1
|
Sharma V, Singh SB, Bandyopadhyay S, Sikka K, Kakkar A, Hariprasad G. Label-based comparative proteomics of oral mucosal tissue to understand progression of precancerous lesions to oral squamous cell carcinoma. Biochem Biophys Rep 2024; 40:101842. [PMID: 39483176 PMCID: PMC11525462 DOI: 10.1016/j.bbrep.2024.101842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction Oral squamous cell carcinomas typically arise from precancerous lesions such as leukoplakia and erythroplakia. These lesions exhibit a range of histological changes from hyperplasia to dysplasia and carcinoma in situ, during their transformation to malignancy. The molecular mechanisms driving this multistage transition remain incompletely understood. To bridge this knowledge gap, our current study utilizes label based comparative proteomics to compare protein expression profiles across different histopathological grades of leukoplakia, erythroplakia, and oral squamous cell carcinoma samples, aiming to elucidate the molecular changes underlying lesion evolution. Methodology An 8-plex iTRAQ proteomics of 4 biological replicates from 8 clinical phenotypes of leukoplakia and erythroplakia, with hyperplasia, mild dysplasia, moderate dysplasia; along with phenotypes of well differentiated squamous cell carcinoma and moderately differentiated squamous cell carcinoma was carried out using the Orbitrap Fusion Lumos mass spectrometer. Raw files were processed with Maxquant, and statistical analysis across groups was conducted using MetaboAnalyst. Statistical tools such as ANOVA, PLS-DA VIP scoring, and correlation analysis were employed to identify differentially expressed proteins that had a linear expression variation across phenotypes of hyperplasia to cancer. Validation was done using Bioinformatic tools such as ClueGO + Cluepedia plugin in Cytoscape to extract functional annotations from gene ontology and pathway databases. Results and discussion A total of 2685 protein groups and 12,397 unique peptides were identified, and 61 proteins consistently exhibited valid reporter ion corrected intensities across all samples. Of these, 6 proteins showed linear varying expression across the analysed sample phenotypes. Collagen type VI alpha 2 chain (COL6A2), Fibrinogen β chain (FGB), and Vimentin (VIM) were found to have increased linear expression across pre-cancer phenotypes of leukoplakia to cancer, while Annexin A7 (ANXA7) was seen to be having a linear decreasing expression. Collagen type VI alpha 2 chain (COL6A2) and Annexin A2 (ANXA2) had increased linear expression across precancer phenotypes of erythroplakia to cancer. The mass spectrometry proteomics data have been deposited to the ProteomeXchanger Consortium via the PRIDE partner repository with the data set identifier PXD054190. These differentially expressed proteins mediate cancer progression mainly through extracellular exosome; collagen-containing extracellular matrix, hemostasis, platelet aggregation, and cell adhesion molecule binding. Conclusion Label-based proteomics is an ideal platform to study oral cancer progression. The differentially expressed proteins provide insights into the molecular mechanisms underlying the progression of oral premalignant lesions to malignant phenotypes. The study has translational value for early detection, risk stratification, and potential therapeutic targeting of oral premalignant lesions and in its prevention to malignant forms.
Collapse
Affiliation(s)
- Vipra Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | - Sabyasachi Bandyopadhyay
- Proteomics Sub-facility, Centralized Core Research Facility, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Kapil Sikka
- Department of Otorhinolaryngology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Aanchal Kakkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Gururao Hariprasad
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
2
|
Aravind A, Mathew RT, Kuruba L, Vijayakumar M, Prasad TSK. Proteomic analysis of peripheral blood mononuclear cells from OSCC patients reveals potential immune checkpoints to enable personalized treatment. Mol Omics 2024. [PMID: 39177064 DOI: 10.1039/d4mo00112e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most prevalent cancers worldwide, with high mortality and prevalence rates. OSCC is defined as an immunogenic tumor with the potential to be recognized and targeted by the immune system. It is characterized by the extensive infiltration of immune cells and plays a vital role in tumorigenesis. Peripheral blood mononuclear cells (PBMC) are a functional subset of immune cells readily accessible through minimally invasive procedures. The molecular characterization of immune cells aids in understanding their functional roles in various pathophysiological conditions. Proteomic analysis of PBMCs from cancer patients provides insight into the mechanism of immunoregulation and the role of immune cells in impeding tumor development and progression. Therefore, the present study investigated the immune cell proteome of a cancer control cohort within OSCC, leveraging data-independent acquisition analysis by mass spectrometry (DIA-MS). Among the differentially abundant proteins in OSCC, we identified promising molecular targets, including LMNB1, CTSB, CD14, CD177, and SPI1. Further exploration of the signaling pathways related to the candidate molecules demonstrated their involvement in cancer immunomodulation. Therefore, this study can serve as a platform for identifying new candidate proteins to further investigate their potential as immunotherapeutic targets and prognostic markers.
Collapse
Affiliation(s)
- Anjana Aravind
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka - 575018, India.
| | - Rohan Thomas Mathew
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, Karnataka - 575018, India.
| | - Lepakshi Kuruba
- Department of Medical Oncology, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, Karnataka - 575018, India
| | - Manavalan Vijayakumar
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, Karnataka - 575018, India.
| | | |
Collapse
|
3
|
Humphries EM, Loudon C, Craft GE, Hains PG, Robinson PJ. Quantitative Comparison of Deparaffinization, Rehydration, and Extraction Methods for FFPE Tissue Proteomics and Phosphoproteomics. Anal Chem 2024; 96:13358-13370. [PMID: 39102789 DOI: 10.1021/acs.analchem.3c04479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissues are suitable for proteomic and phosphoproteomic biomarker studies by data-independent acquisition mass spectrometry. The choice of the sample preparation method influences the number, intensity, and reproducibility of identifications. By comparing four deparaffinization and rehydration methods, including heptane, histolene, SubX, and xylene, we found that heptane and methanol produced the lowest coefficients of variation (CVs). Using this, five extraction methods from the literature were modified and evaluated for their performance using kidney, leg muscle, lung, and testicular rat organs. All methods performed well, except for SP3 due to insufficient tissue lysis. Heat n' Beat was the fastest and most reproducible method with the highest digestion efficiency and lowest CVs. S-Trap produced the highest peptide yield, while TFE produced the best phosphopeptide enrichment efficiency. The quantitation of FFPE-derived peptides remains an ongoing challenge with bias in UV and fluorescence assays across methods, most notably in SPEED. Functional enrichment analysis demonstrated that each method favored extracting some gene ontology cellular components over others including chromosome, cytoplasmic, cytoskeleton, endoplasmic reticulum, membrane, mitochondrion, and nucleoplasm protein groups. The outcome is a set of recommendations for choosing the most appropriate method for different settings.
Collapse
Affiliation(s)
- Erin M Humphries
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Clare Loudon
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - George E Craft
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Peter G Hains
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Phillip J Robinson
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| |
Collapse
|
4
|
Kunhabdulla H, Manas R, Shettihalli AK, Reddy CRM, Mustak MS, Jetti R, Abdulla R, Sirigiri DR, Ramdan D, Ammarullah MI. Identifying Biomarkers and Therapeutic Targets by Multiomic Analysis for HNSCC: Precision Medicine and Healthcare Management. ACS OMEGA 2024; 9:12602-12610. [PMID: 38524437 PMCID: PMC10956120 DOI: 10.1021/acsomega.3c07206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 03/26/2024]
Abstract
Background: Head and neck squamous cell carcinoma (HNSCC) is one of the major types of cancer, with 900,000 cases and over 400,000 deaths annually. It constitutes 3-4% of all cancers in Europe and western countries. As early diagnosis is the key to treating the disease, reliable biomarkers play an important role in the precision medicine of HNSCC. Despite treatments, the survival rate of cancer patients remains unchanged, and this is mainly due to the failure to detect the disease early. Thus, the objective of this study is to identify reliable biomarkers for head and neck cancers for better healthcare management. Methods: In this study, all available, curated human genes were screened for their expression against HNSCC TCGA patient samples using genomic and proteomic data by various bioinformatic approaches and datamining. Docking studies were performed using AutoDock or online virtual screening tools for identifying potential ligands. Results: Sixty genes were short-listed, and most of them show a consistently higher expression in head and neck patient samples at both the mRNA and the protein level. Irrespective of human papillomavirus (HPV) status, all of them show a higher expression in cancer samples. The higher expression of 30 genes shows adverse effects on patient survival. Out of the 60 genes, 12 genes have crystal structures and druggable potential. We show that genes such as GTF2H4, HAUS7, MSN, and MNDA could be targets of Pembrolizumab and Nivolumab, which are approved monoclonal antibodies for HNSCC. Conclusion: Sixty genes are identified as potential biomarkers for head and neck cancers based on their consistent and statistically significantly higher expression in patient samples. Four proteins have been identified as potential drug targets based on their crystal structure. However, the utility of these candidate genes has to be further tested using patient samples.
Collapse
Affiliation(s)
- Hafeeda Kunhabdulla
- Department
of Oral Pathology, Yenepoya Dental College, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575018, India
| | - Ram Manas
- Department
of Biotechnology, B.M.S. College of Engineering, Bull Temple Road, Bengaluru 560019, India
| | - Ashok Kumar Shettihalli
- Department
of Biotechnology, B.M.S. College of Engineering, Bull Temple Road, Bengaluru 560019, India
| | - Ch. Ram Mohan Reddy
- Department
of Computer Applications (MCA), B.M.S. College
of Engineering, Bull
Temple Road, Bengaluru 560019, India
| | - Mohammed S. Mustak
- Department
of Applied Zoology, Mangalore University, Mangalagangothri 574199, Karnataka, India
| | - Raghu Jetti
- Department
of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Riaz Abdulla
- Department
of Oral Pathology, Yenepoya Dental College, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575018, India
| | | | - Deden Ramdan
- Department
of Management Science, Faculty of Social Science and Political Science, Universitas Pasundan, Bandung 40261, West Java, Indonesia
| | - Muhammad Imam Ammarullah
- Department
of Mechanics and Aerospace Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
- UNDIP
Biomechanics Engineering & Research Centre (UBM-ERC), Universitas Diponegoro, Semarang 50275, Central Java, Indonesia
- Biomechanics
and Biomedics Engineering Research Centre, Universitas Pasundan, Bandung 40153, West Java, Indonesia
| |
Collapse
|
5
|
Pekarek L, Garrido-Gil MJ, Sánchez-Cendra A, Cassinello J, Pekarek T, Fraile-Martinez O, García-Montero C, Lopez-Gonzalez L, Rios-Parra A, Álvarez-Mon M, Acero J, Diaz-Pedrero R, Ortega MA. Emerging histological and serological biomarkers in oral squamous cell carcinoma: Applications in diagnosis, prognosis evaluation and personalized therapeutics (Review). Oncol Rep 2023; 50:213. [PMID: 37859591 PMCID: PMC10620846 DOI: 10.3892/or.2023.8650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/08/2023] [Indexed: 10/21/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignancy of the oral cavity and accounts for >90% of all oral cancers. Despite advances in diagnostic procedures and therapeutic interventions, overall survival has not improved significantly in recent decades, primarily due to late diagnosis, locoregional recurrence and treatment resistance. Identifying reliable biomarkers for early detection, prognosis evaluation and treatment response prediction is critical for improving clinical outcomes in patients with OSCC. In the present review, the prognostic and predictive utility of circulating biomarkers, such as circulating tumour cells, serological biomarkers and histological and genetic biomarkers, were explored in the context of OSCC. In addition, the potential role of immune checkpoints in the treatment of OSCC was highlighted and the rapidly evolving field of liquid biopsy and its potential to revolutionize diagnosis, prognosis evaluation and treatment were examined. The existing evidence for the clinical utility of these biomarkers was critically evaluated and the challenges and limitations associated with their introduction into routine clinical practice were addressed. In conclusion, the present review highlights the promising role of biomarkers in improving the current understanding of the pathogenesis of OSCC and offers potential avenues for improving patient care through personalized medicine approaches.
Collapse
Affiliation(s)
- Leonel Pekarek
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Oncology Service, Guadalajara University Hospital, 19002 Guadalajara, Spain
| | - Maria J. Garrido-Gil
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | | | - Javier Cassinello
- Oncology Service, Guadalajara University Hospital, 19002 Guadalajara, Spain
| | - Tatiana Pekarek
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Antonio Rios-Parra
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service and Internal Medicine, Network Biomedical Research Center in The Thematic Area of Liver Diseases (CIBEREHD), University Hospital Príncipe de Asturias, 28801 Alcala de Henares, Spain
| | - Julio Acero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Department of Oral and Maxillofacial Surgery, Ramon y Cajal University Hospital, University of Alcalá, 28034 Madrid, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Department of General and Digestive Surgery, University Hospital Príncipe de Asturias, 28805 Madrid, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
6
|
Abdulla R, Devasia Puthenpurackal J, Pinto SM, Rekha PD, Subbannayya Y. Serum autoantibody profiling of oral squamous cell carcinoma patients reveals NUBP2 as a potential diagnostic marker. Front Oncol 2023; 13:1167691. [PMID: 37810966 PMCID: PMC10556692 DOI: 10.3389/fonc.2023.1167691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Oral Squamous Cell Carcinoma (OSCC), a common malignancy of the head and neck region, is frequently diagnosed at advanced stages, necessitating the development of efficient diagnostic methods. Profiling autoantibodies generated against tumor-associated antigens have lately demonstrated a promising role in diagnosis, predicting disease course, and response to therapeutics and relapse. Methods In the current study, we, for the first time, aimed to identify and evaluate the diagnostic value of autoantibodies in serum samples of patients with OSCC using autoantibody profiling by an immunome protein array. The utility of anti-NUBP2 antibody and tissue positivity in OSCC was further evaluated. Results and discussion We identified a total of 53 autoantibodies with significant differential levels between OSCC and control groups, including 25 that were increased in OSCC and 28 that were decreased. These included autoantibodies against Thymidine kinase 1 (TK1), nucleotide-binding protein 2 (NUBP2), and protein pyrroline-5-carboxylate reductase 1 (PYCR1), among others. Immunohistochemical validation indicated positive staining of NUBP2 in a large majority of cases (72%). Further, analysis of OSCC data available in TCGA revealed higher NUBP2 expression correlated with better disease-free patient survival. In conclusion, the differential serum autoantibodies identified in the current study, including those for NUBP2, could be used as potential biomarkers for early diagnosis or as screening biomarkers for OSCC pending investigation in a larger cohort.
Collapse
Affiliation(s)
- Riaz Abdulla
- Department of Oral Pathology and Microbiology, Yenepoya Dental College, Yenepoya (Deemed to be University), Mangalore, India
| | - Jofy Devasia Puthenpurackal
- Department of Oral Pathology and Microbiology, Yenepoya Dental College, Yenepoya (Deemed to be University), Mangalore, India
| | - Sneha M. Pinto
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | | | - Yashwanth Subbannayya
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
7
|
Wei Y, Cheng X, Deng L, Dong H, Wei H, Xie C, Tuo Y, Li G, Yu D, Cao Y. Expression signature and molecular basis of CDH11 in OSCC detected by a combination of multiple methods. BMC Med Genomics 2023; 16:70. [PMID: 37013637 PMCID: PMC10069064 DOI: 10.1186/s12920-023-01499-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 03/25/2023] [Indexed: 04/05/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common malignancy in the oral cancer threatening human health and the survival rate of OSCC has not been effectively improved in recent decades, so more effective biomarkers for the targeted therapy of OSCC are needed. Moreover, the role of CDH11 in OSCC has not been intensively investigated. We here show that the CDH11 protein and mRNA expression levels in the OSCC tissues were all significantly higher than in the non-cancerous tissues using RT-qPCR and western blot. This study also revealed that patients with higher CDH11 levels showed a higher incidence of perineural invasion and lymph node metastasis. By using data available from the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and ArrayExpress databases, overexpressed CDH11 in OSCC that associated with patients'history of alcohol, negative Human Papilloma Virus (HPV) status, perineural invasion, infiltration of multiple immune cells, and Single-cell functional states including quiescence and angiogenesis, possessed an excellent discriminatory capability in the OSCC patients. Moreover, the majority of the biological processes or pathways were significantly clustered by co-expressed genes, including extracellular matrix organization, the epithelial to mesenchymal transition, carbon metabolism, and the PI3K-Akt signaling pathway, and the upstream transcriptional regulation mechanism of CDH11 in OSCC was showed on a transcription factor/miRNA-mRNA network with the online tool NetworkAnalyst. Finally, frequent mutation of CDH11 was observed on a mouse OSCC model through whole-genome sequencing. CDH11 might serve as a valuable biomarker in OSCC, as it was identified to be overexpressed in OSCC and related to its clinical progression.
Collapse
Affiliation(s)
- Yuxing Wei
- Department of Oral and Maxillofacial Surgery, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Xujie Cheng
- Department of Oral and Maxillofacial Surgery, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Limei Deng
- Department of Oral and Maxillofacial Surgery, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Hao Dong
- Department of Oral and Maxillofacial Surgery, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Huiping Wei
- Department of Oral and Maxillofacial Surgery, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Cheng Xie
- Department of Oral and Maxillofacial Surgery, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Yangjuan Tuo
- Department of Oral and Maxillofacial Surgery, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Guangyu Li
- Department of Stomatology, People's hospital of Yongning District, Nanning, 530200, China
| | - Dahai Yu
- Department of Stomatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yong Cao
- Department of Oral and Maxillofacial Surgery, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| |
Collapse
|
8
|
Zhu C, Liu C, Chai Z. Role of the PADI family in inflammatory autoimmune diseases and cancers: A systematic review. Front Immunol 2023; 14:1115794. [PMID: 37020554 PMCID: PMC10067674 DOI: 10.3389/fimmu.2023.1115794] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/08/2023] [Indexed: 04/07/2023] Open
Abstract
The peptidyl arginine deiminase (PADI) family is a calcium ion-dependent group of isozymes with sequence similarity that catalyze the citrullination of proteins. Histones can serve as the target substrate of PADI family isozymes, and therefore, the PADI family is involved in NETosis and the secretion of inflammatory cytokines. Thus, the PADI family is associated with the development of inflammatory autoimmune diseases and cancer, reproductive development, and other related diseases. In this review, we systematically discuss the role of the PADI family in the pathogenesis of various diseases based on studies from the past decade to provide a reference for future research.
Collapse
Affiliation(s)
- Changhui Zhu
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Chunyan Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- *Correspondence: Chunyan Liu, ; Zhengbin Chai,
| | - Zhengbin Chai
- Department of Clinical Laboratory Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan, China
- *Correspondence: Chunyan Liu, ; Zhengbin Chai,
| |
Collapse
|
9
|
Wang Y, Zhang X, Wang S, Li Z, Hu X, Yang X, Song Y, Jing Y, Hu Q, Ni Y. Identification of Metabolism-Associated Biomarkers for Early and Precise Diagnosis of Oral Squamous Cell Carcinoma. Biomolecules 2022; 12:biom12030400. [PMID: 35327590 PMCID: PMC8945702 DOI: 10.3390/biom12030400] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 01/27/2023] Open
Abstract
The 5-year survival rate for oral squamous cell carcinoma (OSCC), one of the most common head and neck cancers, has not improved in the last 20 years. Poor prognosis of OSCC is the result of failure in early and precise diagnosis. Metabolic reprogramming, including the alteration of the uptake and utilisation of glucose, amino acids and lipids, is an important feature of OSCC and can be used to identify its biomarkers for early and precise diagnosis. In this review, we summarise how recent findings of rewired metabolic networks in OSCC have facilitated early and precise diagnosis of OSCC.
Collapse
Affiliation(s)
- Yuhan Wang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China; (Y.W.); (X.Z.); (S.W.); (Z.L.); (X.H.); (Y.S.); (Y.J.)
| | - Xiaoxin Zhang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China; (Y.W.); (X.Z.); (S.W.); (Z.L.); (X.H.); (Y.S.); (Y.J.)
| | - Shuai Wang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China; (Y.W.); (X.Z.); (S.W.); (Z.L.); (X.H.); (Y.S.); (Y.J.)
| | - Zihui Li
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China; (Y.W.); (X.Z.); (S.W.); (Z.L.); (X.H.); (Y.S.); (Y.J.)
| | - Xinyang Hu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China; (Y.W.); (X.Z.); (S.W.); (Z.L.); (X.H.); (Y.S.); (Y.J.)
| | - Xihu Yang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 210008, China;
| | - Yuxian Song
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China; (Y.W.); (X.Z.); (S.W.); (Z.L.); (X.H.); (Y.S.); (Y.J.)
| | - Yue Jing
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China; (Y.W.); (X.Z.); (S.W.); (Z.L.); (X.H.); (Y.S.); (Y.J.)
| | - Qingang Hu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
- Correspondence: (Q.H.); (Y.N.)
| | - Yanhong Ni
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China; (Y.W.); (X.Z.); (S.W.); (Z.L.); (X.H.); (Y.S.); (Y.J.)
- Correspondence: (Q.H.); (Y.N.)
| |
Collapse
|