenesis process. The levels of CYP4Z2P- and CYP4Z1-3'UTR and miRNA of interests were measured in 22 cancerous tissues paired with non-cancerous samples by qRT-PCR. The effects of CYP4Z2P- and CYP4Z1-3'UTR were studied by overexpression and RNA interference approaches in vitro and ex vivo. Insights of the mechanism of competitive endogenous RNAs were gained from bioinformatic analysis, luciferase assays, and western blot. The positive CYP4Z2P/CYP4Z1 interaction and negative interaction between predicted miRNAs and CYP4Z2P or CYP4Z1 were identified via qRT-PCR assay and bivariate correlation analysis. CYP4Z2P- and CYP4Z1-3'UTR share several miRNA-binding sites, including miR-211, miR-125a-3p, miR-197, miR-1226, and miR-204. The CYP4Z2P- and CYP4Z1-3'UTRs arrest the interference caused by of these miRNAs, resulting in increased translation of CYP4Z1. Moreover, ectopic expression of the CYP4Z2P- and CYP4Z1-3'UTRs exhibit tumor angiogenesis-promoting properties in breast cancer collectively by inducing the phosphorylation of ERK1/2 and PI3K/Akt. Co-transfection with Dicer siRNA reversed the CYP4Z2P 3'UTR-mediated changes. Additionally, PI3K or ERK inhibitors reversed CYP4Z2P- and CYP4Z1-3'UTR-mediated changes in VEGF-A expression. Increased CYP4Z2P- and CYP4Z1-3'UTR expression promotes tumor angiogenesis in breast cancer partly via miRNA-dependent activation of PI3K/Akt and ERK1/2. The CYP4Z2P- and CYP4Z1-3'UTRs could thus be used as combinatorial miRNA inhibitors.
Collapse
|