1
|
Tan W, Chen J, Wang Y, Xiang K, Lu X, Han Q, Hou M, Yang J. Single-cell RNA sequencing in diabetic kidney disease: a literature review. Ren Fail 2024; 46:2387428. [PMID: 39099183 DOI: 10.1080/0886022x.2024.2387428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/06/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD), and its pathogenesis has not been clarified. Current research suggests that DKD involves multiple cell types and extra-renal factors, and it is particularly important to clarify the pathogenesis and identify new therapeutic targets. Single-cell RNA sequencing (scRNA-seq) technology is high-throughput sequencing of the transcriptomes of individual cells at the single-cell level, which is an effective technology for exploring the development of diseases by comparing genetic information, reflecting the differences in genetic information between cells, and identifying different cell subpopulations. Accumulating evidence supports the role of scRNA-seq in revealing the pathogenesis of diabetes and strengthening our understanding of the molecular mechanisms of DKD. We reviewed the scRNA-seq data this time. Then, we analyzed and discussed the applications of scRNA-seq technology in DKD research, including annotation of cell types, identification of novel cell types (or subtypes), identification of intercellular communication, analysis of cell differentiation trajectories, gene expression detection, and analysis of gene regulatory networks, and lastly, we explored the future perspectives of scRNA-seq technology in DKD research.
Collapse
Affiliation(s)
- Wei Tan
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaoyan Chen
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunyan Wang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kui Xiang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xianqiong Lu
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiuyu Han
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingyue Hou
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jurong Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Wu C, Tang H, Cui X, Li N, Fei J, Ge H, Wu L, Wu J, Gu HF. A single-cell profile reveals the transcriptional regulation responded for Abelmoschus manihot (L.) treatment in diabetic kidney disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155642. [PMID: 38759315 DOI: 10.1016/j.phymed.2024.155642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Huangkui capsule (HKC), as an ethanol extract of Abelmoschus manihot (L.), has a significant efficacy in treatment of the patients with diabetic kidney disease (DKD). The bioactive ingredients of HKC mainly include the flavonoids such as rutin, hyperoside, hibifolin, isoquercetin, myricetin, quercetin and quercetin-3-O-robinobioside. PURPOSE To explore the molecular mechanisms of A. manihot in treatment of DKD. STUDY DESIGN A single-cell RNA sequencing analysis of kidneys in db/db mice with and without HKC administration. METHODS Urinary biochemical and histopathological examination in C57BL/6 and db/db mice of DKD and HKC groups was done. Single-cell RNA sequencing pipeline was then performed. The regulatory mechanisms of seven flavonoids in HKC were revealed by cell communication, prediction of transcription factor regulatory network, and molecular docking. RESULTS By constructing ligand-receptor regulatory network and performing molecular docking between 75 receptors with different activities and seven flavonoids. 11 key receptors in 4 cell types (segment 3 proximal convoluted tubular cell, ascending limbs of the loop of Henle, distal convoluted tubule, and T cell) in kidneys were found to be directly interacted with HKC. The interactions regulated 8 downstream regulons. The docking receptors in T cell led to transcriptional event differences in the regulons such as Cebpb, Rel, Tbx21 and Klf2 and consequently affected the activation, differentiation, and infiltration of T cell, while the receptors Tgfbr1 and Ldlr in stromal cells of kidneys were closely associated with the downstream transcriptional events of renal injury and proteinuria in DKD. CONCLUSION The current study provides novel information of the key receptors and regulons in renal cells for a better understanding of the cell type specific molecular mechanisms of A. manihot in treatment of DKD.
Collapse
Affiliation(s)
- Chenhua Wu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, China; Laboratory of Minigene Pharmacy, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, China
| | - Haitao Tang
- Suzhong Pharmaceutical Research Institute, Nanjing, Jiangsu Province, 210018, China
| | - Xu Cui
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, China
| | - Nan Li
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, China
| | - Jingjin Fei
- Laboratory of Minigene Pharmacy, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, China
| | - Haitao Ge
- Suzhong Pharmaceutical Research Institute, Nanjing, Jiangsu Province, 210018, China
| | - Liang Wu
- Jiangsu Key Laboratory of Drug Screening, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, China
| | - Jie Wu
- Laboratory of Minigene Pharmacy, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, China.
| | - Harvest F Gu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, China.
| |
Collapse
|
3
|
Peng QY, An Y, Jiang ZZ, Xu Y. The Role of Immune Cells in DKD: Mechanisms and Targeted Therapies. J Inflamm Res 2024; 17:2103-2118. [PMID: 38601771 PMCID: PMC11005934 DOI: 10.2147/jir.s457526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
Diabetic kidney disease (DKD), is a common microvascular complication and a major cause of death in patients with diabetes. Disorders of immune cells and immune cytokines can accelerate DKD development of in a number of ways. As the kidney is composed of complex and highly differentiated cells, the interactions among different cell types and immune cells play important regulatory roles in disease development. Here, we summarize the latest research into the molecular mechanisms underlying the interactions among various immune and renal cells in DKD. In addition, we discuss the most recent studies related to single cell technology and bioinformatics analysis in the field of DKD. The aims of our review were to explore immune cells as potential therapeutic targets in DKD and provide some guidance for future clinical treatments.
Collapse
Affiliation(s)
- Qiu-Yue Peng
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People’s Republic of China
| | - Ying An
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People’s Republic of China
| | - Zong-Zhe Jiang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People’s Republic of China
| | - Yong Xu
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
4
|
Yu H, Tang H, Wang M, Xu Q, Yu J, Ge H, Qiang L, Tang W, Gu HF. Effects of total flavones of Abelmoschus manihot (L.) on the treatment of diabetic nephropathy via the activation of solute carriers in renal tubular epithelial cells. Biomed Pharmacother 2023; 169:115899. [PMID: 37984306 DOI: 10.1016/j.biopha.2023.115899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023] Open
Abstract
As a traditional Chinese medicine, Huangkui capsule (HKC) has been used to treat patients with kidney diseases, including diabetic nephropathy (DN). We have recently demonstrated that HKC could re-regulate the activities of solute carriers (SLC)s in proximal and distal convoluted tubules of kidneys in regression of the development of DN. The main active chemical constituents of HKC are the flavones of Abelmoschus manihot (L.). The current study aims to further evaluate the efficacy of total flavones of A. manihot (TFA) in the regression of DN by analyzing SLC activities in proximal and distal convoluted tubules of kidneys. TFA (0.076 g/kg/d) or vehicle was administered in db/db mice, the animal model of type 2 diabetes and DN, daily via oral gavage for four weeks. Blood glucose levels and urinary albumin-to-creatinine ratio (UACR) were measured and used for the determination of T2D and DN. Ten SLCs, including slc2a2, slc4A1, slc5a2, slc5A3, slc5a8, slc6a20, slc27a2, slc12a3, slc34a1 and slc38a2 were highly expressed in proximal and distinct convoluted tubules of kidneys. Their expression at mRNA and protein levels before and after TFA treatment were analyzed with real-time RT-PCR and immunohistochemistry. Data showed that UACR in the db/db mice after TFA treatment was significantly decreased. Compared with the group of non-diabetic control, slc2a2, slc4A1, slc5a2, slc5A3, slc5a8, slc6a20, slc27a2, slc12a3, slc34a1 and slc38a2 in the group of DN were down-regulated but up-regulated after TFA treatment. Further analyses of whole kidney sections indicated that the numbers and structures of the nephron in db/db mice was increased and improved after TFA treatment. Thereby, the current study provides further evidence that the flavones in A. manihot have pharmacological effects on the treatment of DN by improving the biological function of SLCs in kidneys.
Collapse
Affiliation(s)
- Hongmei Yu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing, Jiangsu Province 210009, China
| | - Haitao Tang
- Suzhong Pharmaceutical Research Institute, 3-1 Xinjinhu Road, Jiangbei New Area, Nanjing, Jiangsu Province 210018, China
| | - Mei Wang
- Suzhong Pharmaceutical Research Institute, 3-1 Xinjinhu Road, Jiangbei New Area, Nanjing, Jiangsu Province 210018, China
| | - Qing Xu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing, Jiangsu Province 210009, China
| | - Jinshi Yu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing, Jiangsu Province 210009, China
| | - Haitao Ge
- Suzhong Pharmaceutical Research Institute, 3-1 Xinjinhu Road, Jiangbei New Area, Nanjing, Jiangsu Province 210018, China
| | - Lei Qiang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longman Avenue, Jiangning District, Nanjing, Jiangsu Province 211198, China
| | - Wei Tang
- Department of Endocrinology, Islet Cell Senescence and Function Research Laboratory, Nanjing Medical University Affiliated Geriatric Hospital/Jiangsu Province Geriatric Hospital, 65 Jiangsu Road, Gulou District, Nanjing, Jiangsu Province 210024, China.
| | - Harvest F Gu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing, Jiangsu Province 210009, China.
| |
Collapse
|
5
|
Monastero R, Magro D, Venezia M, Pisano C, Balistreri CR. A promising therapeutic peptide and preventive/diagnostic biomarker for age-related diseases: The Elabela/Apela/Toddler peptide. Ageing Res Rev 2023; 91:102076. [PMID: 37776977 DOI: 10.1016/j.arr.2023.102076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Elabela (ELA), Apela or Toddler peptide is a hormone peptide belonging to the adipokine group and a component of apelinergic system, discovered in 2013-2014. Given its high homology with apelin, the first ligand of APJ receptor, ELA likely mediates similar effects. Increasing evidence shows that ELA has a critical function not only in embryonic development, but also in adulthood, contributing to physiological and pathological conditions, such as the onset of age-related diseases (ARD). However, still little is known about the mechanisms and molecular pathways of ELA, as well as its precise functions in ARD pathophysiology. Here, we report the mechanisms by which ELA/APJ signaling acts in a very complex network of pathways for the maintenance of physiological functions of human tissue and organs, as well as in the onset of some ARD, where it appears to play a central role. Therefore, we describe the possibility to use the ELA/APJ pathway, as novel biomarker (predictive and diagnostic) and target for personalized treatments of ARD. Its potentiality as an optimal peptide candidate for therapeutic ARD treatments is largely described, also detailing potential current limitations.
Collapse
Affiliation(s)
- Roberto Monastero
- Section of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Daniele Magro
- Cellular, Molecular and Clinical Pathological Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134, Palermo, Italy
| | - Marika Venezia
- Cellular, Molecular and Clinical Pathological Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134, Palermo, Italy
| | - Calogera Pisano
- Department of Cardiac Surgery, Tor Vergata University Rome, 00133 Rome, Italy
| | - Carmela Rita Balistreri
- Cellular, Molecular and Clinical Pathological Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134, Palermo, Italy.
| |
Collapse
|
6
|
Carbonetto P, Luo K, Sarkar A, Hung A, Tayeb K, Pott S, Stephens M. GoM DE: interpreting structure in sequence count data with differential expression analysis allowing for grades of membership. Genome Biol 2023; 24:236. [PMID: 37858253 PMCID: PMC10588049 DOI: 10.1186/s13059-023-03067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
Parts-based representations, such as non-negative matrix factorization and topic modeling, have been used to identify structure from single-cell sequencing data sets, in particular structure that is not as well captured by clustering or other dimensionality reduction methods. However, interpreting the individual parts remains a challenge. To address this challenge, we extend methods for differential expression analysis by allowing cells to have partial membership to multiple groups. We call this grade of membership differential expression (GoM DE). We illustrate the benefits of GoM DE for annotating topics identified in several single-cell RNA-seq and ATAC-seq data sets.
Collapse
Affiliation(s)
- Peter Carbonetto
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- Research Computing Center, University of Chicago, Chicago, IL, USA
| | - Kaixuan Luo
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Abhishek Sarkar
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- Vesalius Therapeutics, Cambridge, MA, USA
| | - Anthony Hung
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- Section of Genetic Medicine, University of Chicago, Chicago, IL, USA
| | - Karl Tayeb
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Sebastian Pott
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- Section of Genetic Medicine, University of Chicago, Chicago, IL, USA
| | - Matthew Stephens
- Department of Human Genetics, University of Chicago, Chicago, IL, USA.
- Department of Statistics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Carbonetto P, Luo K, Sarkar A, Hung A, Tayeb K, Pott S, Stephens M. GoM DE: interpreting structure in sequence count data with differential expression analysis allowing for grades of membership. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.03.531029. [PMID: 36945441 PMCID: PMC10028846 DOI: 10.1101/2023.03.03.531029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Parts-based representations, such as non-negative matrix factorization and topic modeling, have been used to identify structure from single-cell sequencing data sets, in particular structure that is not as well captured by clustering or other dimensionality reduction methods. However, interpreting the individual parts remains a challenge. To address this challenge, we extend methods for differential expression analysis by allowing cells to have partial membership to multiple groups. We call this grade of membership differential expression (GoM DE). We illustrate the benefits of GoM DE for annotating topics identified in several single-cell RNA-seq and ATAC-seq data sets.
Collapse
Affiliation(s)
- Peter Carbonetto
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- Research Computing Center, University of Chicago, Chicago, IL, USA
| | - Kaixuan Luo
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Abhishek Sarkar
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- Vesalius Therapeutics, Cambridge, MA, USA
| | - Anthony Hung
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- Section of Genetic Medicine, University of Chicago, Chicago, IL, USA
| | - Karl Tayeb
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Sebastian Pott
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- Section of Genetic Medicine, University of Chicago, Chicago, IL, USA
| | - Matthew Stephens
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- Department of Statistics, University of Chicago, Chicago, IL, USA
| |
Collapse
|
8
|
Yu H, Wang M, Yu J, Tang H, Xu Q, Cheng N, Luo X, Wang Y, Ge H, Qiang L, Tang W, Gu HF. Evaluation of the efficacy of Abelmoschus manihot (L.) on diabetic nephropathy by analyzing biomarkers in the glomeruli and proximal and distal convoluted tubules of the kidneys. Front Pharmacol 2023; 14:1215996. [PMID: 37587982 PMCID: PMC10427220 DOI: 10.3389/fphar.2023.1215996] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/14/2023] [Indexed: 08/18/2023] Open
Abstract
Introduction: As a traditional Chinese medicine, Abelmoschus manihot (L.) in the form of Huangkui (HK) capsule has been used as a medication for kidney diseases, including diabetic nephropathy (DN), in China. The most significant effect of HK capsule treatment in kidney diseases is the reduction of albuminuria and proteinuria. To evaluate the efficacy of HK capsule in the regression of DN, in the current study, we analyzed the biomarkers in the glomerulus and proximal and distal convoluted tubules in the kidneys of db/db mice, the animal model for type 2 diabetes and DN. Methods: Huangkui capsules (0.84 g/kg/d) or vehicle were administered daily via oral gavage for 4 weeks in db/db mice. Urinary albumin-to-creatinine ratio and blood glucose levels were measured during the whole experimental period. Five biomarkers in the glomerulus and proximal and distal convoluted tubules in the kidneys were selected, namely, col4a3, slc5a2, slc34a1, slc12a3, and slc4a1, and their activities at mRNA and protein levels before and after HK capsule treatment were analyzed by real-time RT-PCR and immunohistochemistry. Result and discussion: After HK capsule treatment for 4 weeks, the urinary albumin-to-creatinine ratio in db/db mice was found to be significantly decreased. The activities of col4a3, slc5a2, slc34a1, slc12a3, and slc4a1 in the kidneys were upregulated in db/db mice prior to the treatment but downregulated after HK capsule treatment. Further analyses of the fields of whole kidney tissue sections demonstrated that the number of nephrons in the kidneys of db/db mice with HK capsule treatment was higher than that in the kidneys of db/db mice without HK capsule treatment. Thereby, the current study provides experimental evidence confirming the medical efficacy of A. manihot in the reduction of albuminuria and proteinuria, suggesting that A. manihot may have pharmacological efficacy in the regression of the development of type 2 diabetes-DN.
Collapse
Affiliation(s)
- Hongmei Yu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mei Wang
- Suzhong Pharmaceutical Research Institute, Nanjing, China
| | - Jingshi Yu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Haitao Tang
- Suzhong Pharmaceutical Research Institute, Nanjing, China
| | - Qing Xu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ning Cheng
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaoxiao Luo
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yurong Wang
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Haitao Ge
- Suzhong Pharmaceutical Research Institute, Nanjing, China
| | - Lei Qiang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wei Tang
- Department of Endocrinology, Islet Cell Senescence and Function Research Laboratory, Nanjing Medical University Affiliated Geriatric Hospital/Jiangsu Province Geriatric Hospital, Nanjing, China
| | - Harvest F. Gu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
9
|
Interaction between Plasma Metabolomics and Intestinal Microbiome in db/db Mouse, an Animal Model for Study of Type 2 Diabetes and Diabetic Kidney Disease. Metabolites 2022; 12:metabo12090775. [PMID: 36144180 PMCID: PMC9503368 DOI: 10.3390/metabo12090775] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022] Open
Abstract
Evidence has demonstrated that either metabolites or intestinal microbiota are involved in the pathogenesis of type 2 diabetes (T2D) and diabetic kidney disease (DKD). To explore the interaction between plasma metabolomics and intestinal microbiome in the progress of T2D-DKD, in the current study, we analyzed metabolomics in the plasma of db/db mice with liquid chromatography–mass spectrometry and also examined intestinal prokaryotes and entire gut microbiome dysbiosis at the genus level with both 16S rDNA and metagenomic sequencing techniques. We found that Negativibacillus and Rikenella were upregulated, while Akkermansia, Candidatus, Erysipelatoclostridium and Ileibacterium were downregulated in the colon of db/db mice compared with non-diabetic controls. In parallel, a total of 91 metabolites were upregulated, while 23 were downregulated in the plasma of db/db mice. The top five upregulated metabolites included D-arabinose 5-phosphate, estrone 3-sulfate, L-theanine, 3′-aenylic acid and adenosine 5′-monophosphate, and the five most significantly downregulated metabolites were aurohyocholic acid sodium salt, calcium phosphorylcholine chloride, tauro-alpha-muricholic acid sodium salt, galactinol and phosphocholine. These plasma metabolites were interacted with intestinal microbiomes, which are mainly involved in the pathways related to the biosynthesis of unsaturated fatty acids, fatty acid elongation, steroid biosynthesis, and D-arginine and D-ornithine metabolism. In the differential metabolites, N-acetyl-L-ornithine, ornithine and L-kyn could be metabolized by the correspondingly differential ontology genes in the intestinal metagenome. The current study thereby provides evidence for a gut–metabolism–kidney axis in the metabolism of db/db mice, in which the gut microbiome and circulating metabolomics interact, and suggests that information from this axis may contribute to our understanding of T2D and DKD pathogenesis.
Collapse
|