1
|
Yu Y, Li S, Sun J, Wang Y, Xie L, Guo Y, Li J, Han F. Overexpression of TRIM44 mediates the NF-κB pathway to promote the progression of ovarian cancer. Genes Genomics 2024; 46:689-699. [PMID: 38691326 DOI: 10.1007/s13258-024-01517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Ovarian cancer (OC) is the second most commonly seen cancer in the US, and patients with OC are commonly diagnosed in the advanced stage. Research into the molecular mechanisms and potential therapeutic targets of OC is becoming increasingly urgent. In our study, we worked to discover the role of TRIM44 in OC development. OBJECTIVE This study explored whether the overexpression of TRIM44 mediates the NF-kB pathway to promote the progression of OC. METHODS A TRIM44 overexpression model was constructed in SKOV3 cells, and the proliferation ability of the cells was detected using the CCK-8 assay. The migration healing ability of cells was detected using cell scratch assay. Cell migration and invasion were detected using Transwell nesting. TUNEL was applied to detect apoptosis, and ELISA and western blot were used to detect the expression of NF-κB signaling pathway proteins. The pathological changes of the tumor tissues were observed using HE staining in a mouse ovarian cancer xenograft model. Immunofluorescence double staining, RT-PCR, and western blot were used to determine the expression of relevant factors in tumour tissues. RESULTS TRIM44 overexpression promoted the proliferation, migration, and invasion of SKOV3 cells in vitro and inhibited apoptosis while enhancing the growth of tumours in vivo. TRIM44 regulated the NF-κB signaling pathway. CONCLUSIONS TRIM44 overexpression can regulate the NF-κB signaling pathway to promote the progression of OC, and TRIM44 may be a potential therapeutic target for OC.
Collapse
Affiliation(s)
- Yang Yu
- Department of Obstetrics and Gynecology, Postdoctoral Mobile Station of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, 150040, Harbin, China
| | - ShiYing Li
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jialin Sun
- Biological Science and Technology Department, Heilongjiang Vocational College for Nationalities, Harbin, 150066, China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - LiangZhen Xie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, 150040, Harbin, China
| | - Ying Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, 150040, Harbin, China
| | - Jia Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, 150040, Harbin, China
| | - FengJuan Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, 150040, Harbin, China.
| |
Collapse
|
2
|
Bercier P, de Thé H. History of Developing Acute Promyelocytic Leukemia Treatment and Role of Promyelocytic Leukemia Bodies. Cancers (Basel) 2024; 16:1351. [PMID: 38611029 PMCID: PMC11011038 DOI: 10.3390/cancers16071351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The story of acute promyelocytic leukemia (APL) discovery, physiopathology, and treatment is a unique journey, transforming the most aggressive form of leukemia to the most curable. It followed an empirical route fueled by clinical breakthroughs driving major advances in biochemistry and cell biology, including the discovery of PML nuclear bodies (PML NBs) and their central role in APL physiopathology. Beyond APL, PML NBs have emerged as key players in a wide variety of biological functions, including tumor-suppression and SUMO-initiated protein degradation, underscoring their broad importance. The APL story is an example of how clinical observations led to the incremental development of the first targeted leukemia therapy. The understanding of APL pathogenesis and the basis for cure now opens new insights in the treatment of other diseases, especially other acute myeloid leukemias.
Collapse
Affiliation(s)
- Pierre Bercier
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75231 Paris, France;
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, 75010 Paris, France
| | - Hugues de Thé
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75231 Paris, France;
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, 75010 Paris, France
- Hematology Laboratory, Hôpital St Louis, AP/HP, 75010 Paris, France
| |
Collapse
|
3
|
Teng W, Ling Y, Liu Z, Jiang L, Fu G, Zhou X, Long N, Liu J, Chu L. Advances in the antitumor mechanisms of tripartite motif-containing protein 3. J Cancer Res Clin Oncol 2024; 150:105. [PMID: 38411731 PMCID: PMC10899276 DOI: 10.1007/s00432-024-05632-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 01/24/2024] [Indexed: 02/28/2024]
Abstract
The tripartite motif-containing (TRIM) protein family has steadily become a hotspot in tumor-related research. As a member of the E3 ubiquitin ligase family, TRIM is working on many crucial biological processes, including the regulation of tumor cell proliferation, metastasis, apoptosis, and autophagy. Among the diverse TRIM superfamily members, TRIM3 operates via different mechanisms in various types of tumors. This review primarily focuses on the current state of research regarding the antitumor mechanisms of TRIM3 in different cancers. A more in-depth study of TRIM3 may provide new directions for future antitumor treatments. Our review focuses on TRIM3 proteins and cancer. We searched for relevant articles on the mechanisms by which TRIM3 affects tumorigenesis and development from 1997 to 2023 and summarized the latest progress and future directions. Triad-containing motif protein 3 (TRIM3) is an important protein, which plays a key role in the process of tumorigenesis and development. The comprehensive exploration of TRIM3 is anticipated to pave the way for future advancements in antitumor therapy, which is expected to be a new hallmark for cancer detection and a novel target for drug action. TRIM3 is poised to become a significant milestone in cancer detection and a promising focal point for drug intervention. Recent years have witnessed notable progress in research aimed at unraveling the antitumor mechanism of TRIM3, with far-reaching implications for practical tumor diagnosis, treatment protocols, efficacy evaluation, economics, and pharmaceutical utilization.
Collapse
Affiliation(s)
- Wei Teng
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, People's Republic of China
- Department of Clinical Medicine, Guizhou Medical University, No. 9 Beijing Road, Guiyang, Guizhou, China
| | - Yuanguo Ling
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, People's Republic of China
- Department of Clinical Medicine, Guizhou Medical University, No. 9 Beijing Road, Guiyang, Guizhou, China
| | - Zongwei Liu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, People's Republic of China
- Department of Clinical Medicine, Guizhou Medical University, No. 9 Beijing Road, Guiyang, Guizhou, China
| | - Lishi Jiang
- Department of Clinical Medicine, Guizhou Medical University, No. 9 Beijing Road, Guiyang, Guizhou, China
| | - Genyuan Fu
- Department of Clinical Medicine, Guizhou Medical University, No. 9 Beijing Road, Guiyang, Guizhou, China
| | - Xingwang Zhou
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, People's Republic of China
- Department of Clinical Medicine, Guizhou Medical University, No. 9 Beijing Road, Guiyang, Guizhou, China
| | - Niya Long
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, People's Republic of China
- Department of Clinical Medicine, Guizhou Medical University, No. 9 Beijing Road, Guiyang, Guizhou, China
| | - Jian Liu
- Department of Clinical Medicine, Guizhou Medical University, No. 9 Beijing Road, Guiyang, Guizhou, China
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, People's Republic of China
| | - Liangzhao Chu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, People's Republic of China.
- Department of Clinical Medicine, Guizhou Medical University, No. 9 Beijing Road, Guiyang, Guizhou, China.
| |
Collapse
|
4
|
Stergiou IE, Tsironis C, Papadakos SP, Tsitsilonis OE, Dimopoulos MA, Theocharis S. Unraveling the Role of the NLRP3 Inflammasome in Lymphoma: Implications in Pathogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:2369. [PMID: 38397043 PMCID: PMC10889189 DOI: 10.3390/ijms25042369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Inflammasomes are multimeric protein complexes, sensors of intracellular danger signals, and crucial components of the innate immune system, with the NLRP3 inflammasome being the best characterized among them. The increasing scientific interest in the mechanisms interconnecting inflammation and tumorigenesis has led to the study of the NLRP3 inflammasome in the setting of various neoplasms. Despite a plethora of data regarding solid tumors, NLRP3 inflammasome's implication in the pathogenesis of hematological malignancies only recently gained attention. In this review, we investigate its role in normal lymphopoiesis and lymphomagenesis. Considering that lymphomas comprise a heterogeneous group of hematologic neoplasms, both tumor-promoting and tumor-suppressing properties were attributed to the NLRP3 inflammasome, affecting neoplastic cells and immune cells in the tumor microenvironment. NLRP3 inflammasome-related proteins were associated with disease characteristics, response to treatment, and prognosis. Few studies assess the efficacy of NLRP3 inflammasome therapeutic targeting with encouraging results, though most are still at the preclinical level. Further understanding of the mechanisms regulating NLRP3 inflammasome activation during lymphoma development and progression can contribute to the investigation of novel treatment approaches to cover unmet needs in lymphoma therapeutics.
Collapse
Affiliation(s)
- Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (C.T.)
| | - Christos Tsironis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (C.T.)
| | - Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece;
| | - Ourania E. Tsitsilonis
- Flow Cytometry Unit, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Meletios Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, 11528 Athens, Greece;
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece;
| |
Collapse
|
5
|
Quotti Tubi L, Canovas Nunes S, Mandato E, Pizzi M, Vitulo N, D’Agnolo M, Colombatti R, Martella M, Boaro MP, Doriguzzi Breatta E, Fregnani A, Spinello Z, Nabergoj M, Filhol O, Boldyreff B, Albiero M, Fadini GP, Gurrieri C, Vianello F, Semenzato G, Manni S, Trentin L, Piazza F. CK2β Regulates Hematopoietic Stem Cell Biology and Erythropoiesis. Hemasphere 2023; 7:e978. [PMID: 38026791 PMCID: PMC10673422 DOI: 10.1097/hs9.0000000000000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
The Ser-Thr kinase CK2 plays important roles in sustaining cell survival and resistance to stress and these functions are exploited by different types of blood tumors. Yet, the physiological involvement of CK2 in normal blood cell development is poorly known. Here, we discovered that the β regulatory subunit of CK2 is critical for normal hematopoiesis in the mouse. Fetal livers of conditional CK2β knockout embryos showed increased numbers of hematopoietic stem cells associated to a higher proliferation rate compared to control animals. Both hematopoietic stem and progenitor cells (HSPCs) displayed alterations in the expression of transcription factors involved in cell quiescence, self-renewal, and lineage commitment. HSPCs lacking CK2β were functionally impaired in supporting both in vitro and in vivo hematopoiesis as demonstrated by transplantation assays. Furthermore, KO mice developed anemia due to a reduced number of mature erythroid cells. This compartment was characterized by dysplasia, proliferative defects at early precursor stage, and apoptosis at late-stage erythroblasts. Erythroid cells exhibited a marked compromise of signaling cascades downstream of the cKit and erythropoietin receptor, with a defective activation of ERK/JNK, JAK/STAT5, and PI3K/AKT pathways and perturbations of several transcriptional programs as demonstrated by RNA-Seq analysis. Moreover, we unraveled an unforeseen molecular mechanism whereby CK2 sustains GATA1 stability and transcriptional proficiency. Thus, our work demonstrates new and crucial functions of CK2 in HSPC biology and in erythropoiesis.
Collapse
Affiliation(s)
- Laura Quotti Tubi
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Sara Canovas Nunes
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Elisa Mandato
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marco Pizzi
- Department of Medicine, Cytopathology and Surgical Pathology Unit, University of Padova, Italy
| | - Nicola Vitulo
- Department of Biotechnology, University of Verona, Italy
| | - Mirco D’Agnolo
- Department of Women’s and Child’s Health, University of Padova, Italy
| | | | | | - Maria Paola Boaro
- Department of Women’s and Child’s Health, University of Padova, Italy
| | - Elena Doriguzzi Breatta
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Anna Fregnani
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Zaira Spinello
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Mitja Nabergoj
- Hematology Service, Institut Central des Hôpitaux (ICH), Hôpital du Valais, Sion, Switzerland
| | - Odile Filhol
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1036, Institute de Reserches en Technologies et Sciences pour le Vivant/Biologie du Cancer et de l’Infection, Grenoble, France
| | | | - Mattia Albiero
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy
- Veneto Institute of Molecular Medicine, Experimental Diabetology Lab, Padova, Italy
| | - Gian Paolo Fadini
- Veneto Institute of Molecular Medicine, Experimental Diabetology Lab, Padova, Italy
- Department of Medicine, University of Padova, Italy
| | - Carmela Gurrieri
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Fabrizio Vianello
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Gianpietro Semenzato
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Sabrina Manni
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Livio Trentin
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Francesco Piazza
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| |
Collapse
|
6
|
Huo C, Gu Y, Wang D, Zhang X, Tang F, Zhao B, Liu T, He W, Li Y. STAT1 suppresses the transcriptional activity of TRIM21 in gastric cancer. J Cancer Res Clin Oncol 2023; 149:15335-15348. [PMID: 37639009 DOI: 10.1007/s00432-023-05307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
PURPOSE Tripartite motif-containing protein 21 (TRIM21) has E3 ubiquitin ligase activity and is involved in the regulation of various biological processes in vivo. TRIM21 has been found to have strong associations with various cancers. However, its role in gastric cancer is unclear. METHODS The TCGA database was screened to obtain TRIM21 using WGCNA and PPI analyses. The TCGA database was used to evaluate the correlation of TRIM21 expression with patients' clinical characteristics, prognosis, functional enrichment and immune cell infiltration. The role of TRIM21 in cell proliferation, apoptosis and invasion was verified by in vivo and in vitro assays. The UCSC and JASPAR databases were used to evaluate the regulatory role of STAT1 on TRIM21 transcription. Finally, dual-luciferase reporter assay was used to confirm the regulation of TRIM21 transcriptional activity by STAT1. RESULTS As a key gene, high expression of TRIM21 inhibited the gastric cancer growth and was significantly enriched in apoptosis, cell proliferation, and JAK/STAT signaling pathways. TRIM21 expression was positively correlated with a variety of TICs, including T cells, NK cells, and DCs. In vivo assays, TRIM21 inhibited functions in gastric cancer cell lines, including inhibition of proliferation and migration, and promotion of apoptosis. Database analysis and dual-luciferase reporter assay showed that STAT1 inhibited the transcriptional activity of TRIM21. In vivo assays confirmed that TRIM21 inhibited tumor growth, and STAT1 expression was negatively correlated with STAT1. CONCLUSION TRIM21 is a tumor-suppressive gene in gastric cancer, and its transcriptional activity is inhibited by STAT1.
Collapse
Affiliation(s)
- Chengdong Huo
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Yanmei Gu
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Daijun Wang
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Xiaoxia Zhang
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Futian Tang
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030, China
| | - Bin Zhao
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Tao Liu
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030, China
| | - Wenting He
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China.
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030, China.
| | - Yumin Li
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China.
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030, China.
| |
Collapse
|
7
|
Rahimi-Tesiye M, Zaersabet M, Salehiyeh S, Jafari SZ. The role of TRIM25 in the occurrence and development of cancers and inflammatory diseases. Biochim Biophys Acta Rev Cancer 2023; 1878:188954. [PMID: 37437700 DOI: 10.1016/j.bbcan.2023.188954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/01/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
The tripartite motif (TRIM) family proteins are a group of proteins involved in different signaling pathways. The changes in the expression regulation, function, and signaling of this protein family are associated with the occurrence and progression of a wide range of disorders. Given the importance of these proteins in pathogenesis, they can be considered as potential therapeutic targets for many diseases. TRIM25, as an E3-ubiquitin ligase, is involved in the development of various diseases and cellular mechanisms, including antiviral innate immunity and cell proliferation. The clinical studies conducted on restricting the function of this protein have reached promising results that can be further evaluated in the future. Here, we review the regulation of TRIM25 and its function in different diseases and signaling pathways, especially the retinoic acid-inducible gene-I (RIG-I) signaling which prompts many kinds of cancers and inflammatory disorders.
Collapse
Affiliation(s)
- Maryam Rahimi-Tesiye
- Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mona Zaersabet
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - Sajad Salehiyeh
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyedeh Zahra Jafari
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
8
|
Xia K, Zheng D, Wei Z, Liu W, Guo W. TRIM26 inhibited osteosarcoma progression through destabilizing RACK1 and thus inactivation of MEK/ERK signaling. Cell Death Dis 2023; 14:529. [PMID: 37591850 PMCID: PMC10435491 DOI: 10.1038/s41419-023-06048-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/21/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
Osteosarcoma is a highly aggressive malignant tumor that is common in the pediatric population and has a high rate of disability and mortality. Recent studies have suggested that the tripartite motif-containing family genes (TRIMs) play critical roles in oncogenesis in several cancers. TRIM26, one of the TRIMs family genes, was more frequently reported to exert a tumor-suppressive role, while its detailed functional roles in the osteosarcoma progression were still unknown and require further investigation. Herein, we found that TRIM26 was markedly downregulated in osteosarcoma tissues and cells. Survival analysis revealed that higher expression of TRIM26 was associated with better prognosis and its expression was an independent protective factor in osteosarcoma. Functional analysis demonstrated that overexpression of TRIM26 inhibited osteosarcoma cell proliferation and invasion via inhibiting the EMT process and MEK/ERK signaling. In contrast, the silence of TRIM26 caused the opposite effect. RACK1, a member of the Trp-Asp repeat protein family, was identified as a novel target of TRIM26. TRIM26 could interact with RACK1 and accelerate the degradation of RACK1, thus inactivation of MEK/ERK signaling. Overexpression of RACK1 could attenuate the inhibitory effect of TRIM26 overexpression on p-MEK1/2 and p-ERK1/2, and silence of RACK1 could partly impair the effect of TRIM26 knockdown-induced upregulation of p-MEK1/2 and p-ERK1/2. Further, a series of gain- and loss-of-function experiments showed that decreased malignant behaviors including cell proliferation and invasion in TRIM26-upregulated cells were reversed when RACK1 was overexpressed, whereas RACK1 knockdown diminished the increased malignant phenotypes in TRIM26-silenced osteosarcoma cells. In conclusion, our study indicated that TRIM26 inhibited osteosarcoma progression via promoting proteasomal degradation of RACK1, thereby resulting in inactivation of MEK/ERK signaling, and impeding the EMT process.
Collapse
Affiliation(s)
- Kezhou Xia
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Di Zheng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhun Wei
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wenda Liu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Weichun Guo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
9
|
Aizaz M, Kiani YS, Nisar M, Shan S, Paracha RZ, Yang G. Genomic Analysis, Evolution and Characterization of E3 Ubiquitin Protein Ligase (TRIM) Gene Family in Common Carp ( Cyprinus carpio). Genes (Basel) 2023; 14:genes14030667. [PMID: 36980939 PMCID: PMC10048487 DOI: 10.3390/genes14030667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/03/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Tripartite motifs (TRIM) is a large family of E3 ubiquitin ligases that play an important role in ubiquitylation. TRIM proteins regulate a wide range of biological processes from cellular response to viral infection and are implicated in various pathologies, from Mendelian disease to cancer. Although the TRIM family has been identified and characterized in tetrapods, but the knowledge about common carp and other teleost species is limited. The genes and proteins in the TRIM family of common carp were analyzed for evolutionary relationships, characterization, and functional annotation. Phylogenetic analysis was used to elucidate the evolutionary relationship of TRIM protein among teleost and higher vertebrate species. The results show that the TRIM orthologs of highly distant vertebrates have conserved sequences and domain architectures. The pairwise distance was calculated among teleost species of TRIMs, and the result exhibits very few mismatches at aligned position thus, indicating that the members are not distant from each other. Furthermore, TRIM family of common carp clustered into six groups on the basis of phylogenetic analysis. Additionally, the analysis revealed conserved motifs and functional domains in the subfamily members. The difference in functional domains and motifs is attributed to the evolution of these groups from different ancestors, thus validating the accuracy of clusters in the phylogenetic tree. However, the intron-exon organization is not precisely similar, which suggests duplication of genes and complex alternative splicing. The percentage of secondary structural elements is comparable for members of the same group, but the tertiary conformation is varied and dominated by coiled-coil segments required for catalytic activity. Gene ontology analysis revealed that these proteins are mainly associated with the catalytic activity of ubiquitination, immune system, zinc ion binding, positive regulation of transcription, ligase activity, and cell cycle regulation. Moreover, the biological pathway analyses identified four KEGG and 22 Reactome pathways. The predicted pathways correspond to functional domains, and gene ontology which proposes that proteins with similar structures might perform the same functions.
Collapse
Affiliation(s)
- Muhammad Aizaz
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250061, China
| | - Yusra Sajid Kiani
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Maryum Nisar
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Shijuan Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250061, China
| | - Rehan Zafar Paracha
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250061, China
| |
Collapse
|
10
|
The Functions of TRIM56 in Antiviral Innate Immunity and Tumorigenesis. Int J Mol Sci 2023; 24:ijms24055046. [PMID: 36902478 PMCID: PMC10003129 DOI: 10.3390/ijms24055046] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
As a member of the TRIM (tripartite motif) protein family, TRIM56 can function as an E3 ubiquitin ligase. In addition, TRIM56 has been shown to possess deubiquitinase activity and the ability to bind RNA. This adds to the complexity of the regulatory mechanism of TRIM56. TRIM56 was initially found to be able to regulate the innate immune response. In recent years, its role in direct antiviral and tumor development has also attracted the interest of researchers, but there is no systematic review on TRIM56. Here, we first summarize the structural features and expression of TRIM56. Then, we review the functions of TRIM56 in TLR and cGAS-STING pathways of innate immune response, the mechanisms and structural specificity of TRIM56 against different types of viruses, and the dual roles of TRIM56 in tumorigenesis. Finally, we discuss the future research directions regarding TRIM56.
Collapse
|
11
|
Li L, Li Q, Zou Z, Huang Z, Chen Y. TRIM10 Is Downregulated in Acute Myeloid Leukemia and Plays a Tumor Suppressive Role via Regulating NF-κB Pathway. Cancers (Basel) 2023; 15:417. [PMID: 36672365 PMCID: PMC9856727 DOI: 10.3390/cancers15020417] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Accumulating evidence suggests that members of the tripartite motif (TRIMs) family play a crucial role in the development and progression of hematological malignancy. Here, we explored the expression and potential role of TRIM10 in acute myeloid leukemia (AML). METHODS The expression levels of TRIM10 were investigated in AML patients and cell lines by RNA-seq, qRT-PCR and Western blotting analysis. Lentiviral infection was used to regulate the level of TRIM10 in AML cells. The effects of TRIM10 on apoptosis, drug sensitivity and proliferation of AML cells were evaluated by flow cytometry and cell-counting kit-8 (CCK-8) assay, as well as being assessed in a murine model. RESULTS TRIM10 mRNA and protein expression was reduced in primary AML samples and AML cell lines in comparison to the normal controls and a human normal hematopoietic cell line, respectively. Moreover, overexpression of TRIM10 in HL60 and K562 cells inhibited AML cell proliferation and induced cell apoptosis. The nude mice study further confirmed that overexpression of TRIM10 blocked tumor growth and inhibited cell proliferation. In contrast, knockdown of TRIM10 in AML cells showed contrary results. Subsequent mechanistic studies demonstrated that knockdown of TRIM10 enhanced the expression of nuclear protein P65, which implied the activation of the NF-κB signal pathway. Consistently, overexpression of TRIM10 in AML cells showed a contrary result. These data indicated that inactivation of the NF-κB pathway is involved in TRIM10-mediated regulation in AML. TRIM10 expression can be de-repressed by a combination that targets both DNA methyltransferase and histone deacetylase. CONCLUSIONS Our results strongly suggested that TRIM10 plays a tumor suppressive role in AML development associated with the NF-κB signal pathway and may be a potential target of epigenetic therapy against leukemia.
Collapse
Affiliation(s)
- Lin Li
- Suzhou Medical College of Soochow University, Suzhou 215123, China
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Qi Li
- Basic Medicine Department, Chuxiong Medical and Pharmaceutical College, Chuxiong 675005, China
| | - Zhengrong Zou
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Zoufang Huang
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Yijian Chen
- Suzhou Medical College of Soochow University, Suzhou 215123, China
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
12
|
Li W, Song Y, Du Y, Huang Z, Zhang M, Chen Z, He Z, Ding Y, Zhang J, Zhao L, Sun H, Jiao P. Duck TRIM29 negatively regulates type I IFN production by targeting MAVS. Front Immunol 2023; 13:1016214. [PMID: 36685538 PMCID: PMC9853200 DOI: 10.3389/fimmu.2022.1016214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
The innate immune response is a host defense mechanism that induces type I interferon and proinflammatory cytokines. Tripartite motif (TRIM) family proteins have recently emerged as pivotal regulators of type I interferon production in mammals. Here, we first identified duck TRIM29, which encodes 571 amino acids and shows high sequence homology with other bird TRIM29 proteins. DuTRIM29 inhibited IFN-β and IRF7 promoter activation in a dose-dependent manner and downregulated the mRNA expression of IFN-β, IRF7, Mx and IL-6 mediated by duRIG-I. Moreover, duTRIM29 interacted and colocalized with duMAVS in the cytoplasm. DuTRIM29 interacted with duMAVS via its C-terminal domains. In addition, duTRIM29 inhibited IFN-β and IRF7 promoter activation and significantly downregulated IFN-β and immune-related gene expression mediated by duMAVS in ducks. Furthermore, duTRIM29 induced K29-linked polyubiquitination and degradation of duMAVS to suppress the expression of IFN-β. Overall, our results demonstrate that duTRIM29 negatively regulates type I IFN production by targeting duMAVS in ducks. This study will contribute to a better understanding of the molecular mechanism regulating the innate immune response by TRIM proteins in ducks.
Collapse
Affiliation(s)
- Weiqiang Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| | - Yating Song
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| | - Yuqing Du
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| | - Zhanhong Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| | - Meng Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| | - Zuxian Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| | - Zhuoliang He
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| | - Yangbao Ding
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| | - Junsheng Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| | - Luxiang Zhao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| | - Hailiang Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| | - Peirong Jiao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| |
Collapse
|
13
|
Zhang Y, Zhang W, Zheng L, Guo Q. The roles and targeting options of TRIM family proteins in tumor. Front Pharmacol 2022; 13:999380. [PMID: 36249749 PMCID: PMC9561884 DOI: 10.3389/fphar.2022.999380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Tripartite motif (TRIM) containing proteins are a class of E3 ubiquitin ligases, which are critically implicated in the occurrence and development of tumors. They can function through regulating various aspects of tumors, such as tumor proliferation, metastasis, apoptosis and the development of drug resistance during tumor therapy. Some members of TRIM family proteins can mediate protein ubiquitination and chromosome translocation via modulating several signaling pathways, like p53, NF-κB, AKT, MAPK, Wnt/β-catenin and other molecular regulatory mechanisms. The multi-domain nature/multi-functional biological role of TRIMs implies that blocking just one function or one domain might not be sufficient to obtain the desired therapeutic outcome, therefore, a detailed and systematic understanding of the biological functions of the individual domains of TRIMs is required. This review mainly described their roles and underlying mechanisms in tumorigenesis and progression, and it might shade light on a potential targeting strategy for TRIMs in tumor treatment, especially using PROTACs.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
- *Correspondence: Lufeng Zheng, ; Qianqian Guo,
| | - Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
- *Correspondence: Lufeng Zheng, ; Qianqian Guo,
| |
Collapse
|
14
|
Emerging Roles of TRIM Family Proteins in Gliomas Pathogenesis. Cancers (Basel) 2022; 14:cancers14184536. [PMID: 36139694 PMCID: PMC9496762 DOI: 10.3390/cancers14184536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
Simple Summary Gliomas remain challenging tumors due to their increased heterogeneity, complex molecular profile, and infiltrative phenotype that are often associated with a dismal prognosis. In a constant search for molecular changes and associated mechanisms, the TRIM protein family has emerged as an important area of investigation because of the regulation of vital cellular processes involved in brain pathophysiology that may possibly lead to brain tumor development. Herein, we discuss the diverse role of TRIM proteins in glioma progression, aiming to detect potential targets for future intervention. Abstract Gliomas encompass a vast category of CNS tumors affecting both adults and children. Treatment and diagnosis are often impeded due to intratumor heterogeneity and the aggressive nature of the more malignant forms. It is therefore essential to elucidate the molecular mechanisms and explore the intracellular signaling pathways underlying tumor pathology to provide more promising diagnostic, prognostic, and therapeutic tools for gliomas. The tripartite motif-containing (TRIM) superfamily of proteins plays a key role in many physiological cellular processes, including brain development and function. Emerging evidence supports the association of TRIMs with a wide variety of cancers, exhibiting both an oncogenic as well as a tumor suppressive role depending on cancer type. In this review, we provide evidence of the pivotal role of TRIM proteins in gliomagenesis and exploit their potential as prognostic biomarkers and therapeutic targets.
Collapse
|
15
|
Ning L, Huo Q, Xie N. Comprehensive Analysis of the Expression and Prognosis for Tripartite Motif-Containing Genes in Breast Cancer. Front Genet 2022; 13:876325. [PMID: 35928444 PMCID: PMC9343841 DOI: 10.3389/fgene.2022.876325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/02/2022] [Indexed: 12/03/2022] Open
Abstract
Tripartite motif-containing genes (TRIMs), with a ubiquitin ligase’s function, play critical roles in antitumor immunity by activating tumor-specific immune responses and stimulating tumor proliferation, thus affecting patient outcomes. However, the expression pattern and prognostic values of TRIMs in breast cancer (BC) are not well clarified. In this study, several datasets and software were integrated to perform a comprehensive analysis of the expression pattern in TRIMs and investigate their prognosis values in BC. We found that TRIM59/46 were significantly upregulated and TRIM66/52-AS1/68/7/2/9/29 were decreased in BC and validated them using an independent cohort. The expression of numerous TRIMs are significantly correlated with BC molecular subtypes, but not with tumor stages or patient age at diagnosis. Higher expression of TRIM3/14/69/45 and lower expressions of TRIM68/2 were associated with better overall survival in BC using the Kaplan–Meier analysis. The multivariate Cox proportional hazards model identified TRIM45 as an independent prognostic marker. Further analysis of single-cell RNA-seq data revealed that most TRIMs are also expressed in nontumor cells. Higher expression of some TRIMs in the immune or stromal cells suggests an important role of TRIMs in the BC microenvironment. Functional enrichment of the co-expression genes indicates that they may be involved in muscle contraction and interferon-gamma signaling pathways. In brief, through the analysis, we provided several TRIMs that may contribute to the tumor progression and TRIM45 as a potential new prognostic biomarker for BC.
Collapse
|
16
|
Hu W, Liu D, Li R, Qian H, Qiu W, Ye Q, Kong F. Comprehensive Analysis of TRIM Family Genes in Hepatitis Virus B-Related Hepatoma Carcinoma. Front Genet 2022; 13:913743. [PMID: 35873464 PMCID: PMC9301387 DOI: 10.3389/fgene.2022.913743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022] Open
Abstract
Background: As significant components of E3 ligases, the tripartite motif (TRIM) proteins participate in various biological processes and facilitate the development of several diseases. Nevertheless, the correlations of TIRMs with hepatitis B virus (HBV)-positive hepatoma carcinoma (HCC) are not well elaborated. Methods: The expression profile of TRIM genes in HBV-associated HCC and related clinical information were extracted from the Cancer Genome Atla (TCGA) database and the International Cancer Genome Consortium (ICGC) database. Dependent on the ConsensusPathDB and STRING databases, the gene ontology, Reactome pathways, and protein-protein interaction were assessed. Relied on TIMER 2.0 database, the relationship of the TRIMs with immune infiltration was investigated. Using multivariate analysis and Kaplan Meier analysis, the association between TRIM genes and the prognostic value was examined. Results: A total of 17 TRIM genes, including TRIM16, TRIM17, and TRIM31 with fold change no less than 1.5, were discovered to upregulate in HBV-associated HCC in both TCGA and ICGC cohorts. Relied on gene enrichment analysis, the identified TRIMs were observed to not only be related to the interferon and cytokine signaling but also linked to the adaptive immune system. Particularly, the co-expression patterns of identified TRIMs with other E3 ligase genes and many innate immune genes that are associated with Toll-like receptor signaling, apoptosis, and SUMOylation. Besides, some of identified TRIM expressions were also linked to the infiltration levels of T cells and B cells. Additionally, several TRIM genes were associated with various clinical factors and relevant to the poor survival of HBV-associated HCC. Conclusion: Our findings could deepen our understanding of TRIMs and their correlations with HBV-associated HCC. Furthermore, some of these TRIMs may be utilized as new prognostic markers of HBV-related HCC prognosis, or act as potential molecular targets for the disease.
Collapse
Affiliation(s)
- Wei Hu
- NanJing Drum Tower Hospital Group Suqian Hospital, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Dongsheng Liu
- NanJing Drum Tower Hospital Group Suqian Hospital, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Renjie Li
- NanJing Drum Tower Hospital Group Suqian Hospital, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Hong Qian
- NanJing Drum Tower Hospital Group Suqian Hospital, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Wei Qiu
- NanJing Drum Tower Hospital Group Suqian Hospital, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Qingwang Ye
- NanJing Drum Tower Hospital Group Suqian Hospital, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Fanyun Kong
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Fanyun Kong,
| |
Collapse
|
17
|
Chen W, Zhang Y, Fang Z, Qi W, Xu Y. TRIM66 hastens the malignant progression of non-small cell lung cancer via modulating MMP9-mediated TGF-β/SMAD pathway. Cytokine 2022; 153:155831. [PMID: 35301175 DOI: 10.1016/j.cyto.2022.155831] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/17/2022] [Accepted: 02/09/2022] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To investigate regulatory function and underlying mechanism of TRIM66 in non-small cell lung cancer (NSCLC). METHODS TRIM66 and MMP9 expression in NSCLC cells and tissues was assayed via qRT-PCR and western blot. CCK-8, colony formation, Transwell and flow cytometry assays were conducted to measure cell functional alternations in NSCLC. Western blot was employed to measure expression as well as phosphorylation levels of epithelial-mesenchymal transition-(EMT) and TGF-β/SMAD pathways-related proteins. Co-immunoprecipitation (Co-IP) assay was done to probe interaction between TRIM66 and MMP9. Xenograft in vivo experiment and tumor metastasis model in nude mice were utilized to investigate effects of TRIM66 on tumor growth of NSCLC. RESULTS TRIM66 and MMP9 were conspicuously highly expressed in NSCLC cells and tissues. High TRIM66 level was markedly correlated with metastasis. Silencing TRIM66 prominently repressed the proliferation, migration and invasion of transfected cells, while inducing cell apoptosis. Whereas forced expression of TRIM66 exerted the opposite effect. The aberrant expression of TRIM66 modulated EMT pathway. TRIM66 also regulated MMP9 expression, and the interaction between them was validated by Co-IP assay. Overexpression of MMP9 could activate TGF-β/SMAD pathway. Rescue experiments manifested that si-MMP9 or SB431542 could partially reverse phenotypes induced by TRIM66. In vivo experiments revealed that silencing TRIM66 could hamper NSCLC tumor growth and metastasis. CONCLUSION TRIM66 and MMP9 were up-regulated in NSCLC. TRIM66 facilitated the malignant progression of NSCLC through modulating MMP9-mediated TGF-β/SMAD pathway.
Collapse
Affiliation(s)
- Wenyu Chen
- Department of Respiratory, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, PR China
| | - Ye Zhang
- Department of General Practice, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, PR China
| | - Zhixian Fang
- Department of Respiratory, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, PR China
| | - Weibo Qi
- Department of Cardiothoracic Surgery, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, PR China
| | - Yufen Xu
- Department of Oncology, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, PR China.
| |
Collapse
|
18
|
Qu H, Gao-Wa H, Hou Y, Ren M, Li J, Jing B, Du Y. TRIM37 interacts with PTEN to promote the growth of human T-cell acute lymphocytic leukemia cells through regulating PI3K/AKT pathway. Front Oncol 2022; 12:1016725. [PMID: 36923153 PMCID: PMC10009101 DOI: 10.3389/fonc.2022.1016725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/30/2022] [Indexed: 03/02/2023] Open
Abstract
Background TRIM37 has been reported to be associated with the tumorigenesis of cancers. However, the role of TRIM37 in T-cell acute lymphoblastic leukemia (T-ALL) remains unclear. This study aimed to characterize the effect of TRIM37 on T-ALL. Methods TRIM37 expression in T-ALL patients and T-ALL cell lines was determined by qRT-PCR and Western blot. Knockdown or overexpression of TRIM37 was conducted by transferring small-interfering TRIM37 or lentivirus-mediated transducing into T-ALL cells. CCK-8 assay and flow cytometry assay were conducted to analyze the proliferation and apoptosis of T-ALL cells. Co-immunoprecipitation experiments were conducted to investigate the relationship between TRIM37 and PTEN and the ubiquitination of PTEN. Results Our results suggested that TRIM37 expression was upregulated in the blood of T-ALL patients and T-ALL cell lines. Knockdown of TRIM37 noticeably inhibited the proliferation and promoted apoptosis of T-ALL cells. Ectopic expression of TRIM37 promoted the proliferation and suppressed the apoptosis rate of MOLT-4 cells and enhanced the phosphorylation of AKT. Moreover, TRIM37 interacted with PTEN and accelerated the degradation of PTEN via TRIM37-mediated ubiquitination in T-ALL cells. Moreover, TRIM37 reduced the sensitivity of T-ALL cells to bortezomib treatment. Additionally, PI3K/AKT signaling pathway was involved in the function of TRIM37 in T-ALL. TRIM37 contributed to the proliferation of T-ALL cells and reduced the susceptibility of T-ALL cells to bortezomib treatment through ubiquitination of PTEN and activating PI3K/AKT signaling pathway. Conclusions Our study suggested that TRIM37 could be considered as a therapeutic target for T-ALL.
Collapse
Affiliation(s)
- Honglan Qu
- Department of Hematology and Oncology, Inner Mongolia Forestry General Hospital, The Second Clinical Medical College of Inner Mongolia University for Nationalities, Yakeshi, China
| | - Hasen Gao-Wa
- Department of Hematology and Oncology, Inner Mongolia Forestry General Hospital, The Second Clinical Medical College of Inner Mongolia University for Nationalities, Yakeshi, China
| | - Yanyan Hou
- Department of Hematology and Oncology, Inner Mongolia Forestry General Hospital, The Second Clinical Medical College of Inner Mongolia University for Nationalities, Yakeshi, China
| | - Mengwei Ren
- Department of Hematology and Oncology, Inner Mongolia Forestry General Hospital, The Second Clinical Medical College of Inner Mongolia University for Nationalities, Yakeshi, China
| | - Jun Li
- Department of Hematology and Oncology, Inner Mongolia Forestry General Hospital, The Second Clinical Medical College of Inner Mongolia University for Nationalities, Yakeshi, China
| | - Baoshong Jing
- Department of Hematology and Oncology, Inner Mongolia Forestry General Hospital, The Second Clinical Medical College of Inner Mongolia University for Nationalities, Yakeshi, China
| | - YanDan Du
- Department of Hematology and Oncology, Inner Mongolia Forestry General Hospital, The Second Clinical Medical College of Inner Mongolia University for Nationalities, Yakeshi, China
| |
Collapse
|
19
|
Fu H, Zhou H, Qiu Y, Wang J, Ma Z, Li H, Zhang F, Qiu C, Shen J, Liu T. SEPT6_ TRIM33 Gene Fusion and Mutated TP53 Pathway Associate With Unfavorable Prognosis in Patients With B-Cell Lymphomas. Front Oncol 2021; 11:765544. [PMID: 34926267 PMCID: PMC8671703 DOI: 10.3389/fonc.2021.765544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background Mounting studies have sought to identify novel mutation biomarkers having diagnostic and prognostic potentials. Nevertheless, the understanding of the mutated pathways related to development and prognosis of B-cell lymphoma is still lacking. We aimed to comprehensively analyze the mutation alterations in genes of canonical signaling pathways and their impacts on the clinic outcomes of patients with B-cell lymphoma. Methods Circulating cell-free DNA (cfDNA) samples from 79 patients with B-cell lymphomas were used for targeted sequencing with a 560-gene panel for depicting mutation landscapes and identifying gene fusion events. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses of mutated genes were performed. The associations of mutation status of genes and seven canonical oncogenic pathways with progression-free survival (PFS) were assessed using Kaplan-Meier test and multivariate Cox analysis. The variant allele frequencies (VAFs) of genes in TP53 and Hippo pathways in paired baseline and post-treatment samples from 18 B-cell lymphoma patients were compared. Finally, the associations of identified fusion genes, mutated genes, and pathways with treatment response were evaluated based on objective response rates (ORRs) comparisons of groups. Results We identified 666 mutations from 262 genes in baseline cfDNAs from 79 B-cell lymphoma patients, and found some genes were preferentially mutated in our cohort such as GNAQ, GNAS, H3F3A, DNMT3A, HLA-A, and HLA-B. These frequently mutated genes were significantly associated with negative "regulation of gene expression, epigenetic" and virus infections such as cytomegalovirus, Epstein-Barr virus, human immunodeficiency virus 1 infections. We detected five fusion genes in at least two patients with B-cell lymphoma, and among them, TCF7L2_WT1 gene fusion was most frequently detected in 30.4% of patients (24 of 79 cases). SEPT6_TRIM33 gene fusion, mutated TP53 and Hippo pathways were significantly associated with poor PFS, and SEPT6_TRIM33 fusion gene and mutated TP53 pathway were independent prognostic factors for B-cell lymphoma. A decreased VAF of TP53 p.Y88C and LATS2 p.F972L was detected in patients with complete response to treatments. Moreover, a significant difference in ORR was observed in patients with NPM1_NR4A3 and SEPT6_TRIM33 fusions. Conclusions SEPT6_TRIM33 gene fusion and mutated TP53 and Hippo pathways may serve as prognostic makers for B-cell lymphoma patients.
Collapse
Affiliation(s)
- Haiying Fu
- Department of Hematology, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, The Third People's Hospital of Fujian Province, Fuzhou, China
| | - Huarong Zhou
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fuzhou, China
| | - Yanyan Qiu
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fuzhou, China
| | - Jianfei Wang
- Research and Development Division, Oriomics Biotech Inc, Hangzhou, China
| | - Zhiming Ma
- Research and Development Division, Oriomics Biotech Inc, Hangzhou, China
| | - Hongping Li
- Research and Development Division, Oriomics Biotech Inc, Hangzhou, China
| | - Feng Zhang
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fuzhou, China
| | - Chenxi Qiu
- Department of Hematology, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, The Third People's Hospital of Fujian Province, Fuzhou, China
| | - Jianzhen Shen
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fuzhou, China
| | - Tingbo Liu
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fuzhou, China
| |
Collapse
|
20
|
He F, Wu Z, Wang Y, Yin L, Lu S, Dai L. Downregulation of tripartite motif protein 11 attenuates cardiomyocyte apoptosis after ischemia/reperfusion injury via DUSP1-JNK1/2. Cell Biol Int 2021; 46:148-157. [PMID: 34694031 PMCID: PMC9299661 DOI: 10.1002/cbin.11716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/09/2021] [Accepted: 10/16/2021] [Indexed: 11/11/2022]
Abstract
Currently, the prevention of ischemic diseases such as myocardial infarction associated with ischemia/reperfusion (I/R) injury remains to be a challenge. Thus, this study was designed to explore the effects of tripartite motif protein 11 (TRIM11) on cardiomyocytes I/R injury and its underlying mechanism. Cardiomyocytes AC16 were used to establish an I/R injury cell model. After TRIM11 downregulation in I/R cells, cell proliferation (0, 12, 24, and 48 h) and apoptosis at 48 h as well as the related molecular changes in oxidative stress‐related pathways was detected. Further, after the treatment of TRIM11 overexpression, SP600125, or DUSP1 overexpression, cell proliferation, apoptosis, and related genes were detected again. As per our findings, it was determined that TRIM11 was highly expressed in the cardiomyocytes AC16 after I/R injury. Downregulation of TRIM11 was determined to have significantly reduced I/R‐induced proliferation suppression and apoptosis. Besides, I/R‐activated c‐Jun N‐terminal kinase (JNK) signaling and cleaved caspase 3 and Bax expression were significantly inhibited by TRIM11 downregulation. In addition, the overexpression of TRIM11 significantly promoted apoptosis in AC16 cells, and JNK1/2 inhibition and DUSP1 overexpression potently counteracted the induction of TRIM11 overexpression in AC16 cells. These suggested that the downregulation of TRIM11 attenuates apoptosis in AC16 cells after I/R injury probably through the DUSP1‐JNK1/2 pathways.
Collapse
Affiliation(s)
- Fang He
- Shanghai Changning Mental Health Center, Shanghai, China
| | - Zheqian Wu
- Department of Emergency, Shidong Hospital of Yangpu District, Shanghai, China
| | - Yong Wang
- Department of Emergency, Shidong Hospital of Yangpu District, Shanghai, China
| | - Lili Yin
- Department of Emergency, Shidong Hospital of Yangpu District, Shanghai, China
| | - Shijie Lu
- Department of Emergency, Shidong Hospital of Yangpu District, Shanghai, China
| | - Lihua Dai
- Department of Emergency, Shidong Hospital of Yangpu District, Shanghai, China
| |
Collapse
|
21
|
Sun Y, Ren D, Yang C, Yang W, Zhao J, Zhou Y, Jin X, Wu H. TRIM15 promotes the invasion and metastasis of pancreatic cancer cells by mediating APOA1 ubiquitination and degradation. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166213. [PMID: 34311082 DOI: 10.1016/j.bbadis.2021.166213] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/21/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
Most pancreatic ductal adenocarcinomas (PDACs) are diagnosed at an advanced or metastatic stage. Metastasis is the one of the major obstacles to prolonging the survival time of patients with pancreatic cancer. The tripartite motif (TRIM) family member TRIM15 has been implicated in cancer development. Our bioinformatics analysis indicated that TRIM15 might be involved in the regulation of pancreatic cancer metastasis. However, the role of TRIM15 in PDAC remains unclear. Metabolic reprogramming involving dysregulated lipid synthesis is common in patients with PDAC. Targeting lipid anabolism has been proposed as a strategy to treat PDAC. In this study, we demonstrated that TRIM15 expression was elevated in PDAC tissues, and this elevated expression was associated with a poor prognosis. TRIM15 silencing suppressed the invasion and migration of pancreatic cancer cells. Importantly, the mass spectrometry analysis suggested that Apolipoprotein A1 (APOA1), the main component of high-density lipoprotein (HDL) that is involved in lipid transport and metabolism, might be one of the binding partners of TRIM15. Further experiment indicated that TRIM15 interacted with APOA1 through its PRY/SPRY domain and promoted APOA1 polyubiquitination via its RING domain. APOA1 degradation enhanced lipid anabolism and promoted lipid droplet accumulation in pancreatic cancer cells. Furthermore, we showed that TRIM15 might promote PDAC metastasis by regulating lipid metabolism via the APOA1-LDLR axis. Consequently, targeting the TRIM15-APOA1-LDLR axis may be a strategy to inhibit PDAC metastasis by blocking triglyceride synthesis.
Collapse
Affiliation(s)
- Yan Sun
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dianyun Ren
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chong Yang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, Sichuan, China
| | - Wenhao Yang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, Sichuan, China
| | - Jingyuan Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yingke Zhou
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
22
|
Knockdown of TRIM15 inhibits the activation of hepatic stellate cells. J Mol Histol 2021; 52:839-848. [PMID: 34142270 DOI: 10.1007/s10735-021-09997-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/12/2021] [Indexed: 02/07/2023]
Abstract
Liver fibrosis is a global public health problem, and the activation of hepatic stellate cells (HSCs) is the main driving force for liver fibrosis. However, the activation mechanism of HSCs is still not fully understood. In this study, we screened out 854 differentially expressed genes [Log2 fold change absolute: log2 FC(abs) ≥ 1] in activated LX-2 cells. Subsequently, we performed functional analyses of these differentially expressed genes. Gene Ontology enrichment analysis showed that the target genes were mainly enriched in processes such as positive regulation of cell migration involved in sprouting angiogenesis, negative regulation of keratinocyte proliferation, and nuclear inclusion bodies. Kyoto Encyclopedia of Gene and Genome signaling pathway enrichment analysis revealed that dysregulated genes were involved in signaling pathways such as pantothenate and coenzyme A biosynthesis and riboflavin metabolism. The microarray results were validated by reverse transcription-quantitative polymerase chain reaction, which indicated that the microarray results were reliable and that the tripartite motif containing 15 (TRIM15) had the highest absolute value of Log2FC. Additionally, the effect of TRIM15 on the proliferation, migration, and activation of LX-2 cells was assessed using overexpression plasmids and siRNA transfections. TRIM15 promoted the proliferation and migration of LX-2 cells and positively regulated the expression of α-smooth muscle actin and type I collagen. Collectively, the data revealed the gene expression profiles of quiescent and activated LX-2 cells and the involvement of TRIM15 in the activation of LX-2 cells. Hereby, TRIM15 could be a novel target of the HSC activation mechanism.
Collapse
|
23
|
Tripartite motif containing 35 contributes to the proliferation, migration, and invasion of lung cancer cells in vitro and in vivo. Biosci Rep 2021; 40:222658. [PMID: 32293015 PMCID: PMC7198043 DOI: 10.1042/bsr20200065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/24/2022] Open
Abstract
The tripartite motif (TRIM) family is a family of proteins with highly conserved domains. Previous researches have suggested that the members of TRIM family proteins played a crucial role in cancer development and progression. Our study explored the relationship between TRIM35 and non-small cell lung cancer (NSCLC). The study showed that the expression of TRIM35 was increased in NSCLC samples, and patients with high expression of TRIM35 had a poor clinical prognosis. Overexpression of TRIM35 in NSCLC cell line H460 promoted cell proliferation, migration, and invasion, knockdown of TRIM35 produced an opposite result in A549 and H1299 cell lines. In vivo study further confirmed that overexpression of TRIM35 promoted tumor formation. The RNA-seq analysis suggested that TRIM35 might promote lung cancer proliferation, migration, and invasion by regulating cancer-associated functions and signaling pathways. Hence, we identified TRIM35 played a significant role in tumoral growth and was a potential diagnosis and prognosis target for lung cancer.
Collapse
|
24
|
Chen S, He Z, Zhu C, Liu Y, Li L, Deng L, Wang J, Yu C, Sun C. TRIM37 Mediates Chemoresistance and Maintenance of Stemness in Pancreatic Cancer Cells via Ubiquitination of PTEN and Activation of the AKT-GSK-3β-β-Catenin Signaling Pathway. Front Oncol 2020; 10:554787. [PMID: 33194618 PMCID: PMC7651862 DOI: 10.3389/fonc.2020.554787] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose The tripartite motif-containing family member TRIM37 is involved in a number of important biological and pathological processes, and it has recently been shown to be an essential regulator of protein ubiquitination and a contributor to tumorigenesis. We previously showed that TRIM37 is overexpressed in and promotes the proliferation and invasion of pancreatic cancer (PC). Methods Sphere formation, flow cytometric, qRT-PCR, western blot, colony formation, EdU incorporation, mouse xenograft model, TUNEL and IHC assays were performed to detect the role of TRIM37 in stemness and chemoresistance of PC in vitro and in vivo. Bioinformatics analysis and dual-luciferase reporter assays were used to determine which intracellular pathways might mediate the effects of TRIM37 in PC cells. Immunofluorescent(IF) staining, co-immunoprecipitation(CO-IP), protein stability and ubiquitination assays were performed to investigate the relationship between TRIM37 and PTEN. Results TRIM37 modulates the ubiquitination and degradation of the tumor suppressor phosphatase and tensin homolog (PTEN), which negatively regulates the AKT–GSK-3β–β-catenin signaling pathway, thereby sustaining aberrant activation of PC cells. High expression of TRIM37 combined with low expression of PTEN correlates with poor survival of PC patients. Conclusions Collectively, our results suggest that inhibition of the TRIM37–AKT–GSK-3β–β-catenin axis may be a promising strategy for treatment of PC.
Collapse
Affiliation(s)
- Shiyu Chen
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, China.,Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, China
| | - Zhiwei He
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, China.,Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, China
| | - Changhao Zhu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, China.,Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, China
| | - Yanqing Liu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, China.,Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, China
| | - Lin Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, China.,Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, China
| | - Lu Deng
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, China.,Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, China
| | - Jun Wang
- Reproductive Medicine Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Chao Yu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, China.,Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, China
| | - Chengyi Sun
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, China.,Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, China
| |
Collapse
|
25
|
Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells 2020; 9:cells9112423. [PMID: 33167477 PMCID: PMC7716236 DOI: 10.3390/cells9112423] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Acute promyelocytic leukemia (APL) is a hematological disease characterized by a balanced reciprocal translocation that leads to the synthesis of the oncogenic fusion protein PML-RARα. APL is mainly managed by a differentiation therapy based on the administration of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). However, therapy resistance, differentiation syndrome, and relapses require the development of new low-toxicity therapies based on the induction of blasts differentiation. In keeping with this, we reasoned that a better understanding of the molecular mechanisms pivotal for ATRA-driven differentiation could definitely bolster the identification of new therapeutic strategies in APL patients. We thus performed an in-depth high-throughput transcriptional profile analysis and metabolic characterization of a well-established APL experimental model based on NB4 cells that represent an unevaluable tool to dissect the complex mechanism associated with ATRA-induced granulocytic differentiation. Pathway-reconstruction analysis using genome-wide transcriptional data has allowed us to identify the activation/inhibition of several cancer signaling pathways (e.g., inflammation, immune cell response, DNA repair, and cell proliferation) and master regulators (e.g., transcription factors, epigenetic regulators, and ligand-dependent nuclear receptors). Furthermore, we provide evidence of the regulation of a considerable set of metabolic genes involved in cancer metabolic reprogramming. Consistently, we found that ATRA treatment of NB4 cells drives the activation of aerobic glycolysis pathway and the reduction of OXPHOS-dependent ATP production. Overall, this study represents an important resource in understanding the molecular “portfolio” pivotal for APL differentiation, which can be explored for developing new therapeutic strategies.
Collapse
|
26
|
TIF1 Proteins in Genome Stability and Cancer. Cancers (Basel) 2020; 12:cancers12082094. [PMID: 32731534 PMCID: PMC7463590 DOI: 10.3390/cancers12082094] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Genomic instability is a hallmark of cancer cells which results in excessive DNA damage. To counteract this, cells have evolved a tightly regulated DNA damage response (DDR) to rapidly sense DNA damage and promote its repair whilst halting cell cycle progression. The DDR functions predominantly within the context of chromatin and requires the action of chromatin-binding proteins to coordinate the appropriate response. TRIM24, TRIM28, TRIM33 and TRIM66 make up the transcriptional intermediary factor 1 (TIF1) family of chromatin-binding proteins, a subfamily of the large tripartite motif (TRIM) family of E3 ligases. All four TIF1 proteins are aberrantly expressed across numerous cancer types, and increasing evidence suggests that TIF1 family members can function to maintain genome stability by mediating chromatin-based responses to DNA damage. This review provides an overview of the TIF1 family in cancer, focusing on their roles in DNA repair, chromatin regulation and cell cycle regulation.
Collapse
|
27
|
Liu J, Zhang C, Wang X, Hu W, Feng Z. Tumor suppressor p53 cross-talks with TRIM family proteins. Genes Dis 2020; 8:463-474. [PMID: 34179310 PMCID: PMC8209353 DOI: 10.1016/j.gendis.2020.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
p53 is a key tumor suppressor. As a transcription factor, p53 accumulates in cells in response to various stress signals and selectively transcribes its target genes to regulate a wide variety of cellular stress responses to exert its function in tumor suppression. In addition to tumor suppression, p53 is also involved in many other physiological and pathological processes, e.g. anti-infection, immune response, development, reproduction, neurodegeneration and aging. To maintain its proper function, p53 is under tight and delicate regulation through different mechanisms, particularly the posttranslational modifications. The tripartite motif (TRIM) family proteins are a large group of proteins characterized by the RING, B-Box and coiled-coil (RBCC) domains at the N-terminus. TRIM proteins play important roles in regulation of many fundamental biological processes, including cell proliferation and death, DNA repair, transcription, and immune response. Alterations of TRIM proteins have been linked to many diseases including cancer, infectious diseases, developmental disorders, and neurodegeneration. Interestingly, recent studies have revealed that many TRIM proteins are involved in the regulation of p53, and at the same time, many TRIM proteins are also regulated by p53. Here, we review the cross-talk between p53 and TRIM proteins, and its impact upon cellular biological processes as well as cancer and other diseases.
Collapse
Affiliation(s)
- Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Xue Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| |
Collapse
|
28
|
Xiao Y, Deng T, Ming X, Xu J. TRIM31 promotes acute myeloid leukemia progression and sensitivity to daunorubicin through the Wnt/β-catenin signaling. Biosci Rep 2020; 40:BSR20194334. [PMID: 32232394 PMCID: PMC7160243 DOI: 10.1042/bsr20194334] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/27/2020] [Accepted: 03/09/2020] [Indexed: 12/27/2022] Open
Abstract
Tripartite motif (TRIM) 31 is a member of TRIM family and exerts oncogenic role in the progression and drug resistance of several cancers. However, little is known about the relevance of TRIM31 in acute myeloid leukemia (AML). Herein, we investigated the role of TRIM31 in AML. We examined the expression levels of TRIM31 in the blood samples from 34 patients with AML and 34 healthy volunteers using qRT-PCR. The mRNA levels of TRIM31 in human bone marrow stromal cells (HS-5) and five AML cell lines were also detected. Loss/gain-of-function assays were performed to assess the role of TRIM31 in AML cells proliferation, apoptosis and sensitivity to daunorubicin. The expression levels of pro-caspase 3, cleaved caspase 3, Wnt3a, β-catenin, cyclin D1 and c-Myc were measured using Western blot. TRIM31 expression levels were significantly up-regulated in AML patients and cell lines. Knockdown of TRIM31 suppressed cell proliferation and promoted apoptosis in AML-5 and U937 cells. The IC50 of daunorubicin was significantly decreased in TRIM31 siRNA (si-TRIM31) transfected cells. Oppositely, induced cell proliferation and decreased cell apoptosis were observed in pcDNA-3.1-TRIM31 transfected cells. Furthermore, knockdown of TRIM31 suppressed the activation of Wnt/β-catenin pathway in AML cells. Activation of Wnt/β-catenin pathway by LiCl abolished the effects of si-TRIM31 on cell proliferation, apoptosis and sensitivity to daunorubicin in AML cells. In conclusion, the results indicated that TRIM31 promoted leukemogenesis and chemoresistance to daunorubicin in AML. The oncogenic role of TRIM31 in AML was mediated by the Wnt/β-catenin pathway. Thus, TRIM31 might serve as a therapeutic target for the AML treatment.
Collapse
MESH Headings
- Antibiotics, Antineoplastic/pharmacology
- Antibiotics, Antineoplastic/therapeutic use
- Apoptosis/drug effects
- Case-Control Studies
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Daunorubicin/pharmacology
- Daunorubicin/therapeutic use
- Disease Progression
- Drug Resistance, Neoplasm
- Healthy Volunteers
- Humans
- Leukemia, Myeloid, Acute/blood
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Lithium Chloride/pharmacology
- RNA, Small Interfering/metabolism
- Tripartite Motif Proteins/blood
- Tripartite Motif Proteins/genetics
- Tripartite Motif Proteins/metabolism
- Ubiquitin-Protein Ligases/blood
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
- Wnt Signaling Pathway/drug effects
Collapse
Affiliation(s)
- Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Taoran Deng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xi Ming
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinhuang Xu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
29
|
Williams FP, Haubrich K, Perez-Borrajero C, Hennig J. Emerging RNA-binding roles in the TRIM family of ubiquitin ligases. Biol Chem 2020; 400:1443-1464. [PMID: 31120853 DOI: 10.1515/hsz-2019-0158] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
Abstract
TRIM proteins constitute a large, diverse and ancient protein family which play a key role in processes including cellular differentiation, autophagy, apoptosis, DNA repair, and tumour suppression. Mostly known and studied through the lens of their ubiquitination activity as E3 ligases, it has recently emerged that many of these proteins are involved in direct RNA binding through their NHL or PRY/SPRY domains. We summarise the current knowledge concerning the mechanism of RNA binding by TRIM proteins and its biological role. We discuss how RNA-binding relates to their previously described functions such as E3 ubiquitin ligase activity, and we will consider the potential role of enrichment in membrane-less organelles.
Collapse
Affiliation(s)
- Felix Preston Williams
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Kevin Haubrich
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Cecilia Perez-Borrajero
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany, e-mail:
| |
Collapse
|
30
|
Han Y, Tan Y, Zhao Y, Zhang Y, He X, Yu L, Jiang H, Lu H, Tian H. TRIM23 overexpression is a poor prognostic factor and contributes to carcinogenesis in colorectal cancer. J Cell Mol Med 2020; 24:5491-5500. [PMID: 32227572 PMCID: PMC7214184 DOI: 10.1111/jcmm.15203] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/02/2019] [Accepted: 03/06/2020] [Indexed: 01/20/2023] Open
Abstract
The tripartite motif (TRIM) family proteins play a great role in carcinogenesis. However, the expression pattern, prognostic value and biological functions of tripartite motif containing 23 (TRIM23) in colorectal cancer (CRC) are poorly understood. Here, we found that TRIM23 is up‐regulated and associated with tumour size, lymph node metastasis, American Joint Committee on Cancer (AJCC) stage and poor prognosis in CRC. Multivariate Cox regression analyses revealed that TRIM23 overexpression could be identified as an independent prognostic factor for CRC. TRIM23 could promote the proliferation of CRC cell in vitro and in vivo; additionally, TRIM23 depletion induced G1phase arrest. Gene set enrichment analysis (GSEA) revealed that P53 and cell cycle signalling pathway‐related genes were enriched in patients with high TRIM23 expression levels. We show in this study that TRIM23 physically binds to P53 and enhances the ubiquitination of P53, thereby promoting tumour proliferation. Thus, our data indicated that TRIM23 acts as an oncogene in colorectal carcinogenesis and may provide a novel therapeutic target for CRC management.
Collapse
Affiliation(s)
- Yudong Han
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ye Tan
- Department of Radiation Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuanyuan Zhao
- Department of Radiation Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yongchun Zhang
- Department of Radiation Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xinjia He
- Department of Radiation Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Yu
- Department of Radiation Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haiping Jiang
- Department of Radiation Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haijun Lu
- Department of Radiation Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haiying Tian
- Department of Radiation Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
31
|
TRIM8 interacts with KIF11 and KIFC1 and controls bipolar spindle formation and chromosomal stability. Cancer Lett 2020; 473:98-106. [DOI: 10.1016/j.canlet.2019.12.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 11/29/2022]
|
32
|
Gupta I, Dharadhar S, Sixma T, Khan S. Biochemical characterization of TRIM72 E3 ligase and its interaction with the insulin receptor substrate 1. Biochem Biophys Rep 2020; 21:100729. [PMID: 32055715 PMCID: PMC7005368 DOI: 10.1016/j.bbrep.2020.100729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/07/2019] [Accepted: 01/08/2020] [Indexed: 01/01/2023] Open
Abstract
TRIM family of E3 ubiquitin ligases have an amino-terminal conserved tripartite motif consisting of RING, B-Box, coiled-coil domain and different C-terminal domain leading it to classification into 11 subclasses. TRIM72 is an E3 ligase of class IV and subclass 1 with its role in a multitude of cellular processes. Despite being crucial in multiple cellular processes, TRIM72 still hasn't been biochemically characterized. In the present study, we have characterized the oligomeric status of TRIM72 and found that it forms both monomers, dimers, and tetramers. We have screened a set of 12 E2s and identified two novel E2 enzymes (Ubch5c and Ubch10) that work in cooperation with TRIM72. Nevertheless, E3 ligase activity is minimal and we propose that additional regulation is required to enhance its E3 ligase activity. We have also used surface plasmon resonance to study interaction with one of its substrate proteins, IRS1, and identified the PH domain of IRS1 is mediating interaction with the TRIM72 E3 ligase while the PTB domain of IRS1, does not show any interaction. TRIM72 exist as tetramer and monomer. UbcH5c and Ubch10 are the new E2s identified for TRIM72. The PH domain of the IRS1 interacts with the TRIM72.
Collapse
Affiliation(s)
- Ishita Gupta
- Structural Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, Delhi, India.,Drug Discovery Research Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Shreya Dharadhar
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, 1066, CX Amsterdam, the Netherlands
| | - Titia Sixma
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, 1066, CX Amsterdam, the Netherlands
| | - Sameena Khan
- Drug Discovery Research Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
33
|
Das S, Idate R, Cronise KE, Gustafson DL, Duval DL. Identifying Candidate Druggable Targets in Canine Cancer Cell Lines Using Whole-Exome Sequencing. Mol Cancer Ther 2019; 18:1460-1471. [PMID: 31175136 DOI: 10.1158/1535-7163.mct-18-1346] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/15/2019] [Accepted: 05/24/2019] [Indexed: 12/15/2022]
Abstract
Cancer cell culture has been a backbone in cancer research, in which analysis of human cell line mutational profiles often correlates with oncogene addiction and drug sensitivity. We have conducted whole-exome sequence analyses on 33 canine cancer cell lines from 10 cancer types to identify somatic variants that contribute to pathogenesis and therapeutic sensitivity. A total of 66,344 somatic variants were identified. Mutational load ranged from 15.79 to 129.37 per Mb, and 13.2% of variants were located in protein-coding regions (PCR) of 5,085 genes. PCR somatic variants were identified in 232 genes listed in the Cancer Gene Census (COSMIC). Cross-referencing variants with human driving mutations on cBioPortal identified 61 variants as candidate cancer drivers in 30 cell lines. The most frequently mutated cancer driver was TP53 (15 mutations in 12 cell lines). No drivers were identified in three cell lines. We identified 501 non-COSMIC genes with PCR variants that functionally annotate with COSMIC genes. These genes frequently mapped to the KEGG MAPK and PI3K-AKT pathways. We evaluated the cell lines for ERK1/2 and AKT(S473) phosphorylation and sensitivity to the MEK1/2 inhibitor, trametinib. Twelve of the 33 cell lines were trametinib-sensitive (IC50 < 32 nmol/L), all 12 exhibited constitutive or serum-activated ERK1/2 phosphorylation, and 8 carried MAPK pathway cancer driver variants: NF1(2), BRAF(3), N/KRAS(3). This functionally annotated database of canine cell line variants will inform hypothesis-driven preclinical research to support the use of companion animals in clinical trials to test novel combination therapies.
Collapse
Affiliation(s)
- Sunetra Das
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado. .,Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | - Rupa Idate
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado.,Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | - Kathryn E Cronise
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado.,Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado
| | - Daniel L Gustafson
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado.,Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado.,University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, Colorado
| | - Dawn L Duval
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado.,Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado.,University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
34
|
E3 Ubiquitin Ligase TRIM Proteins, Cell Cycle and Mitosis. Cells 2019; 8:cells8050510. [PMID: 31137886 PMCID: PMC6562728 DOI: 10.3390/cells8050510] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/22/2022] Open
Abstract
The cell cycle is a series of events by which cellular components are accurately segregated into daughter cells, principally controlled by the oscillating activities of cyclin-dependent kinases (CDKs) and their co-activators. In eukaryotes, DNA replication is confined to a discrete synthesis phase while chromosome segregation occurs during mitosis. During mitosis, the chromosomes are pulled into each of the two daughter cells by the coordination of spindle microtubules, kinetochores, centromeres, and chromatin. These four functional units tie chromosomes to the microtubules, send signals to the cells when the attachment is completed and the division can proceed, and withstand the force generated by pulling the chromosomes to either daughter cell. Protein ubiquitination is a post-translational modification that plays a central role in cellular homeostasis. E3 ubiquitin ligases mediate the transfer of ubiquitin to substrate proteins determining their fate. One of the largest subfamilies of E3 ubiquitin ligases is the family of the tripartite motif (TRIM) proteins, whose dysregulation is associated with a variety of cellular processes and directly involved in human diseases and cancer. In this review we summarize the current knowledge and emerging concepts about TRIMs and their contribution to the correct regulation of cell cycle, describing how TRIMs control the cell cycle transition phases and their involvement in the different functional units of the mitotic process, along with implications in cancer progression.
Collapse
|
35
|
Chu P, He L, Yang C, Li Y, Huang R, Liao L, Li Y, Zhu Z, Wang Y. Characterisation and function of TRIM23 in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2019; 88:627-635. [PMID: 30890433 DOI: 10.1016/j.fsi.2019.03.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Tripartite motif (TRIM) proteins are key components of the innate immune system, functioning as antiviral restriction factors or modulating signaling cascades that lead to proinflammatory cytokine induction. In the present study, the TRIM family gene TRIM23 from grass carp (Ctenopharyngodon idella) was cloned and characterised. TRIM23 was moderately expressed in the examined tissues, and the significantly altered expression was observed after grass carp reovirus (GCRV) and poly(I:C) infection. Dual-luciferase activity assay showed that TRIM23, especially its C-terminal domain ARF, depressed the promoter activity of IRF3 and IRF7. The subcellular localisation showed that TRIM23 protein was located in the cytoplasm and could be recruited by both TRAF6 and MyD88. Furthermore, TRIM23 was confirmed to interact with either TRAF6 or MyD88 by the bimolecular fluorescence complementation (BiFC) system in CIK cells. Additionally, autophagy was enhanced by over-expressed TRIM23 in 293T cells. Taken together, our results demonstrate that TRIM23 gene plays an important role in innate immune regulation and provide new insights into understanding the functional characteristics of the TRIM23 in teleosts.
Collapse
Affiliation(s)
- Pengfei Chu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Libo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Cheng Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yangyu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
36
|
Bioinformatics analysis of prognostic value of TRIM13 gene in breast cancer. Biosci Rep 2019; 39:BSR20190285. [PMID: 30837324 PMCID: PMC6430728 DOI: 10.1042/bsr20190285] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/25/2019] [Accepted: 03/04/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Tripartite motif 13 (TRIM13) plays a significant role in various biological processes including cell growth, apoptosis, transcriptional regulation, and carcinogenesis. However, the prognostic significance of TRIM13 gene in breast cancer treatment remains largely unclear. Methods: We performed a bioinformatics analysis of the clinical parameters and survival data as it relates to TRIM13 in breast cancer patients using several online databases including Oncomine, bcGenExMiner, PrognoScan, and UCSC Xena. Results: We found that TRIM13 was lower-expressed in different subtypes of breast cancer with respect to normal tissues. Estrogen receptor and progesterone receptor status were positively correlated with TRIM13 level; whereas, the Scarff–Bloom–Richardson grade, Nottingham prognostic index, nodal status, basal-like status, and triple-negative status were negatively related to TRIM13 expression in breast cancer patients with respect to normal individuals. Lower TRIM13 expression correlated with worse distant metastasis free survival, relapse free survival, disease specific survival, and metastatic relapse free survival. We also confirmed a positive correlation between TRIM13 and RAB11FIP2 gene expression. Conclusion: Bioinformatics analysis revealed that TRIM13 may be adopted as a promising predictive biomarker for prognosis of breast cancer. More in-depth experiments and clinical trials are needed to validate the value of TRIM13 in breast cancer treatment.
Collapse
|
37
|
TRIM66 confers tumorigenicity of hepatocellular carcinoma cells by regulating GSK-3β-dependent Wnt/β-catenin signaling. Eur J Pharmacol 2019; 850:109-117. [PMID: 30710548 DOI: 10.1016/j.ejphar.2019.01.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/28/2022]
Abstract
Tripartite motif 66 (TRIM66) protein, a member of the tripartite motif (TRIM) protein superfamily, has emerged as an oncogenic protein that is closely related to carcinogenesis in multiple cancers. However, whether TRIM66 plays a role in the progression of hepatocellular carcinoma (HCC) remains unknown. This study was aimed to investigate TRIM66 expression and its potential biological function in HCC cell lines. Here we showed that TRIM66 expression was significantly upregulated in HCC cell lines compared with normal control cells. Loss-of-function experiments by RNA interfering knockdown of TRIM66 showed that TRIM66 inhibition significantly reduced the proliferation, colony formation, and invasion of HCC cells, whereas gain-of-function by overexpression of TRIM66 exhibited the opposite effect. Further investigation showed that TRIM66 was involved in regulating glycogen synthase kinase-3β (GSK-3β) phosphorylation and β-catenin expression. Knockdown of TRIM66 impeded the activation of Wnt signaling, while overexpression of TRIM66 promoted Wnt signaling activation. Moreover, inhibition of GSK-3β by specific inhibitor partially reversed TRIM66 inhibition-mediated antitumor effect, while knockdown of β-catenin blocked the oncogenic effect of TRIM66 overexpression in HCC cells. Additionally, in vivo experiments using a xenograft tumor model showed that TRIM66 knockdown blunted the tumorigenicity of HCC cells associated with downregulation of β-catenin expression. Overall, our results showed that TRIM66 functioned as an oncogenic protein in HCC by promoting the activation of Wnt/β-catenin signaling. Our study suggests that TRIM66 is a potential target for HCC treatment.
Collapse
|
38
|
Lee HJ. The Role of Tripartite Motif Family Proteins in TGF-β Signaling Pathway and Cancer. J Cancer Prev 2018; 23:162-169. [PMID: 30671398 PMCID: PMC6330992 DOI: 10.15430/jcp.2018.23.4.162] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022] Open
Abstract
TGF-β signaling plays a tumor suppressive role in normal and premalignant cells but promotes tumor progression during the late stages of tumor development. The TGF-β signaling pathway is tightly regulated at various levels, including transcriptional and post-translational mechanisms. Ubiquitination of signaling components, such as receptors and Smad proteins is one of the key regulatory mechanisms of TGF-β signaling. Tripartite motif (TRIM) family of proteins is a highly conserved group of E3 ubiquitin ligase proteins that have been implicated in a variety of cellular functions, including cell growth, differentiation, immune response, and carcinogenesis. Recent emerging studies have shown that some TRIM family proteins function as important regulators in tumor initiation and progression. This review summarizes current knowledge of TRIM family proteins regulating the TGF-β signaling pathway with relevance to cancer.
Collapse
Affiliation(s)
- Ho-Jae Lee
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Korea
| |
Collapse
|
39
|
Expression and Significance of TRIM 28 in Squamous Carcinoma of Esophagus. Pathol Oncol Res 2018; 25:1645-1652. [PMID: 30484263 PMCID: PMC6815281 DOI: 10.1007/s12253-018-0558-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022]
Abstract
Tripartite motif-containing protein 28 (TRIM28) has been proved to accelerate cell proliferation and metastasis in a variety of human cancers. However, the role of TRIM28 in esophageal squamous cell carcinoma (ESCC) remains unclear. In this study, to compare the biological effect and significance of TRIM28 expression in ESCC, immunohistochemistry (streptavidin-perosidase, S-P) method was used firstly to examine the expression of TRIM28 in 136 cases of ESCC, 35 cases of high grade intraepithelial neoplasia (HGIN), 29 cases of low grade intraepithelial neoplasia (LGIN) and 37 cases of normal esophageal epithelium (NEE). Then the associations of TRIM28 expression with clinicopathological data and overall survival (OS) were also analyzed. Western blot was performed to evaluate TRIM28 protein in a total of 20 matched human ESCC and NEE tissues. Moreover, the localization of TRIM28 protein in ESCC and NEE tissues was also detected by immunofluorescence. TRIM28 protein was mainly distributed in the nucleus of ESCC. The expression of TRIM28 increased progressively from NEE to LGIN, to HGIN, and to ESCC, and it was also related to invasive depth, pTNM stage and lymph node metastasis in ESCC (P < 0.05). The results of western blot and immunofluorescence all showed that the relative expression of TRIM28 protein was markedly upregulated in ESCC compared with the NEE tissues (P < 0.01). However, prognostic analysis showed that TRIM28 may not be a prognostic factor of patients with ESCC. In conclusion, the overexpression of TRIM28 may play an important role for development and metastasis in ESCC.
Collapse
|
40
|
Chen W, Lu C, Hong J. TRIM15 Exerts Anti-Tumor Effects Through Suppressing Cancer Cell Invasion in Gastric Adenocarcinoma. Med Sci Monit 2018; 24:8033-8041. [PMID: 30412518 PMCID: PMC6238583 DOI: 10.12659/msm.911142] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Backgrounds Recent studies have shown that some members of the tripartite motif-containing protein (TRIM) family function as important regulators in several tumors. However, the clinical significance of TRIM15 in gastric adenocarcinoma has not been elucidated. In the present study, we aimed to examine the expression pattern of TRIM15 and explore whether the TRIM15 expression is correlated with clinicopathological characteristics of patients with gastric adenocarcinoma. Material/Methods The expression pattern of TRIM15 was examined in gastric adenocarcinoma tissues and adjacent normal stomach tissues by using immunohistochemistry staining. The prognostic role of TRIM15 in gastric cancer patients was evaluated by univariate and multivariate analyses. Clinical outcomes were assessed by the Kaplan-Meier analysis and log-rank test. The effects of TRIM15 on cancer cell proliferation and invasion were tested through cellular experiments. Results TRIM15 was highly expressed in normal stomach tissues compared to tumor tissues. TCGA database showed that higher TRIM15 RNA transcription indicates poorer overall survival of gastric cancer patients. Besides, low expression of TRIM15 was significantly associated with advanced tumor invasion depth and advanced TNM stage. Moreover, gastric cancer patients with lower KDM5B expression had poorer overall survival, and TRIM15 was identified as an independent prognosis factor according to multivariate analysis. Using the gastric cancer cell lines, we found that overexpression of TRIM15 can inhibits tumor cell invasion. Conclusions Our study demonstrated that low expression of TRIM15 in gastric adenocarcinoma tissues was significantly associated with poorer prognosis of patients, indicating the potential of TRIM15 as a novel clinical biomarker and therapeutic target.
Collapse
Affiliation(s)
- Weilin Chen
- Department of Cancer Radiotherapy, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China (mainland)
| | - Chuanhui Lu
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China (mainland)
| | - Jianming Hong
- 2nd Department of General Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China (mainland)
| |
Collapse
|
41
|
Brauner S, Ivanchenko M, Thorlacius GE, Ambrosi A, Wahren-Herlenius M. The Sjögren's syndrome-associated autoantigen Ro52/TRIM21 modulates follicular B cell homeostasis and immunoglobulin production. Clin Exp Immunol 2018; 194:315-326. [PMID: 30178506 DOI: 10.1111/cei.13211] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2018] [Indexed: 01/08/2023] Open
Abstract
Systemic rheumatic diseases are characterized by abnormal B cell activation with autoantibody production and hypergammaglobulinaemia. Ro52/SSA, also denoted tripartite motif (TRIM)21, is a major autoantigen in Sjögren's syndrome and systemic lupus erythematosus. Interestingly, TRIM21-deficient mice develop systemic autoimmunity with B cell-driven manifestations such as autoantibodies, hypergammaglobulinaemia and glomerulonephritis following tissue injury. The mechanisms by which TRIM21-deficiency leads to enhanced B cell activation and antibody production are, however, not well understood, and to further elucidate the role of TRIM21 in systemic autoimmunity, we investigated the B cell phenotype and antibody responses of Trim21-/- mice following immunization with thymus-dependent (TD) and thymus-independent (TI) antigens. We found that TRIM21-deficient mice developed significantly higher specific antibody titres than their wild-type counterparts upon B cell receptor (BCR) engagement by TD and TI type II antigens, and this was accompanied by an altered B cell phenotype. Furthermore, BCR cross-linking, but not anti-CD40 stimulation, in vitro resulted in a significantly higher proliferation of Trim21-/- cells. We also observed that splenic follicular B cells were expanded not only in immunized mice but also already in young, unmanipulated Trim21-/- mice, and transcriptomic analysis of these cells revealed an up-regulation of genes associated with B cell differentiation, indicating a role for TRIM21 in their regulation. In conclusion, in this study we describe a link between the rheumatic autoantigen Ro52/TRIM21 and increased antibody production associated with follicular B cell expansion, implicating a potential role for Ro52/TRIM21 in the pathogenesis of systemic autoimmune diseases.
Collapse
Affiliation(s)
- S Brauner
- Division of Rheumatology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.,Current address: Neuroimmunology Unit, Department of Clinical Neurosciences, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - M Ivanchenko
- Division of Rheumatology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - G E Thorlacius
- Division of Rheumatology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - A Ambrosi
- Division of Rheumatology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - M Wahren-Herlenius
- Division of Rheumatology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
42
|
Abstract
Tripartite motif (TRIM) proteins are a versatile family of ubiquitin E3 ligases involved in a multitude of cellular processes. Studies in recent years have demonstrated that many TRIM proteins play central roles in the host defense against viral infection. While some TRIM proteins directly antagonize distinct steps in the viral life cycle, others regulate signal transduction pathways induced by innate immune sensors, thereby modulating antiviral cytokine responses. Furthermore, TRIM proteins have been implicated in virus-induced autophagy and autophagy-mediated viral clearance. Given the important role of TRIM proteins in antiviral restriction, it is not surprising that several viruses have evolved effective maneuvers to neutralize the antiviral action of specific TRIM proteins. Here, we describe the major antiviral mechanisms of TRIM proteins as well as viral strategies to escape TRIM-mediated host immunity.
Collapse
Affiliation(s)
- Michiel van Gent
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA; , ,
| | - Konstantin M J Sparrer
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA; , ,
| | - Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA; , ,
| |
Collapse
|