1
|
Cheng J, Cho JH, Suh JW. Characterization of Human Breast Milk-Derived Limosilactobacillus reuteri MBHC 10138 with Respect to Purine Degradation, Anti-Biofilm, and Anti-Lipid Accumulation Activities. Antibiotics (Basel) 2024; 13:964. [PMID: 39452230 PMCID: PMC11504937 DOI: 10.3390/antibiotics13100964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Human breast milk is a valuable source of potential probiotic candidates. The bacteria isolated from human breast milk play an important role in the development of the infant gut microbiota, exhibiting diverse biological functions. Methods: In this study, Limosilactobacillus reuteri MBHC 10138 isolated from breast milk was characterized in terms of its probiotic safety characteristics and potential efficacy in hyperuricemia, obesity, lipid liver, and dental caries, conditions which Korean consumers seek to manage using probiotics. Results: Strain MBHC 10138 demonstrated a lack of D-lactate and biogenic amine production as well as a lack of bile salt deconjugation and hemolytic activity. It also exhibited susceptibility to common antibiotics, tolerance to simulated oral-gastric-intestinal conditions, and superior biological activity compared to three L. reuteri reference strains, including KACC 11452 and MJ-1, isolated from feces, and a commercial strain isolated from human breast milk. Notably, L. reuteri MBHC 10138 showed high capabilities in assimilating guanosine (69.48%), inosine (81.92%), and adenosine (95.8%), strongly inhibited 92.74% of biofilm formation by Streptococcus mutans, and reduced lipid accumulation by 32% in HepG2 cells. Conclusions: These findings suggest that strain MBHC 10138, isolated from human breast milk, has potential to be developed as a probiotic for managing hyperuricemia, obesity, and dental caries after appropriate in vivo studies.
Collapse
Affiliation(s)
| | | | - Joo-Won Suh
- Microbio Healthcare, Co., Ltd., Yongin 17058, Republic of Korea; (J.C.); (J.-H.C.)
| |
Collapse
|
2
|
Deng M, Zhang S, Wu S, Jiang Q, Teng W, Luo T, Ouyang Y, Liu J, Gu B. Lactiplantibacillus plantarum N4 ameliorates lipid metabolism and gut microbiota structure in high fat diet-fed rats. Front Microbiol 2024; 15:1390293. [PMID: 38912346 PMCID: PMC11190066 DOI: 10.3389/fmicb.2024.1390293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Lowing blood lipid levels with probiotics has good application prospects. This study aimed to isolate probiotics with hypolipidemic efficacy from homemade na dish and investigate their mechanism of action. In vitro experiments were conducted to determine the cholesterol-lowering ability of five isolates, with results showing that Lactiplantibacillus plantarum N4 exhibited a high cholesterol-lowering rate of 50.27% and significant resistance to acid (87%), bile salt (51.97%), and pepsin (88.28%) in simulated gastrointestinal fluids, indicating promising application prospects for the use of probiotics in lowering blood lipids. The findings from the in vivo experiment demonstrated that the administration of N4 effectively attenuated lipid droplet accumulation and inflammatory cell infiltration in the body weight and liver of hyperlipidemic rats, leading to restoration of liver tissue morphology and structure, as well as improvement in lipid and liver biochemical parameters. 16S analysis indicated that the oral administration of N4 led to significant alterations in the relative abundance of various genera, including Sutterella, Bacteroides, Clostridium, and Ruminococcus, in the gut microbiota of hyperlipidemia rats. Additionally, fecal metabolomic analysis identified a total of 78 metabolites following N4 intervention, with carboxylic acids and their derivatives being the predominant compounds detected. The transcriptomic analysis revealed 156 genes with differential expression following N4 intervention, leading to the identification of 171 metabolic pathways through Kyoto Encyclopedia of Genes and Genomes enrichment analysis. Notably, the glutathione metabolism pathway, PPAR signaling pathway, and bile secretion pathway emerged as the primary enrichment pathways. The findings from a comprehensive multi-omics analysis indicate that N4 influences lipid metabolism and diminishes lipid levels in hyperlipidemic rats through modulation of fumaric acid and γ-aminobutyric acid concentrations, as well as glutathione and other metabolic pathways in the intestinal tract, derived from both the gut microbiota and the host liver. This research offers valuable insights into the therapeutic potential of probiotics for managing lipid metabolism disorders and their utilization in the development of functional foods.
Collapse
Affiliation(s)
- Manqi Deng
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Shuaiying Zhang
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Siying Wu
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Qiunan Jiang
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Wenyao Teng
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Tao Luo
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yerui Ouyang
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Jiantao Liu
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bing Gu
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
3
|
Gu M, Cho JH, Suh JW, Cheng J. Potential oral probiotic Lactobacillus pentosus MJM60383 inhibits Streptococcus mutans biofilm formation by inhibiting sucrose decomposition. J Oral Microbiol 2022; 15:2161179. [PMID: 36605406 PMCID: PMC9809368 DOI: 10.1080/20002297.2022.2161179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022] Open
Abstract
Streptococcus mutans is known as a contributor to dental caries. In this work, Lactobacillus pentosus MJM60383 was selected for its strong antagonistic activity against S. mutans and was characterized by good oral probiotic properties including lysozyme tolerance, adhesive ability to oral cells, good aggregation (auto-aggregation, co-aggregation) ability, hydrogen peroxide production and inhibition of biofilm formation of S. mutans. L. pentosus MJM60383 also exhibited safety as a probiotic characterized by no hemolytic activity, no D-lactate production, no biogenic amine production, and susceptibility to antibiotics. Furthermore, the biofilm formation of S. mutans was also significantly inhibited by the supernatant of L. pentosus MJM60383. An anti-biofilm mechanism study revealed that sucrose decomposition and the production of water-insoluble exopolysaccharides by S. mutans were inhibited by the treatment with L. pentosus MJM60383 supernatant. Real-time PCR analysis indicated that the supernatant of L. pentosus MJM60383 significantly inhibited the mRNA expression of S. mutans glycosyltransferases, which synthesize glucan to construct biofilm architecture and mediate bacterial adherence. Our study demonstrated L. pentosus MJM60383 as a potential oral probiotic and revealed its anti-biofilm mechanism.
Collapse
Affiliation(s)
- Mingkun Gu
- Interdisciplinary Program of Biomodulation, Myongji University, Yongin, Republic of Korea
| | - Joo-Hyung Cho
- Myongji Bioefficacy Research Center, Myongji University, Yongin, Republic of Korea
| | - Joo-Won Suh
- Myongji Bioefficacy Research Center, Myongji University, Yongin, Republic of Korea
| | - Jinhua Cheng
- Myongji Bioefficacy Research Center, Myongji University, Yongin, Republic of Korea
| |
Collapse
|
4
|
Werlinger P, Nguyen HT, Gu M, Cho JH, Cheng J, Suh JW. Lactobacillus reuteri MJM60668 Prevent Progression of Non-Alcoholic Fatty Liver Disease through Anti-Adipogenesis and Anti-inflammatory Pathway. Microorganisms 2022; 10:2203. [PMID: 36363795 PMCID: PMC9696116 DOI: 10.3390/microorganisms10112203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/18/2022] [Accepted: 11/04/2022] [Indexed: 08/26/2023] Open
Abstract
Non-alcoholic fatty liver disease (NALFD) is a disease characterized by liver steatosis. The liver is a key organ involved in the metabolism of fat, protein, and carbohydrate, enzyme activation, and storage of glycogen, which is closely related to the intestine by the bidirectional relation of the gut-liver axis. Abnormal intestinal microbiota composition can affect energy metabolism and lipogenesis. In this experiment, we investigated the beneficial effect of Lactobacillus reuteri MJM60668 on lipid metabolism and lipogenesis. C57BL/6 mice were fed a high-fat diet (HFD) and orally administrated with MJM60668. Our results showed that mice treated with MJM60668 significantly decreased liver weight and liver/body weight ratio, without affecting food intake. Serum levels of ALT, AST, TG, TCHO, and IL-1β in mice fed with MJM60668 were decreased compared to the HFD group. Investigation of gene and protein expression on the lipogenesis and lipid metabolism showed that the expression of ACC, FAS, and SREBP was decreased, and PPARα and CPT was increased. Furthermore, an increase of adiponectin in serum was shown in our experiment. Moreover, serum IL-1β level was also significantly decreased in the treated mice. These results suggested that MJM60668 can strongly inhibit lipogenesis, enhance fatty acid oxidation, and suppress inflammation. Additionally, supplementation of MJM60668 increased the proportion of Akkermansiaceae and Lachnospiracea, confirming a potential improvement of gut microbiota, which is related to mucus barrier and decrease of triglycerides levels.
Collapse
Affiliation(s)
- Pia Werlinger
- Interdisciplinary Program of Biomodulation, Myongji University, Yongin 17058, Korea
| | - Huong Thi Nguyen
- Interdisciplinary Program of Biomodulation, Myongji University, Yongin 17058, Korea
| | - Mingkun Gu
- Interdisciplinary Program of Biomodulation, Myongji University, Yongin 17058, Korea
| | - Joo-Hyung Cho
- Myongji Bioefficacy Research Center, Myongji University, Yongin 17058, Korea
| | - Jinhua Cheng
- Interdisciplinary Program of Biomodulation, Myongji University, Yongin 17058, Korea
- Myongji Bioefficacy Research Center, Myongji University, Yongin 17058, Korea
| | - Joo-Won Suh
- Interdisciplinary Program of Biomodulation, Myongji University, Yongin 17058, Korea
- Myongji Bioefficacy Research Center, Myongji University, Yongin 17058, Korea
| |
Collapse
|
5
|
Lactobacillus sakei MJM60958 as a Potential Probiotic Alleviated Non-Alcoholic Fatty Liver Disease in Mice Fed a High-Fat Diet by Modulating Lipid Metabolism, Inflammation, and Gut Microbiota. Int J Mol Sci 2022; 23:ijms232113436. [PMID: 36362221 PMCID: PMC9658623 DOI: 10.3390/ijms232113436] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common liver disease with a rapidly increasing number of cases worldwide. This study aimed to evaluate the effects of Lactobacillus sakei MJM60958 (MJM60958) on NAFLD in vitro and in vivo. In in vitro tests, MJM60958 significantly inhibited lipid accumulation by 46.79% in HepG2 cells stimulated with oleic acid and cholesterol (OA-C). Moreover, MJM60958 showed safe and probiotic characteristics in vitro. In the animal study, MJM60958 administration in a high-fat diet-induced NAFLD mouse model significantly reduced body weight and liver weight, and controlled aspartate aminotransferase (ALT), aspartate transaminase (AST), triglyceride (TG), urea nitrogen (BUN), and uric acid (UA) levels in the blood, which are features of NAFLD. Further, treatment with MJM60958 also reduced steatosis scores in liver tissues, serum leptin and interleukin, and increased serum adiponectin content. Moreover, administration of MJM60958 resulted in a significantly decreased expression of some genes and proteins which are related to lipid accumulation, such as fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and sterol regulatory element-binding protein 1 (SREBP-1), and also upregulated genes and protein expression of lipid oxidation such as peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1a (CPT1A). Administration of MJM60958 increased the relative abundance of specific microbial taxa such as Verrucomicrobia, which are abundant in non-NAFLD mice, and reduced Firmicutes, which are a major group in NAFLD mice. MJM60958 affected the modulation of gut microbiota and altered the strain profile of short-chain fatty acids (SCFAs) production in the cecum by reduced lactic acid and enhanced acetic acid production. Overall, MJM60958 showed potential as a probiotic that can prevent and treat NAFLD.
Collapse
|
6
|
Potential Probiotic Lacticaseibacillus paracasei MJM60396 Prevents Hyperuricemia in a Multiple Way by Absorbing Purine, Suppressing Xanthine Oxidase and Regulating Urate Excretion in Mice. Microorganisms 2022; 10:microorganisms10050851. [PMID: 35630296 PMCID: PMC9146106 DOI: 10.3390/microorganisms10050851] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Hyperuricemia is a metabolic disorder caused by increased uric acid (UA) synthesis or decreased UA excretion. Changes in eating habits have led to an increase in the consumption of purine-rich foods, which is closely related to hyperuricemia. Therefore, decreased purine absorption, increased UA excretion, and decreased UA synthesis are the main strategies to ameliorate hyperuricemia. This study aimed to screen the lactic acid bacteria (LAB) with purine degrading ability and examine the serum UA-lowering effect in a hyperuricemia mouse model. As a result, Lacticaseibacillus paracasei MJM60396 was selected from 22 LAB isolated from fermented foods for 100% assimilation of inosine and guanosine. MJM60396 showed probiotic characteristics and safety properties. In the animal study, the serum uric acid was significantly reduced to a normal level after oral administration of MJM60396 for 3 weeks. The amount of xanthine oxidase, which catalyzes the formation of uric acid, decreased by 81%, and the transporters for excretion of urate were upregulated. Histopathological analysis showed that the damaged glomerulus, Bowman’s capsule, and tubules of the kidney caused by hyperuricemia was relieved. In addition, the impaired intestinal barrier was recovered and the expression of tight junction proteins, ZO-1 and occludin, was increased. Analysis of the microbiome showed that the relative abundance of Muribaculaceae and Lachnospiraceae bacteria, which were related to the intestinal barrier integrity, was increased in the MJM60396 group. Therefore, these results demonstrated that L. paracasei MJM60396 can prevent hyperuricemia in multiple ways by absorbing purines, decreasing UA synthesis by suppressing xanthine oxidase, and increasing UA excretion by regulating urate transporters.
Collapse
|
7
|
Lee Y, Kim N, Werlinger P, Suh DA, Lee H, Cho JH, Cheng J. Probiotic Characterization of Lactobacillus brevis MJM60390 and In Vivo Assessment of Its Antihyperuricemic Activity. J Med Food 2022; 25:367-380. [PMID: 35438552 DOI: 10.1089/jmf.2021.k.0171] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Uric acid is the final product of purine metabolism in human. The increase of serum uric acid is tightly related to the incidence of hyperuricemia and gout. Also, it has been reported that the intake of purine-rich foods like meat and seafood is associated with an increased risk of gout. Therefore, the reduction of purine absorption is one of therapeutic approaches to prevent hyperuricemia and gout. Currently, probiotics are being studied for the management of hyperuricemia and gout. In this study, we aimed to investigate the effect of Lactobacillus brevis MJM60390 on hyperuricemia induced by a high-purine diet and potassium oxonate in a mouse model. L. brevis MJM60390 among 24 lactic acid bacteria isolated from fermented foods showed the highest ability to assimilate inosine and guanosine in vitro and typical probiotic characteristics, like the absence of bioamine production, D-lactate production, hemolytic activity, as well as tolerance to simulated orogastrointestinal conditions and adherence to Caco-2 cells. In an in vivo animal study, the uric acid level in serum was significantly reduced to a normal level after oral administration of L. brevis MJM60390 for 2 weeks. The activity of xanthine oxidase catalyzing the formation of uric acid was also inhibited by 30%. Interestingly, damage to the glomerulus, Bowman's capsule, and tubules in the hyperuricemia model were reversed by supplementation with this strain. Fecal microbiome analysis revealed that L. brevis MJM60390 supplementation enhanced the relative abundance of the Rikenellaceae family, which produces the short-chain fatty acid butyrate and helps to maintain good gut condition. Therefore, these results demonstrated that L. brevis MJM60390 can be a probiotic candidate to prevent hyperuricemia.
Collapse
Affiliation(s)
- Youjin Lee
- Graduate School of Interdisciplinary Program of Biomodulation, and Myongji University, Yongin-si, Gyeonggi-Do, Korea
| | - Neagawooridwimeu Kim
- Graduate School of Interdisciplinary Program of Biomodulation, and Myongji University, Yongin-si, Gyeonggi-Do, Korea
| | - Pia Werlinger
- Graduate School of Interdisciplinary Program of Biomodulation, and Myongji University, Yongin-si, Gyeonggi-Do, Korea
| | - Dong-A Suh
- Graduate School of Interdisciplinary Program of Biomodulation, and Myongji University, Yongin-si, Gyeonggi-Do, Korea
| | - Hanki Lee
- Graduate School of Interdisciplinary Program of Biomodulation, and Myongji University, Yongin-si, Gyeonggi-Do, Korea
| | - Joo-Hyung Cho
- Graduate School of Interdisciplinary Program of Biomodulation, and Myongji University, Yongin-si, Gyeonggi-Do, Korea
| | - Jinhua Cheng
- Graduate School of Interdisciplinary Program of Biomodulation, and Myongji University, Yongin-si, Gyeonggi-Do, Korea.,Myongji Bioefficacy Research Center, Myongji University, Yongin-si, Gyeonggi-Do, Korea
| |
Collapse
|
8
|
Damodharan K, Palaniyandi SA, Suh JW, Yang SH. Probiotic Characterization of Lactobacillus paracasei subsp. paracasei KNI9 Inhibiting Adherence of Yersinia enterocolitica on Caco-2 Cells In Vitro. Probiotics Antimicrob Proteins 2021; 12:600-607. [PMID: 31289994 DOI: 10.1007/s12602-019-09535-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The study was aimed to characterize the probiotic properties of Lactobacillus paracasei subsp. paracasei strain KNI9 and its antagonistic activity against Yersinia enterocolitica subsp. enterocolitica. The strain KNI9 was susceptible to antibiotics such as chloramphenicol, tetracycline, erythromycin, and streptomycin recommended by European food safety authority (EFSA). Strain KNI9 exhibited tolerance to simulated oro-gastrointestinal (OGT) condition, adherence to Caco-2 cells, and antimicrobial activity against intestinal enteric pathogens such as Yersinia enterocolitica subsp. enterocolitica, Shigella boydii, and Listeria monocytogenes. Furthermore, the strain KNI9 inhibited the adherence and invasiveness of Y. enterocolitica subsp. enterocolitica to Caco-2 cell line. These results indicate that the L. paracasei subsp. paracasei KNI9 could be further developed into a potential probiotic strain after appropriate in vivo studies.
Collapse
Affiliation(s)
- Karthiyaini Damodharan
- Center for Nutraceutical and Pharmaceutical Materials, College of Natural Science, Myongji University, Cheoin-gu, Yongin, Gyeonggi-Do, 17058, Republic of Korea
| | - Sasikumar Arunachalam Palaniyandi
- Department of Biotechnology, Mepco Schlenk Engineering College, Mepco Nagar, Mepco Engineering College Post, Sivakasi, Tamilnadu, 626005, India
| | - Joo-Won Suh
- Center for Nutraceutical and Pharmaceutical Materials, College of Natural Science, Myongji University, Cheoin-gu, Yongin, Gyeonggi-Do, 17058, Republic of Korea.
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea.
| |
Collapse
|
9
|
Palaniyandi SA, Damodharan K, Suh JW, Yang SH. Probiotic Characterization of Cholesterol-Lowering Lactobacillus fermentum MJM60397. Probiotics Antimicrob Proteins 2021; 12:1161-1172. [PMID: 31432401 DOI: 10.1007/s12602-019-09585-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lactobacillus fermentum MJM60397 was subjected to in vitro safety tests and in vivo probiotic characterization. The MJM60397 strain was susceptible to antibiotics and was found to be non-mucinolytic and non-hemolytic, and does not produce bioamines. In addition, MJM60397 tolerated simulated oro-gastrointestinal conditions and adhered to Caco-2 cells. MJM60397 also exhibited bile salt hydrolase activity and could deconjugate bile acids. The hypocholesterolemic effects of strain MJM60397 were studied in high-fat diet-induced hypercholesterolemic male ICR mice. The mice were fed a high-cholesterol diet (HCD) and were divided into the following three experimental groups: HCD-control (HCD-Con), mice fed with HCD + L. fermentum MJM60397 (HCD-MJM60397), and mice fed with HCD + L. acidophilus ATCC 43121 (HCD-L.ac) as the positive control. Simultaneously, a normal control diet (NCD) group was maintained. After 7 weeks, the total cholesterol and low-density lipoprotein (LDL) cholesterol levels were significantly reduced in the livers of the HCD-MJM60397 mice when compared to those in the HCD-Con and HCD-L.ac mice. Fecal total bile acid content was significantly (P < 0.05) higher in the HCD-MJM60397 group than in the NCD, HCD-Con, and HCD-L.ac groups. Analysis of gene expression revealed higher expression of LDLR gene in the livers of the HCD-MJM60397 and HCD-L.ac mice than in the livers of the HCD-Con mice. These findings show that the hypocholesterolemic effects of the MJM60397 strain were attributable to its bile salt deconjugating activity, which resulted in decreased bile acid absorption and increased excretion of bile acids in the feces. These results indicate that L. fermentum MJM60397 could be developed into a potential probiotic for reducing the serum cholesterol levels.
Collapse
Affiliation(s)
- Sasikumar Arunachalam Palaniyandi
- Department of Biotechnology, Mepco Schlenk Engineering College, Mepco Nagar, Mepco Engineering College Post, Sivakasi, Tamilnadu, 626005, India
| | - Karthiyaini Damodharan
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Cheoin-gu, Yongin, Gyeonggi-Do, 17058, Republic of Korea
| | - Joo-Won Suh
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Cheoin-gu, Yongin, Gyeonggi-Do, 17058, Republic of Korea.
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea.
| |
Collapse
|
10
|
Śliżewska K, Chlebicz-Wójcik A, Nowak A. Probiotic Properties of New Lactobacillus Strains Intended to Be Used as Feed Additives for Monogastric Animals. Probiotics Antimicrob Proteins 2021; 13:146-162. [PMID: 32577907 PMCID: PMC7904557 DOI: 10.1007/s12602-020-09674-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The study aimed to evaluate the safety and probiotic properties of selected Lactobacillus strains, which are intended to be fed to monogastric animals. The Lactobacillus spp. appeared to be safe since they did not degrade mucus and did not exhibit β-haemolysis. Moreover, the survival of Caco-2 cells in the presence of metabolites of the selected strains was high, which also indicated their safety. The analysed strains showed moderate or strong antagonistic activity against Salmonella spp., Listeria monocytogenes, Campylobacter jejuni and Campylobacter coli, which was tested with the usage of the agar slab method. Furthermore, the strains showed high survivability in an acidic environment and the presence of bile salts (~90%). High resistivity or moderate susceptibility to antibiotics was also observed, as a result of the disc diffusion method. The strains were mostly moderately hydrophilic (hydrophobicity: 10.43–41.14%); nevertheless, their auto-aggregation capability exceeded 50% and their co-aggregation with pathogens varied between 12.12 and 85.45%. The ability of the selected strains to adhere to Caco-2 cells was also analysed; they were found to be moderately adhesive (85.09–95.05%) and able to hinder pathogens attaching to the cells (up to 62.58%). The analysed strains exhibit probiotic properties, such as high survivability and adherence to epithelial cells; therefore, they are suitable for administration to monogastric animals. Since the overuse of antibiotic growth promoters in livestock leads to the spread of antibiotic-resistant pathogens and accumulation of chemotherapeutic residues in food of animal origin, it is of vital importance to introduce alternative feed additives.
Collapse
Affiliation(s)
- Katarzyna Śliżewska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924, Łódź, Poland.
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924, Łódź, Poland.
| | - Agnieszka Chlebicz-Wójcik
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924, Łódź, Poland.
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924, Łódź, Poland.
| | - Adriana Nowak
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924, Łódź, Poland
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924, Łódź, Poland
| |
Collapse
|
11
|
Gardnerella vaginalis and Neisseria gonorrhoeae Are Effectively Inhibited by Lactobacilli with Probiotic Properties Isolated from Brazilian Cupuaçu ( Theobroma grandiflorum) Fruit. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6626249. [PMID: 33997030 PMCID: PMC8102102 DOI: 10.1155/2021/6626249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/04/2021] [Accepted: 04/23/2021] [Indexed: 02/01/2023]
Abstract
In recent years, certain Lactobacillus sp. have emerged in health care as an alternative therapy for various diseases. Based on this, this study is aimed at evaluating in vitro the potential probiotics of five lactobacilli strains isolated from pulp of cupuaçu fruit fermentation against Gardnerella vaginalis and Neisseria gonorrhoeae. Our lactobacilli strains were classified as safe for use in humans, and they were tolerant to heat and pH. Our strains were biofilm producers, while hydrophobicity and autoaggregation varied from 13% to 86% and 13% to 25%, respectively. The coaggregation of lactobacilli used in this study with G. vaginalis and N. gonorrhoeae ranged from 15% to 36% and 32% to 52%, respectively. Antimicrobial activity was present in all tested Lactobacillus strains against both pathogens, and the growth of pathogens in coculture was reduced by the presence of our lactobacilli. Also, all tested lactobacilli reduced the pH of the culture, even in incubation with pathogens after 24 hours. The cell-free culture supernatants (CFCS) of all five lactobacilli demonstrated activity against the two pathogens with a halo presence and CFCS characterization assay together with gas chromatography revealed that lactic acid was the most abundant organic acid in the samples (50% to 62%). Our results demonstrated that the organic acid production profile is strain-specific. This study revealed that cupuaçu is a promising source of microorganisms with probiotic properties against genital pathogens. We demonstrated by in vitro tests that our Lactobacillus strains have probiotic properties. However, the absence of in vivo tests is a limitation of our work due to the need to evaluate the interaction of our lactobacilli with pathogens in the vaginal mucosa. We believe that these findings may be useful in developing a product containing our lactobacilli and their supernatants in order to support with vaginal health.
Collapse
|
12
|
Le B, Yang SH. Effect of potential probiotic Leuconostoc mesenteroides FB111 in prevention of cholesterol absorption by modulating NPC1L1/PPARα/SREBP-2 pathways in epithelial Caco-2 cells. Int Microbiol 2018; 22:279-287. [DOI: 10.1007/s10123-018-00047-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/04/2018] [Accepted: 11/22/2018] [Indexed: 01/10/2023]
|