1
|
da Fonseca JS, Sousa TF, de Almeida SVR, Silva CN, Castro GDS, Yamagishi MEB, Koolen HHF, Hanada RE, da Silva GF. Amazonian Bacteria from River Sediments as a Biocontrol Solution against Ralstonia solanacearum. Microorganisms 2024; 12:1364. [PMID: 39065132 PMCID: PMC11278729 DOI: 10.3390/microorganisms12071364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Bacterial wilt, caused by Ralstonia solanacearum, is one of the main challenges for sustainable tomato production in the Amazon region. This study evaluated the potential of bacteria isolated from sediments of the Solimões and Negro rivers for the biocontrol of this disease. From 36 bacteria selected through in vitro antibiosis, three promising isolates were identified: Priestia aryabhattai RN 11, Streptomyces sp. RN 24, and Kitasatospora sp. SOL 195, which inhibited the growth of the phytopathogen by 100%, 87.62%, and 100%, respectively. These isolates also demonstrated the ability to produce extracellular enzymes and plant growth-promoting compounds, such as indole-3-acetic acid (IAA), siderophore, and ammonia. In plant assays, during both dry and rainy seasons, P. aryabhattai RN 11 reduced disease incidence by 40% and 90%, respectively, while promoting the growth of infected plants. Streptomyces sp. RN 24 and Kitasatospora sp. SOL 195 exhibited high survival rates (85-90%) and pathogen suppression in the soil (>90%), demonstrating their potential as biocontrol agents. This study highlights the potential of Amazonian bacteria as biocontrol agents against bacterial wilt, contributing to the development of sustainable management strategies for this important disease.
Collapse
Affiliation(s)
- Jennifer Salgado da Fonseca
- Graduate Program in Biotechnology, Federal University of Amazonas, Manaus 69080-005, AM, Brazil; (J.S.d.F.); (T.F.S.)
| | - Thiago Fernandes Sousa
- Graduate Program in Biotechnology, Federal University of Amazonas, Manaus 69080-005, AM, Brazil; (J.S.d.F.); (T.F.S.)
| | - Suene Vanessa Reis de Almeida
- Graduate Program in Agriculture in the Humid Tropics, National Amazon Research Institute, Manaus 69060-062, AM, Brazil; (S.V.R.d.A.); (C.N.S.); (R.E.H.)
| | - Carina Nascimento Silva
- Graduate Program in Agriculture in the Humid Tropics, National Amazon Research Institute, Manaus 69060-062, AM, Brazil; (S.V.R.d.A.); (C.N.S.); (R.E.H.)
| | - Gleucinei dos Santos Castro
- Graduate Program in Biodiversity and Biotechnology, State University of Amazonas, Manaus 69065-001, AM, Brazil; (G.d.S.C.); (H.H.F.K.)
| | | | - Hector Henrique Ferreira Koolen
- Graduate Program in Biodiversity and Biotechnology, State University of Amazonas, Manaus 69065-001, AM, Brazil; (G.d.S.C.); (H.H.F.K.)
| | - Rogério Eiji Hanada
- Graduate Program in Agriculture in the Humid Tropics, National Amazon Research Institute, Manaus 69060-062, AM, Brazil; (S.V.R.d.A.); (C.N.S.); (R.E.H.)
| | | |
Collapse
|
2
|
Pham NQA, Ngoc TH, Vo N, Vinh TQ, Thien NM, Nguyen HD, Millard AD, Tien LTT, Phuc VT, Oanh HN, Hoang HA. Biological Characterization and Genomic Analysis of Novel Phages DLDT_So2 and BHDT_So9 Against Pseudomonas solanacearum, an Infectious Agent in Tomato in Vietnam. Indian J Microbiol 2023; 63:386-394. [PMID: 37781021 PMCID: PMC10533463 DOI: 10.1007/s12088-023-01090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/05/2023] [Indexed: 10/03/2023] Open
Abstract
Tomato (Solanum lycopersicum L.) is an important grown vegetable in Vietnam. Bacterial wilt caused by Pseudomonas solanacearum has been considered to be an important disease resulting in a harvest loss up to 90% and significant economic loss to farmers. In this study, two bacteriophages DLDT_So2 and BHDT_So9 specific to P. solanacearum were isolated. Morphological analysis indicated that DLDT_So2 and BHDT_So9 had podovirus morphology and were classified into Autographiviridae family. The latent period and burst size of DLDT_So2 was found to be approximately 120 min and 20.0 ± 2.4 virions per infected cell. Meanwhile, the latent period of BHDT_So9 was 140 min with a burst size of 11.5 ± 2.8 virions per infected cell. Of the 23 bacterial strains tested, the phages infected 7/11 strains of P. solanacearum and none of the other bacteria tested were susceptible to the phages. Stability of the phages at different temperatures, pHs, solvents was also investigated. The genomes of DLDT_So2 and BHDT_So9 are 41,341 bp and 41,296 bp and long with a total GC content of 63%, contains 48 and 46 predicted protein-encoding CDSs. No virulence or antibiotic resistance genes were found in the genomes, suggesting they would be useful biocontrol agents against P. solanacearum. Classification of the phage using average nucleotide identity, phylogenetic analysis was also carried out. The two phages represented new species when they had overall average nucleotide identity of < 95%. This is first report of the isolation and characterization of P. solanacearum-specific phages from tomato farms in Vietnam. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01090-9.
Collapse
Affiliation(s)
- Ngoc Quynh Anh Pham
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - To H. Ngoc
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Nam Vo
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Laboratory of Molecular Biotechnology, University of Science, Ho Chi Minh City, Vietnam
| | - Tu Q. Vinh
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Nguyen M. Thien
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Hoang Duc Nguyen
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
| | - Andrew D. Millard
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, UK
| | - Le T. T. Tien
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Vo T. Phuc
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Huynh N. Oanh
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Hoang A. Hoang
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| |
Collapse
|
3
|
Torres-Rodriguez JA, Reyes-Pérez JJ, Quiñones-Aguilar EE, Hernandez-Montiel LG. Actinomycete Potential as Biocontrol Agent of Phytopathogenic Fungi: Mechanisms, Source, and Applications. PLANTS (BASEL, SWITZERLAND) 2022; 11:3201. [PMID: 36501241 PMCID: PMC9736024 DOI: 10.3390/plants11233201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Synthetic fungicides have been the main control of phytopathogenic fungi. However, they cause harm to humans, animals, and the environment, as well as generating resistance in phytopathogenic fungi. In the last few decades, the use of microorganisms as biocontrol agents of phytopathogenic fungi has been an alternative to synthetic fungicide application. Actinomycetes isolated from terrestrial, marine, wetland, saline, and endophyte environments have been used for phytopathogenic fungus biocontrol. At present, there is a need for searching new secondary compounds and metabolites of different isolation sources of actinomycetes; however, little information is available on those isolated from other environments as biocontrol agents in agriculture. Therefore, the objective of this review is to compare the antifungal activity and the main mechanisms of action in actinomycetes isolated from different environments and to describe recent achievements of their application in agriculture. Although actinomycetes have potential as biocontrol agents of phytopathogenic fungi, few studies of actinomycetes are available of those from marine, saline, and wetland environments, which have equal or greater potential as biocontrol agents than isolates of actinomycetes from terrestrial environments.
Collapse
Affiliation(s)
- Juan A. Torres-Rodriguez
- Nanotechnology and Microbial Biocontrol Group, Centro de Investigaciones Biológicas del Noroeste, Av. Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23090, Mexico
| | - Juan J. Reyes-Pérez
- Facultad de Ciencias Pecuarias, Universidad Técnica Estatal de Quevedo, Av. Quito km 1.5 vía a Santo Domingo, Quevedo 120501, Ecuador
| | - Evangelina E. Quiñones-Aguilar
- Centro de Investigaciones y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero, El Bajío del Arenal, Guadalajara 45019, Mexico
| | - Luis G. Hernandez-Montiel
- Nanotechnology and Microbial Biocontrol Group, Centro de Investigaciones Biológicas del Noroeste, Av. Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23090, Mexico
| |
Collapse
|
4
|
Biocontrol Streptomyces Induces Resistance to Bacterial Wilt by Increasing Defense-Related Enzyme Activity in Solanum melongena L. Curr Microbiol 2022; 79:146. [PMID: 35344085 DOI: 10.1007/s00284-022-02832-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 03/08/2022] [Indexed: 11/27/2022]
Abstract
Streptomyces strains were isolated from rhizosphere soil and evaluated for in vitro plant growth and antagonistic potential against Ralstonia solanacearum. Based on their in vitro screening, seven Streptomyces were evaluated for plant growth promotion (PGP) and biocontrol efficacy by in-planta and pot culture study. In the in-planta study, Streptomyces-treated eggplant seeds showed better germination percentage, plant growth, and disease occurrence against R. solanacearum than the control treatment. Hence, all seven Streptomyces cultures were developed as a bioformulation by farmyard manure and used for pot culture study. The highest plant growth, weight, and total chlorophyll content were observed in UP1A-1-treated eggplant followed by UP1A-4, UT4A-49, and UT6A-57. Similarly, the maximum biocontrol efficacy was observed in UP1A-1-treated eggplants against bacterial wilt. The biocontrol potential of Streptomyces is also confirmed through metabolic responses by assessing the activities of the defense-related enzymes peroxidase (POX), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL) and as well as the levels of total phenol. Treatment with UP1A-1/ UT4A-49 and challenge with R. solanacearum led to maximum changes in the activities of POX, PPO, and PAL and the levels of total phenol in the eggplants at different time intervals. Alterations in enzymes of UP1A-1 treatment were related to early defense responses in eggplant. Therefore, the treatment with UP1A-1 significantly delayed the establishment of bacterial wilt in eggplant. Altogether, the present study suggested that the treatment of Streptomyces maritimus UP1A-1 fortified farmyard manure has improved the plant growth and stronger disease control against R. solanacearum on eggplant.
Collapse
|