1
|
Kamya P, Ozerov IV, Pun FW, Tretina K, Fokina T, Chen S, Naumov V, Long X, Lin S, Korzinkin M, Polykovskiy D, Aliper A, Ren F, Zhavoronkov A. PandaOmics: An AI-Driven Platform for Therapeutic Target and Biomarker Discovery. J Chem Inf Model 2024; 64:3961-3969. [PMID: 38404138 PMCID: PMC11134400 DOI: 10.1021/acs.jcim.3c01619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/27/2024]
Abstract
PandaOmics is a cloud-based software platform that applies artificial intelligence and bioinformatics techniques to multimodal omics and biomedical text data for therapeutic target and biomarker discovery. PandaOmics generates novel and repurposed therapeutic target and biomarker hypotheses with the desired properties and is available through licensing or collaboration. Targets and biomarkers generated by the platform were previously validated in both in vitro and in vivo studies. PandaOmics is a core component of Insilico Medicine's Pharma.ai drug discovery suite, which also includes Chemistry42 for the de novo generation of novel small molecules, and inClinico─a data-driven multimodal platform that forecasts a clinical trial's probability of successful transition from phase 2 to phase 3. In this paper, we demonstrate how the PandaOmics platform can efficiently identify novel molecular targets and biomarkers for various diseases.
Collapse
Affiliation(s)
- Petrina Kamya
- Insilico
Medicine Canada Inc., 3710-1250 René-Lévesque Blvd. W, Montreal, Quebec, Canada H3B 4W8
| | - Ivan V. Ozerov
- Insilico
Medicine Hong Kong Limited, Hong Kong Science and Technology Park, Hong Kong
| | - Frank W. Pun
- Insilico
Medicine Hong Kong Limited, Hong Kong Science and Technology Park, Hong Kong
| | - Kyle Tretina
- Insilico
Medicine Hong Kong Limited, Hong Kong Science and Technology Park, Hong Kong
| | - Tatyana Fokina
- Insilico
Medicine Hong Kong Limited, Hong Kong Science and Technology Park, Hong Kong
| | - Shan Chen
- Insilico
Medicine Shanghai Limited, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Vladimir Naumov
- Insilico
Medicine Hong Kong Limited, Hong Kong Science and Technology Park, Hong Kong
| | - Xi Long
- Insilico
Medicine Hong Kong Limited, Hong Kong Science and Technology Park, Hong Kong
| | - Sha Lin
- Insilico
Medicine Shanghai Limited, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Mikhail Korzinkin
- Insilico
Medicine Hong Kong Limited, Hong Kong Science and Technology Park, Hong Kong
| | - Daniil Polykovskiy
- Insilico
Medicine Canada Inc., 3710-1250 René-Lévesque Blvd. W, Montreal, Quebec, Canada H3B 4W8
| | - Alex Aliper
- Insilico
Medicine AI Limited, Level 6, Unit 08, Block A, IRENA HQ Building, P.O.
Box 145748, Masdar City, Abu Dhabi, United Arab Emirates
| | - Feng Ren
- Insilico
Medicine Shanghai Limited, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Alex Zhavoronkov
- Insilico
Medicine Hong Kong Limited, Hong Kong Science and Technology Park, Hong Kong
- Insilico
Medicine AI Limited, Level 6, Unit 08, Block A, IRENA HQ Building, P.O.
Box 145748, Masdar City, Abu Dhabi, United Arab Emirates
- Buck
Institute for Research on Aging, Novato, California 94945, United States
| |
Collapse
|
2
|
Sztankovics D, Krencz I, Moldvai D, Dankó T, Nagy Á, Nagy N, Bedics G, Rókusz A, Papp G, Tőkés AM, Pápay J, Sápi Z, Dezső K, Bödör C, Sebestyén A. Novel RICTOR amplification harbouring entities: FISH validation of RICTOR amplification in tumour tissue after next-generation sequencing. Sci Rep 2023; 13:19610. [PMID: 37949943 PMCID: PMC10638425 DOI: 10.1038/s41598-023-46927-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
Alterations in mTOR signalling molecules, including RICTOR amplification, have been previously described in many cancers, particularly associated with poor prognosis. In this study, RICTOR copy number variation (CNV) results of diagnostic next-generation sequencing (NGS) were analysed in 420 various human malignant tissues. RICTOR amplification was tested by Droplet Digital PCR (ddPCR) and validated using the "gold standard" fluorescence in situ hybridisation (FISH). Additionally, the consequences of Rictor protein expression were also studied by immunohistochemistry. RICTOR amplification was presumed in 37 cases with CNV ≥ 3 by NGS, among these, 16 cases (16/420; 3.8%) could be validated by FISH, however, ddPCR confirmed only 11 RICTOR-amplified cases with lower sensitivity. Based on these, neither NGS nor ddPCR could replace traditional FISH in proof of RICTOR amplification. However, NGS could be beneficial to highlight potential RICTOR-amplified cases. The obtained results of the 14 different tumour types with FISH-validated RICTOR amplification demonstrate the importance of RICTOR amplification in a broad spectrum of tumours. The newly described RICTOR-amplified entities could initiate further collaborative studies with larger cohorts to analyse the prevalence of RICTOR amplification in rare diseases. Finally, our and further work could help to improve and expand future therapeutic opportunities for mTOR-targeted therapies.
Collapse
Affiliation(s)
- Dániel Sztankovics
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Ildikó Krencz
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Dorottya Moldvai
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Titanilla Dankó
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Ákos Nagy
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Noémi Nagy
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Gábor Bedics
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - András Rókusz
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Gergő Papp
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Anna-Mária Tőkés
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Üllői út 93, 1091, Budapest, Hungary
| | - Judit Pápay
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Zoltán Sápi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Katalin Dezső
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Csaba Bödör
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Anna Sebestyén
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary.
| |
Collapse
|
3
|
Ivanenkov YA, Polykovskiy D, Bezrukov D, Zagribelnyy B, Aladinskiy V, Kamya P, Aliper A, Ren F, Zhavoronkov A. Chemistry42: An AI-Driven Platform for Molecular Design and Optimization. J Chem Inf Model 2023; 63:695-701. [PMID: 36728505 PMCID: PMC9930109 DOI: 10.1021/acs.jcim.2c01191] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 02/03/2023]
Abstract
Chemistry42 is a software platform for de novo small molecule design and optimization that integrates Artificial Intelligence (AI) techniques with computational and medicinal chemistry methodologies. Chemistry42 efficiently generates novel molecular structures with optimized properties validated in both in vitro and in vivo studies and is available through licensing or collaboration. Chemistry42 is the core component of Insilico Medicine's Pharma.ai drug discovery suite. Pharma.ai also includes PandaOmics for target discovery and multiomics data analysis, and inClinico─a data-driven multimodal forecast of a clinical trial's probability of success (PoS). In this paper, we demonstrate how the platform can be used to efficiently find novel molecular structures against DDR1 and CDK20.
Collapse
Affiliation(s)
- Yan A. Ivanenkov
- Insilico
Medicine Kong Kong Ltd., Unit 310, 3/F, Building 8W, Phase 2, Hong Kong Science Park, Pak Shek Kok, Hong Kong
| | - Daniil Polykovskiy
- Insilico
Medicine Canada Inc., 3710-1250 René-Lévesque Blvd W, Montreal, Quebec, H3B
4W8 Canada
| | - Dmitry Bezrukov
- Insilico
Medicine Kong Kong Ltd., Unit 310, 3/F, Building 8W, Phase 2, Hong Kong Science Park, Pak Shek Kok, Hong Kong
| | - Bogdan Zagribelnyy
- Insilico
Medicine AI Limited, Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, PO Box 145748, Abu Dhabi, UAE
| | - Vladimir Aladinskiy
- Insilico
Medicine AI Limited, Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, PO Box 145748, Abu Dhabi, UAE
| | - Petrina Kamya
- Insilico
Medicine Canada Inc., 3710-1250 René-Lévesque Blvd W, Montreal, Quebec, H3B
4W8 Canada
| | - Alex Aliper
- Insilico
Medicine AI Limited, Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, PO Box 145748, Abu Dhabi, UAE
| | - Feng Ren
- Insilico
Medicine Shanghai Ltd., Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Alex Zhavoronkov
- Insilico
Medicine Kong Kong Ltd., Unit 310, 3/F, Building 8W, Phase 2, Hong Kong Science Park, Pak Shek Kok, Hong Kong
| |
Collapse
|
4
|
Zhou Q, Tang S, Zhang X, Chen L. Targeting PRAS40: a novel therapeutic strategy for human diseases. J Drug Target 2021; 29:703-715. [PMID: 33504218 DOI: 10.1080/1061186x.2021.1882470] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Proline-rich Akt substrate of 40 kD (PRAS40) is not only the substrate of protein kinase B (PKB/Akt), but also the binding protein of 14-3-3 protein. PRAS40 is expressed in a variety of tissues in vivo and has multiple phosphorylation sites, which its activity is closely related to phosphorylation. Studies have shown that PRAS40 is involved in regulating cell growth, cell apoptosis, oxidative stress, autophagy and angiogenesis, as well as various of signalling pathways such as mammalian target of mammalian target rapamycin (mTOR), protein kinase B (PKB/Akt), nuclear factor kappa-B(NF-κB), proto-oncogene serine/threonine-protein kinase PIM-1(PIM1) and pyruvate kinase M2 (PKM2). The interactive roles between PRAS40 and these signal proteins were analysed by bioinformatics in this paper. Moreover, it is of great necessity for analyse the important roles of PRAS40 in some human diseases including cardiovascular disease, ischaemia-reperfusion injury, neurodegenerative disease, cancer, diabetes and other metabolic diseases. Finally, the effects of miRNA on the regulation of PRAS40 function and the occurrence and development of PRAS40-related diseases are also discussed. Overall, PRAS40 is expected to be a drug target and provide a new treatment strategy for human diseases.
Collapse
Affiliation(s)
- Qun Zhou
- Hunan Province Key Laboratory for Antibody- Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Shengsong Tang
- Hunan Province Key Laboratory for Antibody- Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Xianhui Zhang
- Orthopedics Department, Dongkou People's Hospital, Dongkou, China
| | - Linxi Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target, New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| |
Collapse
|
5
|
Chen G, Li Z, Chen C, Liu J, Zhu W, She L, Huang H, Qin Y, Liu G, Wang J, Liu Y, Huang D, Tang Q, Zhang X, Zhu G. The Molecular Landscape and Biological Alterations Induced by PRAS40-Knockout in Head and Neck Squamous Cell Carcinoma. Front Oncol 2021; 10:565669. [PMID: 33489877 PMCID: PMC7821427 DOI: 10.3389/fonc.2020.565669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
PRAS40 (Prolin-rich Akt substrate of 40 kDa) is a critical protein, which directly connects PI3K/Akt and mTORC1 pathway. It plays an indispensable role in the development of various diseases. However, the relationship between PRAS40 and head and neck squamous cell carcinoma (HNSCC) remains unclear. Here, our study indicated that high expression of PRAS40 mRNA is a favorable prognostic factor in HNSCC patients by analyzing 498 clinical and mRNA data. Moreover, we confirmed that CRISPR/Cas9 induced PRAS40-knockout would promote colony formation, cell migration, and invasion in several HNSCC cell lines. RNA-seq was employed to investigate the further possible mechanisms involving the above regulations by PRAS40 in HNSCC cells. The molecular landscape contributed by 253 differentially expressed mRNA after PRAS40-knockout was enriched in TGF-beta, PI3K-Akt, P53, mTOR, NF-κB signaling pathway. Partial molecular alternations within these pathways were validated by qPCR or Western blotting. Besides, we found that high expression of PRAS40 in HNSC patients would present more CD8+ T and T follicular helper cells, but less Th17 cells than the patients with low expression of PRAS40. The altered molecular pathways and tumor-infiltrating immune cells might associate with the mechanism of PRAS40 being a suppressor in HNSCC cells, which would provide a potential prognostic predictor and therapeutic target in HNSCC patients.
Collapse
Affiliation(s)
- Gang Chen
- Department of Otolaryngology-Head and Neck Surgery, The Xiangya Hospital, Central South University, Changsha, China
| | - Zhexuan Li
- Department of Otolaryngology-Head and Neck Surgery, The Xiangya Hospital, Central South University, Changsha, China
| | - Changhan Chen
- Department of Otolaryngology-Head and Neck Surgery, The Xiangya Hospital, Central South University, Changsha, China
| | - Jiajia Liu
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weiming Zhu
- Fuzhou Medical College of Nanchang University, Fuzhou, China
| | - Li She
- Department of Otolaryngology-Head and Neck Surgery, The Xiangya Hospital, Central South University, Changsha, China
| | - Huimei Huang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuexiang Qin
- Department of Otolaryngology-Head and Neck Surgery, The Xiangya Hospital, Central South University, Changsha, China
| | - Guancheng Liu
- Department of Otolaryngology-Head and Neck Surgery, The Xiangya Hospital, Central South University, Changsha, China
| | - Juncheng Wang
- Department of Otolaryngology-Head and Neck Surgery, The Xiangya Hospital, Central South University, Changsha, China
| | - Yong Liu
- Department of Otolaryngology-Head and Neck Surgery, The Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Donghai Huang
- Department of Otolaryngology-Head and Neck Surgery, The Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Qinglai Tang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xin Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Gangcai Zhu
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Zhou J, Zhu Y, Liu Y, Niu P, Chen H, Deng J, Shi D. High PRAS40 mRNA expression and its role in prognosis of clear cell renal cell carcinoma. Transl Androl Urol 2020; 9:1650-1660. [PMID: 32944526 PMCID: PMC7475688 DOI: 10.21037/tau-20-741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is one of the most common type of kidney malignancy. The proline-rich Akt substrate of 40 kDa (PRAS40) plays an important role in tumor growth. The present study aimed to analysis the prognostic value of PRAS40 mRNA expression in ccRCC. Methods We analyzed the PRAS40 mRNA expression using the data from TCGA-KIRC cohort. A receiver operating characteristic (ROC) curve was performed to assessed the diagnostic value of PRAS40 mRNA expression in ccRCC. Chi-square test was used to analyzed the correlation between clinical characteristics and PRAS40 mRNA expression. Kaplan-Meier analysis and Cox analysis were performed to determine the prognostic value of PRAS40 mRNA expression in ccRCC. Gene set enrichment analysis (GSEA) was conducted using TCGA database. Results Our results revealed that PRAS40 mRNA expression was higher in ccRCC tissues than in normal tissues. PRAS40 presented a moderate diagnostic value in ccRCC. High PRAS40 mRNA expression was correlated with histological grade, clinical stage, T classification, distant metastasis and vital status of ccRCC. High PRAS40 mRNA expression was associated with poor overall survival. Furthermore, Multivariate analysis revealed that PRAS40 was an independent risk factor for ccRCC patients. Myc targets, DNA repair, oxidative phosphorylation, glycolysis, adipogenesis, p53 pathway, reactive oxygen species pathway, myogenesis were differentially enriched in the phenotype that positively correlated with PRAS40. Conclusions In conclusion, our results suggest that PRAS40 was a promising diagnostic and prognostic biomarker for ccRCC.
Collapse
Affiliation(s)
- Jintuo Zhou
- Department of Pharmacy, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yanting Zhu
- Department of Pharmacy, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ying Liu
- Department of Pharmacy, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Peiguang Niu
- Department of Pharmacy, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Huajiao Chen
- Department of Pharmacy, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jie Deng
- Department of Pharmacy, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Daohua Shi
- Department of Pharmacy, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
7
|
Dougherty MI, Lehman CE, Spencer A, Mendez RE, David AP, Taniguchi LE, Wulfkuhle J, Petricoin EF, Gioeli D, Jameson MJ. PRAS40 Phosphorylation Correlates with Insulin-Like Growth Factor-1 Receptor-Induced Resistance to Epidermal Growth Factor Receptor Inhibition in Head and Neck Cancer Cells. Mol Cancer Res 2020; 18:1392-1401. [PMID: 32467173 DOI: 10.1158/1541-7786.mcr-19-0592] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 03/06/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022]
Abstract
EGFR inhibitors have shown poor efficacy in head and neck squamous cell carcinoma (HNSCC) with demonstrated involvement of the insulin-like growth factor-1 receptor (IGF1R) in resistance to EGFR inhibition. IGF1R activates the PI3K-Akt pathway, which phosphorylates proline-rich Akt substrate of 40 kDa (PRAS40) to cease mTOR inhibition resulting in increased mTOR signaling. Proliferation assays separated six HNSCC cell lines into two groups: sensitive to EGFR inhibition or resistant; all sensitive cell lines demonstrated reduced sensitivity to EGFR inhibition upon IGF1R activation. Reverse phase protein microarray analysis and immunoblot identified a correlation between increased PRAS40 phosphorylation and IGFR-mediated resistance to EGFR inhibition. In sensitive cell lines, PRAS40 phosphorylation decreased 44%-80% with EGFR inhibition and was restored to 98%-196% of control by IGF1R activation, while phosphorylation was unaffected in resistant cell lines. Possible involvement of mTOR in this resistance mechanism was demonstrated through a similar pattern of p70S6K phosphorylation. However, addition of temsirolimus, an mTORC1 inhibitor, was insufficient to overcome IGF1R-mediated resistance and suggested an alternative mechanism. Forkhead box O3a (FOXO3a), which has been reported to complex with PRAS40 in the cytoplasm, demonstrated a 6-fold increase in nuclear to cytoplasmic ratio upon EGFR inhibition that was eliminated with concurrent IGF1R activation. Transcription of FOXO3a-regulated TRAIL and PTEN-induced putative kinase-1 (PINK1) was increased with EGFR inhibition in sensitive cell lines; this effect was diminished with IGF1R stimulation. IMPLICATIONS: These data suggest PRAS40 may play an important role in IGF1R-based therapeutic resistance to EGFR inhibition, and this likely occurs via inhibition of FOXO3a-mediated proapoptotic gene transcription.
Collapse
Affiliation(s)
- Michael I Dougherty
- Department of Otolaryngology - Head & Neck Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Christine E Lehman
- Department of Otolaryngology - Head & Neck Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Adam Spencer
- Department of Otolaryngology - Head & Neck Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Rolando E Mendez
- Department of Otolaryngology - Head & Neck Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Abel P David
- Department of Otolaryngology - Head & Neck Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Linnea E Taniguchi
- Department of Otolaryngology - Head & Neck Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Julie Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Daniel Gioeli
- Department of Otolaryngology - Head & Neck Surgery, University of Virginia School of Medicine, Charlottesville, Virginia.,Department of Microbiology Immunology & Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia.,UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Mark J Jameson
- Department of Otolaryngology - Head & Neck Surgery, University of Virginia School of Medicine, Charlottesville, Virginia. .,UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
8
|
TAB3 upregulates PIM1 expression by directly activating the TAK1-STAT3 complex to promote colorectal cancer growth. Exp Cell Res 2020; 391:111975. [PMID: 32229191 DOI: 10.1016/j.yexcr.2020.111975] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/03/2020] [Accepted: 03/18/2020] [Indexed: 02/08/2023]
Abstract
Transforming growth factor-β-activated kinase 1 (TAK1)-binding protein 3 (TAB3) and the proviral integration site for Moloney murine leukaemia virus 1 (PIM1) are implicated in cancer development. In this study, we investigated the relationship between TAB3 and PIM1 in colorectal cancer (CRC) and determined the potential role and molecular mechanism of TAB3 in PIM1-mediated CRC growth. We found that TAB3 and PIM1 expression levels were positively correlated in CRC tissues. The knockdown of TAB3 significantly decreased PIM1 expression and inhibited CRC proliferation in vitro and in vivo. The upregulation of PIM1 rescued the decreased cell proliferation induced by TAB3 knockdown, whereas PIM1 knockdown decreased TAB3-enhanced CRC proliferation. Additionally, TAB3 regulates PIM1 expression through the STAT3 signalling pathway and confirmed a positive correlation between TAB3 and phosphorylated-STAT3 expression in CRC tissues. Patients with high expression of TAB3 and phosphorylated-STAT3 had the worst prognosis. Mechanistically, TAB3 regulates PIM1 expression by promoting STAT3 phosphorylation and activation through the formation of the TAB3-TAK1-STAT3 complex. Overall, a novel CRC regulatory circuit involving the TAB3-TAK1-STAT3 complex and PIM1 was identified, the dysfunction of which may contribute to CRC tumorigenesis.
Collapse
|
9
|
Duan J, Du J, Jin R, Zhu W, Liu L, Yang L, Li M, Gong Q, Song B, Anderson JM, Ai H. Iron oxide nanoparticles promote vascular endothelial cells survival from oxidative stress by enhancement of autophagy. Regen Biomater 2019; 6:221-229. [PMID: 31404327 PMCID: PMC6683953 DOI: 10.1093/rb/rbz024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/15/2019] [Accepted: 05/28/2019] [Indexed: 02/05/2023] Open
Abstract
Dextran-coated superparamagnetic iron oxide nanoparticles (Dex-SPIONs) are excellent magnetic resonance imaging contrast agents for disease diagnosis and therapy. They can be delivered to target tissues mainly though vascular endothelium cells, which are major targets of oxidative stress. In cardiovascular cells, autophagy serves primarily on a pro-survival approach that protects the cells from oxidative stress even some autophagy inducers have been developed for adjuvant therapy of cardiovascular disorders. Our study demonstrated that the nanoparticles could be taken up by human umbilical vein endothelial cells (HUVECs) without causing obvious cytotoxicity but triggering autophagy. Furthermore, our results revealed that Dex-SPIONs could enhance HUVECs survival and reverse the reduction of nitric oxide secretion under the condition of H2O2 damage. However, these effects could be diminished by the autophagy inhibitor. In particular, we discovered that Dex-SPIONs evoked autophagy in HUVECs by reducing the phosphorylation of PRAS40, an upstream regulator of autophagy initiation. These results suggested that Dex-SPIONs functions as an autophagic-related antioxidant in HUVECs which may be utilized as an adjuvant therapy to cardiovascular disease associated with oxidative stress.
Collapse
Affiliation(s)
- Jimei Duan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, P.R. China
| | - Jiuju Du
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, P.R. China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, P.R. China
- Correspondence address. National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, P.R. China. Tel: +86-28-8541-3991; Fax: +86-28-8541-3991; E-mail: (R.J.); (H.A.)
| | - Wencheng Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, P.R. China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Li Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, P.R. China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, P.R. China
| | - Mengye Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, P.R. China
| | - Qiyong Gong
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - James M Anderson
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Department of Macromolecular Science, Case Western Reserve University, Cleveland, OH, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, P.R. China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, P.R. China
- Correspondence address. National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, P.R. China. Tel: +86-28-8541-3991; Fax: +86-28-8541-3991; E-mail: (R.J.); (H.A.)
| |
Collapse
|
10
|
Zali MR, Zamanian Azodi M, Razzaghi Z, Heydari MH. Gallbladder cancer integrated bioinformatics analysis of protein profile data. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2019; 12:S66-S73. [PMID: 32099604 PMCID: PMC7011054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AIM Identifying the critical genes that differentiate gall bladder cancer from a normal gall bladder and the related biological terms was the aim of this study. BACKGROUND The molecular mechanism underlying gall bladder cancer (GBC) trigger and development still requires investigations. Potential therapeutic biomarkers can be identified through protein-protein interaction network prediction of proteome as a complementary study. METHODS Here, a literature review of proteomics studies of gall bladder cancer from 2010 to 2019 was undertaken to screen differentially expressed proteins in this cancer. A network of 27 differentially expressed proteins (DEPs) via Cytoscape 3.7.1 and its plug-ins was constructed and analyzed. RESULTS Ten proteins were introduced as hub-bottlenecks among which four were from DEPs. The gene ontology analysis also indicated that positive regulation of multi-organism process and regulation of response to biotic stimulus are the most disrupted biological processes of GBC considering their relationships with the DEPs. CONCLUSION ACTG, ALB, GGH, and DYNC1H1, and relative biological terms were introduced as drug targets and possible diagnostic biomarkers.
Collapse
Affiliation(s)
- Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Zamanian Azodi
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossain Heydari
- Proteomics Research Center, faculty of paramedical sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|