1
|
Liu H, Chu F, Wu Y, Gu X, Ran T, Wang W, Xu D. Reduced OxyR positively regulates the prodigiosin biosynthesis in Serratia marcescens FS14. Biochem Biophys Res Commun 2024; 710:149877. [PMID: 38581956 DOI: 10.1016/j.bbrc.2024.149877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
OxyR, a LysR family transcriptional regulator, plays vital roles in bacterial oxidative stress response. In this study, we found that the deletion of oxyR not only inhibited the antioxidant capacity of S. marcescens FS14, but also decreased the production of prodigiosin. Further study revealed that OxyR activated the prodigiosin biosynthesis at the transcriptional level. Complementary results showed that not only the wild-type OxyR but also the reduced form OxyRC199S could activate the prodigiosin biosynthesis. We further demonstrated that reduced form of wild type OxyR could bind to the promoter of pig gene cluster, and identified the binding sites which is different from oxidized OxyR binding sites in E. coli. Our results demonstrated that OxyR in FS14 uses oxidized form to regulate the expression of the antioxidant related genes and utilizes reduced form to activate prodigiosin production. Further in silico analysis suggested that the activation of prodigiosin biosynthesis by reduced OxyR should be general in S. marcesencs. To our knowledge, this is the first report to show that OxyR uses the reduced form to activate the gene's expression, therefore, our results provide a novel regulation mechanism of OxyR.
Collapse
Affiliation(s)
- Hong Liu
- Laboratory of Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fenglian Chu
- Laboratory of Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yi Wu
- Laboratory of Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiaochen Gu
- Laboratory of Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tingting Ran
- Laboratory of Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Weiwu Wang
- Laboratory of Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Dongqing Xu
- Laboratory of Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
2
|
Jia F, Peng X, Yang X, Qiu S, Jia S, Ran T, Wang W, Xu D. PqqF inhibits T6SS secretion by decreasing the pH in Serratia marcescens FS14. FEMS Microbiol Lett 2024; 371:fnae047. [PMID: 38908910 DOI: 10.1093/femsle/fnae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/21/2024] [Accepted: 06/21/2024] [Indexed: 06/24/2024] Open
Abstract
Pyrroloquinoline quinone (PQQ) is a redox cofactor with numerous important physiological functions, and the type VI secretion system (T6SS) is commonly found in Gram-negative bacteria and plays important roles in physiological metabolism of the bacteria. In this study, we found that the deletion of pqqF enhanced the secretion of Hcp-1 in Serratia marcesens FS14 in M9 medium. Transcriptional analysis showed that the deletion of pqqF almost had no effect on the expression of T6SS-1. Further study revealed that the increased secretion of Hcp-1 was altered by the pH changes of the culture medium through the reaction catalyzed by the glucose dehydrogenases in FS14. Finally, we demonstrated that decreased pH of culture medium has similar inhibition effects as PQQ induced on the secretion of T6SS-1. This regulation mode on T6SS by pH in FS14 is different from previously reported in other bacteria. Therefore, our results suggest a novel pH regulation mode of T6SS in S. marcesens FS14, and would broaden our knowledge on the regulation of T6SS secretion.
Collapse
Affiliation(s)
- Fengyu Jia
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Xuede Peng
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Xiaomei Yang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Shenshen Qiu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Shanshan Jia
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Tingting Ran
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Weiwu Wang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Dongqing Xu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| |
Collapse
|
3
|
Zhao X, Xu D, Xia W, Hu M, Peng X, Liu X, Ran T, Wang W. Multicopy expression of sigma factor RpoH reduces prodigiosin biosynthesis in Serratia marcescens FS14. Antonie Van Leeuwenhoek 2023; 116:1197-1208. [PMID: 37728826 DOI: 10.1007/s10482-023-01875-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/22/2023] [Indexed: 09/21/2023]
Abstract
Regulation of prodigiosin biosynthesis is received wide attention due to the antimicrobial, immunosuppressive and anticancer activities of prodigiosin. Here, we constructed a transposon mutant library in S. marcescens FS14 to identify genes involved in the regulation of prodigiosin biosynthesis. 62 strains with apparently different colors were obtained. Identification of the transposon insertion sites revealed that they are classified into three groups: the coding region of cyaA and two component system eepS/R and the promoter region of rpoH. Since the effect of cyaA and eepS/R genes on prodigiosin was extensively investigated in Serratia marcescens, we chose the mutant of rpoH for further investigation. Further deletion mutation of rpoH gene showed no effect on prodigiosin production suggesting that the effect on prodigiosin production caused by transposon insertion is not due to the deletion of RpoH. We further demonstrated that multicopy expression of RpoH reduced prodigiosin biosynthesis indicating that transposon insertion caused RpoH enhanced expression. Previous results indicate that RpoS is the sigma factor for transcription of pig gene cluster in FS14, to test whether the enhanced expression of RpoH prevents prodigiosin by competing with RpoS, we found that multicopy expression of RpoS could alleviate the prodigiosin production inhibition by enhanced RpoH. We proposed that multicopy expressed RpoH competes with RpoS for core RNA polymerase (RNAP) resulting in decreased transcription of pig gene cluster and prodigiosin production reduction. We also demonstrated that RpoH is not directly involved in prodigiosin biosynthesis. Our results suggest that manipulating the transcription level of sigma factors may be applied to regulate the production of secondary metabolites.
Collapse
Affiliation(s)
- Xuezheng Zhao
- Department of Microbiology, College of Life Sciences,, Nanjing Agricultural University, Nanjing, China
| | - Dongqing Xu
- Department of Microbiology, College of Life Sciences,, Nanjing Agricultural University, Nanjing, China
| | - Wenxiao Xia
- Department of Microbiology, College of Life Sciences,, Nanjing Agricultural University, Nanjing, China
| | - Menghua Hu
- Department of Microbiology, College of Life Sciences,, Nanjing Agricultural University, Nanjing, China
| | - Xuede Peng
- Department of Microbiology, College of Life Sciences,, Nanjing Agricultural University, Nanjing, China
| | - Xia Liu
- Department of Microbiology, College of Life Sciences,, Nanjing Agricultural University, Nanjing, China
| | - Tingting Ran
- Department of Microbiology, College of Life Sciences,, Nanjing Agricultural University, Nanjing, China.
| | - Weiwu Wang
- Department of Microbiology, College of Life Sciences,, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
4
|
BarA/UvrY differentially regulates prodigiosin biosynthesis and swarming motility in Serratia marcescens FS14. Res Microbiol 2023; 174:104010. [PMID: 36410584 DOI: 10.1016/j.resmic.2022.104010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
BarA/UvrY, a two-component system and global regulator that controls expression of more than a hundred of genes involved in virulence, motility, biofilm formation, and central carbon metabolism under various stress conditions. In this study, we investigated the function of BarA/UvrY system in Serratia marcescens FS14. The disruption of barA or/and uvrY results in the yield increase of secondary metabolite prodigiosin. We further demonstrated that BarA/UvrY system represses prodigiosin production by inhibiting the transcription level of pig gene cluster with direct binding to the pigA promoter. In addition, deletion of barA or/and uvrY abolished the swarming motility of FS14, but not the swimming motility. We revealed that BarA/UvrY activates swarming through directly upregulating the expression of the biosurfactant synthesis gene swrW rather than flagella system. We also observed that BarA/UvrY positively regulates the resistance to H2O2 same as in Escherichia coli highlighting the importance of BarA/UvrY on hydrogen peroxide resistance. Our results demonstrated that the BarA/UvrY system differentially regulates the biosynthesis of the secondary metabolite prodigiosin and swarming motility in S. marcescens FS14. Comparison of our results with those observed for Serratia sp. 39006 suggests that BarA/UvrY's role in regulation of secondary metabolite production is different among Serratia species.
Collapse
|
5
|
Qiu S, Jia S, Zhang F, Liu X, Ran T, Wang W, Wang C, Xu D. Two component system CpxR/A regulates the prodigiosin biosynthesis by negative control in Serratia marcescens FS14. Biochem Biophys Res Commun 2021; 579:136-140. [PMID: 34600298 DOI: 10.1016/j.bbrc.2021.09.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/20/2021] [Indexed: 11/30/2022]
Abstract
Prodigiosin is a tripyrrole red secondary metabolite synthesized by many microorganisms, including Serratia marcescens. In this study, we found that the deletion of the gene of sensor kinase CpxA dramatically decreased the prodigiosin production, while the deletion of the gene of the response regulator CpxR or both genes of CpxRA has no effect on prodigiosin production, the kinase function of CpxA is not essential for its regulation on prodigiosin production while the phosphorylation site of CpxR is required. We further demonstrated that the CpxA regulates the prodigiosin biosynthesis at the transcriptional level and the phosphatase activity of CpxA plays vital roles in the regulation of prodigiosin biosynthesis. Finally, we proposed that CpxR/A regulates the prodigiosin biosynthesis by negative control and the phosphorylation level of CpxR may determine the positive or negative control of the genes it regulated.
Collapse
Affiliation(s)
- Shenshen Qiu
- Laboratory of Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shanshan Jia
- Laboratory of Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fan Zhang
- Laboratory of Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xia Liu
- Laboratory of Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tingting Ran
- Laboratory of Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Weiwu Wang
- Laboratory of Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Changlin Wang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, China.
| | - Dongqing Xu
- Laboratory of Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|