1
|
Shen M, García-Marqués F, Muruganantham A, Liu S, White JR, Bermudez A, Rice MA, Thompson K, Chen CL, Hung CN, Zhang Z, Huang TH, Liss MA, Pienta KJ, Pitteri SJ, Stoyanova T. Identification of a 5-gene signature panel for the prediction of prostate cancer progression. Br J Cancer 2024; 131:1748-1761. [PMID: 39402324 PMCID: PMC11589118 DOI: 10.1038/s41416-024-02854-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Despite nearly 100% 5-year survival for localised prostate cancer, the survival rate for metastatic prostate cancer significantly declines to 32%. Thus, it is crucial to identify molecular indicators that reflect the progression from localised disease to metastatic prostate cancer. METHODS To search for molecular indicators associated with prostate cancer metastasis, we performed proteomic analysis of rapid autopsy tissue samples from metastatic prostate cancer (N = 8) and localised prostate cancer (N = 2). Then, we utilised multiple independent, publicly available prostate cancer patient datasets to select candidates that also correlate with worse prostate cancer clinical prognosis. RESULTS We identified 154 proteins with increased expressions in metastases relative to localised prostate cancer through proteomic analysis. From the subset of these candidates that correlate with prostate cancer recurrence (N = 28) and shorter disease-free survival (N = 37), we identified a 5-gene signature panel with improved performance in predicting worse clinical prognosis relative to individual candidates. CONCLUSIONS Our study presents a new 5-gene signature panel that is associated with worse clinical prognosis and is elevated in prostate cancer metastasis on both protein and mRNA levels. Our 5-gene signature panel represents a potential modality for the prediction of prostate cancer progression towards the onset of metastasis.
Collapse
Affiliation(s)
- Michelle Shen
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | - Shiqin Liu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Abel Bermudez
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Meghan A Rice
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Kelsey Thompson
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Chun-Liang Chen
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, USA
- School of Nursing, UT Health San Antonio, San Antonio, TX, USA
| | - Chia-Nung Hung
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Zhao Zhang
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Tim H Huang
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Michael A Liss
- Department of Urology, UT Health San Antonio, San Antonio, TX, USA
| | - Kenneth J Pienta
- Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Tanya Stoyanova
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Urology, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Ma X, Tian F, Xiao Y, Huang M, Song D, Chen X, Xu H. Synergistic effects of bloom helicase (BLM) inhibitor AO/854 with cisplatin in prostate cancer. Sci Rep 2024; 14:24962. [PMID: 39438537 PMCID: PMC11496540 DOI: 10.1038/s41598-024-75938-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
To determine the synergistic effect and mechanism of AO/854, a new Bloom syndrome protein (BLM) helicase inhibitor, and cisplatin (CDDP), a DNA-crosslinking agent, cell viability assays, neutral comet assays, and Western blotting (WB) were performed on prostate cancer (PCa) cells. According to our findings, combining AO/854 and CDDP enhanced the antiproliferative capabilities of PC3 cell lines. As evidenced by the upregulation of γH2AX, cleaved caspase-3/caspase-3, and BAX/Bcl-2, AO/854 dramatically increased PC3 apoptosis and DNA damage induced by CDDP. Furthermore, combining AO/854 and CDDP synergistically inhibited PC3 cell migration and invasion. In addition, AO/854 inhibited CDDP-induced S-phase cell-cycle arrest in PC3 cells while enhancing G2/M-phase cell-cycle arrest. In vivo, the antitumor efficacy of the combination therapy group was greater than that of the groups treated with AO/854 or CDDP alone. Our findings indicate that synergistic chemotherapy with AO/854 and CDDP may be a novel anticancer strategy for PCa.
Collapse
Affiliation(s)
- Xiaoyan Ma
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, China
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Fu Tian
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003, China
| | - Yuanpin Xiao
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003, China
| | - Mengqiu Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, China
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Dandan Song
- Department of Brewing Engineering, Moutai Institute, Renhuai, 564500, China
| | - Xinlin Chen
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003, China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, China.
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Zhou CQ, Li A, Ri K, Sultan AS, Ren H. Anti-HDGF Antibody Targets EGFR Tyrosine Kinase Inhibitor-Tolerant Cells in NSCLC Patient-Derived Xenografts. CANCER RESEARCH COMMUNICATIONS 2024; 4:2308-2319. [PMID: 39041204 PMCID: PMC11370239 DOI: 10.1158/2767-9764.crc-24-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/31/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Constitutively active mutant EGFR is one of the major oncogenic drivers in non-small cell lung cancer (NSCLC). Targeted therapy using EGFR tyrosine kinase inhibitor (TKI) is a first-line option in patients that have metastatic or recurring disease. However, despite the high response rate to TKI, most patients have a partial response, and the disease eventually progresses in 10 to 19 months. It is believed that drug-tolerant cells that survive TKI exposure during the progression-free period facilitate the emergence of acquired resistance. Thus, targeting the drug-tolerant cells could improve the treatment of NSCLC with EGFR mutations. We demonstrated here that EGFR-mutant patient-derived xenograft tumors responded partially to osimertinib despite near-complete inhibition of EGFR activation. Signaling in AKT/mTOR and MAPK pathways could be reactivated shortly after initial inhibition. As a result, many tumor cells escaped drug killing and regained growth following about 35 days of continuous osimertinib dosing. However, when an antibody to hepatoma-derived growth factor (HDGF) was given concurrently with osimertinib, tumors showed complete or near-complete responses. There was significant prolongation of progression-free survival of tumor-bearing mice as well. IHC and Western blot analysis of tumors collected in the early stages of treatment suggest that increased suppression of the AKT/mTOR and MAPK pathways could be a mechanism that results in enhanced efficacy of osimertinib when it is combined with an anti-HDGF antibody. SIGNIFICANCE These results suggest that HDGF could be critically involved in promoting tolerance to TKI in patient-derived xenografts of NSCLC tumors. Blocking HDGF signaling could be a potential means to enhance EGFR-targeted therapy of NSCLC that warrants further advanced preclinical and clinical studies.
Collapse
Affiliation(s)
- Cindy Q. Zhou
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, Maryland.
| | - Ariel Li
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, Maryland.
| | - Kaoru Ri
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, Maryland.
| | - Ahmed S. Sultan
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, Maryland.
| | - Hening Ren
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, Maryland.
| |
Collapse
|
4
|
Zhang C, Jia Y, Kong Q. Case report: Squamous cell carcinoma of the prostate-a clinicopathological and genomic sequencing-based investigation. Pathol Oncol Res 2023; 29:1611343. [PMID: 38089646 PMCID: PMC10713708 DOI: 10.3389/pore.2023.1611343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023]
Abstract
Squamous differentiation of prostate cancer, which accounts for less than 1% of all cases, is typically associated with androgen deprivation treatment (ADT) or radiotherapy. This entity is aggressive and exhibits poor prognosis due to limited response to traditional treatment. However, the underlying molecular mechanisms and etiology are not fully understood. Previous findings suggest that squamous cell differentiation may potentially arise from prostate adenocarcinoma (AC), but further validation is required to confirm this hypothesis. This paper presents a case of advanced prostate cancer with a combined histologic pattern, including keratinizing SCC and AC. The study utilized whole-exome sequencing (WES) data to analyze both subtypes and identified a significant overlap in driver gene mutations between them. This suggests that the two components shared a common origin of clones. These findings emphasize the importance of personalized clinical management for prostate SCC, and specific molecular findings can help optimize treatment strategies.
Collapse
Affiliation(s)
- Caixin Zhang
- Department of Pathology, Qingdao Municipal Hospital, Qingdao, China
| | - Yong Jia
- Department of Urology, Qingdao Municipal Hospital, Qingdao, China
| | - Qingnuan Kong
- Department of Pathology, Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|
5
|
Huang M, Chen L, Guo Y, Ruan Y, Xu H. PARP1 negatively regulates transcription of BLM through its interaction with HSP90AB1 in prostate cancer. J Transl Med 2023; 21:445. [PMID: 37415147 PMCID: PMC10324254 DOI: 10.1186/s12967-023-04288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a prevalent malignant disease affecting a significant number of males globally. Elevated expression of the Bloom's syndrome protein (BLM) helicase has emerged as a promising cancer biomarker, being associated with the onset and progression of PCa. Nevertheless, the precise molecular mechanisms governing BLM regulation in PCa remain elusive. METHODS The expression of BLM in human specimens was analyzed using immnohistochemistry (IHC). A 5'-biotin-labeled DNA probe containing the promoter region of BLM was synthesized to pull down BLM promoter-binding proteins. Functional studies were conducted using a range of assays, including CCK-8, EdU incorporation, clone formation, wound scratch, transwell migration, alkaline comet assay, xenograft mouse model, and H&E staining. Mechanistic studies were carried out using various techniques, including streptavidin-agarose-mediated DNA pull-down, mass spectrometry (MS), immunofluorescence (IF), dual luciferase reporter assay system, RT-qPCR, ChIP-qPCR, co-immunoprecipitation (co-IP), and western blot. RESULTS The results revealed significant upregulation of BLM in human PCa tissues, and its overexpression was associated with an unfavorable prognosis in PCa patients. Increased BLM expression showed significant correlations with advanced clinical stage (P = 0.022) and Gleason grade (P = 0.006). In vitro experiments demonstrated that BLM knockdown exerted inhibitory effects on cell proliferation, clone formation, invasion, and migration. Furthermore, PARP1 (poly (ADP-ribose) polymerase 1) was identified as a BLM promoter-binding protein. Further investigations revealed that the downregulation of PARP1 led to increased BLM promoter activity and expression, while the overexpression of PARP1 exerted opposite effects. Through mechanistic studies, we elucidated that the interaction between PARP1 and HSP90AB1 (heat shock protein alpha family class B) enhanced the transcriptional regulation of BLM by counteracting the inhibitory influence of PARP1 on BLM. Furthermore, the combination treatment of olaparib with ML216 demonstrated enhanced inhibitory effects on cell proliferation, clone formation, invasion, and migration. It also induced more severe DNA damage in vitro and exhibited superior inhibitory effects on the proliferation of PC3 xenograft tumors in vivo. CONCLUSIONS The results of this study underscore the significance of BLM overexpression as a prognostic biomarker for PCa, while also demonstrating the negative regulatory impact of PARP1 on BLM transcription. The concurrent targeting of BLM and PARP1 emerges as a promising therapeutic approach for PCa treatment, holding potential clinical significance.
Collapse
Affiliation(s)
- Mengqiu Huang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Lin Chen
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Yingchu Guo
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China
- Guizhou University school of Medicine, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yong Ruan
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China
- Guizhou University school of Medicine, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Houqiang Xu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China.
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China.
- Guizhou University school of Medicine, Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|