1
|
Cabal C, Maciel GA, Martinez-Garcia R. Plant antagonistic facilitation across environmental gradients: a soil-resource ecosystem engineering model. THE NEW PHYTOLOGIST 2024; 244:670-682. [PMID: 39165156 DOI: 10.1111/nph.20053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024]
Abstract
Theory questions the persistence of nonreciprocal interactions in which one plant has a positive net effect on a neighbor that, in return, has a negative net impact on its benefactor - a phenomenon known as antagonistic facilitation. We develop a spatially explicit consumer-resource model for belowground plant competition between ecosystem engineers, plants able to mine resources and make them available for any other plant in the community, and exploiters. We use the model to determine in what environmental conditions antagonistic facilitation via soil-resource engineering emerges as an optimal strategy. Antagonistic facilitation emerges in stressful environments where ecosystem engineers' self-benefits from mining resources outweigh the competition with opportunistic neighbors. Among all potential causes of stress considered in the model, the key environmental parameter driving changes in the interaction between plants is the proportion of the resource that becomes readily available for plant consumption in the absence of any mining activity. Our results align with theories of primary succession and the stress gradient hypothesis. However, we find that the total root biomass and its spatial allocation through the root system, often used to measure the sign of the interaction between plants, do not predict facilitation reliably.
Collapse
Affiliation(s)
- Ciro Cabal
- Global Change Research Institute, Rey Juan Carlos University (IICG-URJC), 28933, Móstoles, Spain
- High Meadows Environmental Institute, Princeton University (HMEI), 08544, Princeton, NJ, USA
- Department of Biology and Geology, Physics and Inorganic Chemistry, Rey Juan Carlos University, 28933, Móstoles, Spain
| | - Gabriel A Maciel
- ICTP-South American Institute for Fundamental Research - Instituto de Física Teórica da UNESP, 01140-070, São Paulo, Brazil
| | - Ricardo Martinez-Garcia
- Center for Advanced Systems Understanding, Helmholtz-Zentrum Dresden Rossendorf (CASUS-HZDR), 02826, Görlitz, Germany
- ICTP-South American Institute for Fundamental Research - Instituto de Física Teórica da UNESP, 01140-070, São Paulo, Brazil
| |
Collapse
|
2
|
Zheng X, Babst F, Camarero JJ, Li X, Lu X, Gao S, Sigdel SR, Wang Y, Zhu H, Liang E. Density-dependent species interactions modulate alpine treeline shifts. Ecol Lett 2024; 27:e14403. [PMID: 38577961 DOI: 10.1111/ele.14403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 04/06/2024]
Abstract
Species interactions such as facilitation and competition play a crucial role in driving species range shifts. However, density dependence as a key feature of these processes has received little attention in both empirical and modelling studies. Herein, we used a novel, individual-based treeline model informed by rich in situ observations to quantify the contribution of density-dependent species interactions to alpine treeline dynamics, an iconic biome boundary recognized as an indicator of global warming. We found that competition and facilitation dominate in dense versus sparse vegetation scenarios respectively. The optimal balance between these two effects was identified at an intermediate vegetation thickness where the treeline elevation was the highest. Furthermore, treeline shift rates decreased sharply with vegetation thickness and the associated transition from positive to negative species interactions. We thus postulate that vegetation density must be considered when modelling species range dynamics to avoid inadequate predictions of its responses to climate warming.
Collapse
Affiliation(s)
- Xiangyu Zheng
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Flurin Babst
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona, USA
| | | | - Xiaoxia Li
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Lu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Shan Gao
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Shalik Ram Sigdel
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Yafeng Wang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Haifeng Zhu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Eryuan Liang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Recart W, Bernhard R, Ng I, Garcia K, Fleming-Davies AE. Meta-Analysis of the Effects of Insect Pathogens: Implications for Plant Reproduction. Pathogens 2023; 12:pathogens12020347. [PMID: 36839619 PMCID: PMC9958737 DOI: 10.3390/pathogens12020347] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Despite extensive work on both insect disease and plant reproduction, there is little research on the intersection of the two. Insect-infecting pathogens could disrupt the pollination process by affecting pollinator population density or traits. Pathogens may also infect insect herbivores and change herbivory, potentially altering resource allocation to plant reproduction. We conducted a meta-analysis to (1) summarize the literature on the effects of pathogens on insect pollinators and herbivores and (2) quantify the extent to which pathogens affect insect traits, with potential repercussions for plant reproduction. We found 39 articles that fit our criteria for inclusion, extracting 218 measures of insect traits for 21 different insect species exposed to 25 different pathogens. We detected a negative effect of pathogen exposure on insect traits, which varied by host function: pathogens had a significant negative effect on insects that were herbivores or carried multiple functions but not on insects that solely functioned as pollinators. Particular pathogen types were heavily studied in certain insect orders, with 7 of 11 viral pathogen studies conducted in Lepidoptera and 5 of 9 fungal pathogen studies conducted in Hymenoptera. Our results suggest that most studies have focused on a small set of host-pathogen pairs. To understand the implications for plant reproduction, future work is needed to directly measure the effects of pathogens on pollinator effectiveness.
Collapse
Affiliation(s)
- Wilnelia Recart
- Biology Department, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA
- Correspondence:
| | - Rover Bernhard
- Biology Department, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA
- Biology Department, Lewis and Clark College, 615 S. Palatine Hill Road, Portland, OR 97219, USA
| | - Isabella Ng
- Biology Department, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA
| | - Katherine Garcia
- Biology Department, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA
- Environmental Sciences Department, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0021, USA
| | | |
Collapse
|
4
|
Godsoe W, Murray R, Iritani R. Species interactions and diversity: a unified framework using Hill numbers. OIKOS 2022. [DOI: 10.1111/oik.09282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- William Godsoe
- Dept of Pest Managament and Conservation, Lincoln Univ. Lincoln New Zealand
| | - Rua Murray
- School of Mathematics and Statistics, Univ. of Canterbury Christchurch New Zealand
| | - Ryosuke Iritani
- RIKEN Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS) Wako Japan
| |
Collapse
|
5
|
Bird Communities in a Changing World: The Role of Interspecific Competition. DIVERSITY 2022. [DOI: 10.3390/d14100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Significant changes in the environment have the potential to affect bird species abundance and distribution, both directly, through a modification of the landscape, habitats, and climate, and indirectly, through a modification of biotic interactions such as competitive interactions. Predicting and mitigating the consequences of global change thus requires not only a sound understanding of the role played by biotic interactions in current ecosystems, but also the recognition and study of the complex and intricate effects that result from the perturbation of these ecosystems. In this review, we emphasize the role of interspecific competition in bird communities by focusing on three main predictions derived from theoretical and empirical considerations. We provide numerous examples of population decline and displacement that appeared to be, at least in part, driven by competition, and were amplified by environmental changes associated with human activities. Beyond a shift in relative species abundance, we show that interspecific competition may have a negative impact on species richness, ecosystem services, and endangered species. Despite these findings, we argue that, in general, the role played by interspecific competition in current communities remains poorly understood due to methodological issues and the complexity of natural communities. Predicting the consequences of global change in these communities is further complicated by uncertainty regarding future environmental conditions and the speed and efficacy of plastic and evolutionary responses to fast-changing environments. Possible directions of future research are highlighted.
Collapse
|
6
|
Mendoza-Maya E, Gómez-Pineda E, Sáenz-Romero C, Hernández-Díaz JC, López-Sánchez CA, Vargas-Hernández JJ, Prieto-Ruíz JÁ, Wehenkel C. Assisted migration and the rare endemic plant species: the case of two endangered Mexican spruces. PeerJ 2022; 10:e13812. [PMID: 35942126 PMCID: PMC9356587 DOI: 10.7717/peerj.13812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/07/2022] [Indexed: 01/20/2023] Open
Abstract
Background In the projected climate change scenarios, assisted migration might play an important role in the ex situ conservation of the threatened plant species, by translocate them to similar suitable habitats outside their native distributions. However, it is unclear if such habitats will be available for the Rare Endemic Plant Species (REPS), because of their very restricted habitats. The aims of this study were to perform a population size assessment for the REPS Picea martinezii Patterson and Picea mexicana Martínez, and to evaluate the potential species distributions and their possibilities for assisted migration inside México and worldwide. Methods We performed demographic censuses, field surveys in search for new stands, and developed distribution models for Last Glacial Maximum (22,000 years ago), Middle Holocene (6,000 years ago), current (1961-1990) and future (2050 and 2070) periods, for the whole Mexican territory (considering climatic, soil, geologic and topographic variables) and for all global land areas (based only on climate). Results Our censuses showed populations of 89,266 and 39,059 individuals for P. martinezii and P. mexicana, respectively, including known populations and new stands. Projections for México indicated somewhat larger suitable areas in the past, now restricted to the known populations and new stands, where they will disappear by 2050 in a pessimistic climatic scenario, and scarce marginal areas (p = 0.5-0.79) remaining only for P. martinezii by 2070. Worldwide projections (based only on climate variables) revealed few marginal areas in 2050 only in México for P. martinezii, and several large areas (p ≥ 0.5) for P. mexicana around the world (all outside México), especially on the Himalayas in India and the Chungyang mountains in Taiwan with highly suitable (p ≥ 0.8) climate habitats in current and future (2050) conditions. However, those suitable areas are currently inhabited by other endemic spruces: Picea smithiana (Wall.) Boiss and Picea morrisonicola Hayata, respectively. Conclusions Assisted migration would only be an option for P. martinezii on scarce marginal sites in México, and the possibilities for P. mexicana would be continental and transcontinental translocations. This rises two possible issues for future ex situ conservation programs: the first is related to whether or not consider assisted migration to marginal sites which do not cover the main habitat requirements for the species; the second is related to which species (the local or the foreign) should be prioritized for conservation when suitable habitat is found elsewhere but is inhabited by other endemic species. This highlights the necessity to discuss new policies, guidelines and mechanisms of international cooperation to deal with the expected high species extinction rates, linked to projected climate change.
Collapse
Affiliation(s)
- Eduardo Mendoza-Maya
- Programa Institucional de Doctorado en Ciencias Agropecuarias y Forestales, Universidad Juárez del Estado de Durango, Durango, México
| | - Erika Gómez-Pineda
- Centro de Investigaciones en Geografía Ambiental, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | - Cuauhtémoc Sáenz-Romero
- Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - José Ciro Hernández-Díaz
- Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, Durango, México
| | - Carlos A. López-Sánchez
- SMartForest Group, Department of Biology of Organisms and Systems, Mieres Polytechnic School, Universidad de Oviedo, Mieres, Spain
| | - J. Jesús Vargas-Hernández
- Postgrado en Ciencias Forestales, Colegio de Postgraduados, Montecillo, Texcoco, Edo. de México, México
| | - José Ángel Prieto-Ruíz
- Facultad de Ciencias Forestales y Ambientales, Universidad Juárez del Estado de Durango, Durango, Durango, México
| | - Christian Wehenkel
- Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, Durango, México
| |
Collapse
|
7
|
Shirani F, Miller JR. Competition, Trait Variance Dynamics, and the Evolution of a Species' Range. Bull Math Biol 2022; 84:37. [PMID: 35099649 DOI: 10.1007/s11538-022-00990-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 12/28/2021] [Indexed: 11/24/2022]
Abstract
Geographic ranges of communities of species evolve in response to environmental, ecological, and evolutionary forces. Understanding the effects of these forces on species' range dynamics is a major goal of spatial ecology. Previous mathematical models have jointly captured the dynamic changes in species' population distributions and the selective evolution of fitness-related phenotypic traits in the presence of an environmental gradient. These models inevitably include some unrealistic assumptions, and biologically reasonable ranges of values for their parameters are not easy to specify. As a result, simulations of the seminal models of this type can lead to markedly different conclusions about the behavior of such populations, including the possibility of maladaptation setting stable range boundaries. Here, we harmonize such results by developing and simulating a continuum model of range evolution in a community of species that interact competitively while diffusing over an environmental gradient. Our model extends existing models by incorporating both competition and freely changing intraspecific trait variance. Simulations of this model predict a spatial profile of species' trait variance that is consistent with experimental measurements available in the literature. Moreover, they reaffirm interspecific competition as an effective factor in limiting species' ranges, even when trait variance is not artificially constrained. These theoretical results can inform the design of, as yet rare, empirical studies to clarify the evolutionary causes of range stabilization.
Collapse
Affiliation(s)
- Farshad Shirani
- Department of Mathematics and Statistics, Georgetown University, Washington, DC, 20057, USA. .,School of Mathematics, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Judith R Miller
- Department of Mathematics and Statistics, Georgetown University, Washington, DC, 20057, USA
| |
Collapse
|
8
|
Stephan P, Bramon Mora B, Alexander JM. Positive species interactions shape species' range limits. OIKOS 2021. [DOI: 10.1111/oik.08146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Pauline Stephan
- Dept of Environmental Systems Science, ETH Zürich Zürich Switzerland
| | | | - Jake M. Alexander
- Dept of Environmental Systems Science, ETH Zürich Zürich Switzerland
| |
Collapse
|
9
|
Mathis KA, Bronstein JL. Our Current Understanding of Commensalism. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-040844] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Commensalisms, interactions between two species in which one species benefits and the other experiences no net effect, are frequently mentioned in the ecological literature but are surprisingly little studied. Here we review and synthesize our limited understanding of commensalism. We then argue that commensalism is not a single type of interaction; rather, it is a suite of phenomena associated with distinct ecological processes and evolutionary consequences. For each form of commensalism we define, we present evidence for how, where, and why it occurs, including when it is evolutionarily persistent and when it is an occasional outcome of interactions that are usually mutualistic or antagonistic. We argue that commensalism should be of great interest in the study of species interactions due to its location at the center of the continuum between positive and negative outcomes. Finally, we offer a roadmap for future research.
Collapse
Affiliation(s)
- Kaitlyn A. Mathis
- Department of Biology, Clark University, Worcester, Massachusetts 01610, USA
| | - Judith L. Bronstein
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
10
|
Sirén APK, Morelli TL. Interactive range-limit theory (iRLT): An extension for predicting range shifts. J Anim Ecol 2020; 89:940-954. [PMID: 31758805 PMCID: PMC7187220 DOI: 10.1111/1365-2656.13150] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 10/20/2019] [Indexed: 11/28/2022]
Abstract
A central theme of range-limit theory (RLT) posits that abiotic factors form high-latitude/altitude limits, whereas biotic interactions create lower limits. This hypothesis, often credited to Charles Darwin, is a pattern widely assumed to occur in nature. However, abiotic factors can impose constraints on both limits and there is scant evidence to support the latter prediction. Deviations from these predictions may arise from correlations between abiotic factors and biotic interactions, as a lack of data to evaluate the hypothesis, or be an artifact of scale. Combining two tenets of ecology-niche theory and predator-prey theory-provides an opportunity to understand how biotic interactions influence range limits and how this varies by trophic level. We propose an expansion of RLT, interactive RLT (iRLT), to understand the causes of range limits and predict range shifts. Incorporating the main predictions of Darwin's hypothesis, iRLT hypothesizes that abiotic and biotic factors can interact to impact both limits of a species' range. We summarize current thinking on range limits and perform an integrative review to evaluate support for iRLT and trophic differences along range margins, surveying the mammal community along the boreal-temperate and forest-tundra ecotones of North America. Our review suggests that range-limit dynamics are more nuanced and interactive than classically predicted by RLT. Many (57 of 70) studies indicate that biotic factors can ameliorate harsh climatic conditions along high-latitude/altitude limits. Conversely, abiotic factors can also mediate biotic interactions along low-latitude/altitude limits (44 of 68 studies). Both scenarios facilitate range expansion, contraction or stability depending on the strength and the direction of the abiotic or biotic factors. As predicted, biotic interactions most often occurred along lower limits, yet there were trophic differences. Carnivores were only limited by competitive interactions (n = 25), whereas herbivores were more influenced by predation and parasitism (77%; 55 of 71 studies). We highlight how these differences may create divergent range patterns along lower limits. We conclude by (a) summarizing iRLT; (b) contrasting how our model system and others fit this hypothesis and (c) suggesting future directions for evaluating iRLT.
Collapse
Affiliation(s)
- Alexej P. K. Sirén
- Department of Interior Northeast Climate Adaptation Science CenterU.S. Geological SurveyAmherstMAUSA
- Department of Environmental ConservationUniversity of MassachusettsAmherstMAUSA
| | - Toni Lyn Morelli
- Department of Interior Northeast Climate Adaptation Science CenterU.S. Geological SurveyAmherstMAUSA
- Department of Environmental ConservationUniversity of MassachusettsAmherstMAUSA
| |
Collapse
|
11
|
Dallas T, Melbourne BA, Hastings A. When can competition and dispersal lead to checkerboard distributions? J Anim Ecol 2018; 88:269-276. [DOI: 10.1111/1365-2656.12913] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 01/26/2023]
Affiliation(s)
- Tad Dallas
- Department of Environmental Science and Policy University of California Davis California
- Research Centre for Ecological Change University of Helsinki Helsinki Finland
| | - Brett A. Melbourne
- Department of Ecology and Evolutionary Biology University of Colorado Boulder Colorado
| | - Alan Hastings
- Department of Environmental Science and Policy University of California Davis California
- Santa Fe Institute Santa Fe New Mexico
| |
Collapse
|
12
|
Aridity weakens population-level effects of multiple species interactions on Hibiscus meyeri. Proc Natl Acad Sci U S A 2017; 115:543-548. [PMID: 29284748 DOI: 10.1073/pnas.1708436115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Predicting how species' abundances and ranges will shift in response to climate change requires a mechanistic understanding of how multiple factors interact to limit population growth. Both abiotic stress and species interactions can limit populations and potentially set range boundaries, but we have a poor understanding of when and where each is most critical. A commonly cited hypothesis, first proposed by Darwin, posits that abiotic factors (e.g., temperature, precipitation) are stronger determinants of range boundaries in apparently abiotically stressful areas ("stress" indicates abiotic factors that reduce population growth), including desert, polar, or high-elevation environments, whereas species interactions (e.g., herbivory, competition) play a stronger role in apparently less stressful environments. We tested a core tenet of this hypothesis-that population growth rate is more strongly affected by species interactions in less stressful areas-using experimental manipulations of species interactions affecting a common herbaceous plant, Hibiscus meyeri (Malvaceae), across an aridity gradient in a semiarid African savanna. Population growth was more strongly affected by four distinct species interactions (competition with herbaceous and shrubby neighbors, herbivory, and pollination) in less stressful mesic areas than in more stressful arid sites. However, contrary to common assumptions, this effect did not arise because of greater density or diversity of interacting species in less stressful areas, but rather because aridity reduced sensitivity of population growth to these interactions. Our work supports classic predictions about the relative strength of factors regulating population growth across stress gradients, but suggests that this pattern results from a previously unappreciated mechanism that may apply to many species worldwide.
Collapse
|