1
|
Habiburrahman M, Sutopo S, Wardoyo MP. Role of DEK in carcinogenesis, diagnosis, prognosis, and therapeutic outcome of breast cancer: An evidence-based clinical review. Crit Rev Oncol Hematol 2023; 181:103897. [PMID: 36535490 DOI: 10.1016/j.critrevonc.2022.103897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Breast cancer is a significantly burdening women's cancer with limited diagnostic modalities. DEK is a novel biomarker overexpressed in breast cancers, currently exhaustively researched for its diagnosis and prognosis. Search for relevant meta-analyses, cohorts, and experimental studies in the last fifteen years was done in five large scientific databases. Non-English, non-full text articles or unrelated studies were excluded. Thirteen articles discussed the potential of DEK to estimate breast cancer characteristics, treatment outcomes, and prognosis. This proto-oncogene plays a role in breast carcinogenesis, increasing tumour proliferation and invasion, preventing apoptosis, and creating an immunodeficient tumour milieu with M2 tumour-associated macrophages. DEK is also associated with worse clinicopathological features and survival in breast cancer patients. Using a Kaplan-Meier plotter data analysis, DEK expression predicts worse overall survival (HR 1.24, 95%CI: 1.01-1.52, p = 0.039), comparable to other biomarkers. DEK is a promising novel biomarker requiring further research to determine its bedside applications.
Collapse
Affiliation(s)
- Muhammad Habiburrahman
- Faculty of Medicine Universitas Indonesia, Central Jakarta, DKI Jakarta, Indonesia; Dr. Cipto Mangunkusumo Hospital, Central Jakarta, DKI Jakarta, Indonesia.
| | - Stefanus Sutopo
- Faculty of Medicine Universitas Indonesia, Central Jakarta, DKI Jakarta, Indonesia
| | - Muhammad Prasetio Wardoyo
- Faculty of Medicine Universitas Indonesia, Central Jakarta, DKI Jakarta, Indonesia; Dr. Cipto Mangunkusumo Hospital, Central Jakarta, DKI Jakarta, Indonesia
| |
Collapse
|
2
|
Wang S, Ding B, Cui M, Yan W, Xia Q, Meng D, Shen S, Xie S, Jin H, Zhang X. Fanconi Anemia Pathway Genes Advance Cervical Cancer via Immune Regulation and Cell Adhesion. Front Cell Dev Biol 2021; 9:734794. [PMID: 34869316 PMCID: PMC8634638 DOI: 10.3389/fcell.2021.734794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022] Open
Abstract
Fanconi anemia (FA) pathway is a typical and multienzyme-regulated DNA damage repairer that influences the occurrence and development of disease including cancers. Few comprehensive analyses were reported about the role of FA-related genes (FARGs) and their prognostic values in cancers. In this study, a comprehensive pan-cancer analysis on 79 FARGs was performed. According to the correlation analyses between HPV integration sites and FARGs, we found that FARGs played specific and critical roles in HPV-related cancers, especially in cervical cancer (CC). Based on this, a FARGs-associated prognostic risk score (FPS) model was constructed, and subsequently a nomogram model containing the FPS was developed with a good accuracy for CC overall survival (OS) and recurrence-free survival (RFS) outcome prediction. We also used the similar expression pattern of FARGs by consensus clustering analysis to separate the patients into three subgroups that exhibited significant differential OS but not RFS. Moreover, differential expressed genes (DEGs) between the two risk groups or three clusters were identified and immune pathways as well as cell adhesion processes were determined by functional enrichment analysis. Results indicated that FARGs might promote occurrence and development of CC by regulating the immune cells' infiltration and cell adhesion. In addition, through the machine learning models containing decision tree, random forest, naïve bayes, and support vector machine models, screening of important variables on CC prognosis, we finally determined that ZBTB32 and CENPS were the main elements affecting CC OS, while PALB2 and BRCA2 were for RFS. Kaplan-Meier analysis revealed that bivariate prediction of CC outcome was reliable. Our study systematically analyzed the prognostic prediction values of FARGs and demonstrated their potential mechanism in CC aggressiveness. Results provided perspective in FA pathway-associated modification and theoretical basis for CC clinical treatments.
Collapse
Affiliation(s)
- Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Bo Ding
- Department of Gynecology and Obstetrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Mengjing Cui
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Wenjing Yan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qianqian Xia
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Dan Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Siyuan Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Shuqian Xie
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Hua Jin
- Clinical Laboratory, Affiliated Tumor Hospital of Nantong University (Nantong Tumor Hospital), Nantong, China
| | - Xing Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.,Department of Gynecology and Obstetrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.,Clinical Laboratory, Affiliated Tumor Hospital of Nantong University (Nantong Tumor Hospital), Nantong, China
| |
Collapse
|
3
|
Gianni P, Matenoglou E, Geropoulos G, Agrawal N, Adnani H, Zafeiropoulos S, Miyara SJ, Guevara S, Mumford JM, Molmenti EP, Giannis D. The Fanconi anemia pathway and Breast Cancer: A comprehensive review of clinical data. Clin Breast Cancer 2021; 22:10-25. [PMID: 34489172 DOI: 10.1016/j.clbc.2021.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/17/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
The development of breast cancer depends on several risk factors, including environmental, lifestyle and genetic factors. Despite the evolution of DNA sequencing techniques and biomarker detection, the epidemiology and mechanisms of various breast cancer susceptibility genes have not been elucidated yet. Dysregulation of the DNA damage response causes genomic instability and increases the rate of mutagenesis and the risk of carcinogenesis. The Fanconi Anemia (FA) pathway is an important component of the DNA damage response and plays a critical role in the repair of DNA interstrand crosslinks and genomic stability. The FA pathway involves 22 recognized genes and specific mutations have been identified as the underlying defect in the majority of FA patients. A thorough understanding of the function and epidemiology of these genes in breast cancer is critical for the development and implementation of individualized therapies that target unique tumor profiles. Targeted therapies (PARP inhibitors) exploiting the FA pathway gene defects have been developed and have shown promising results. This narrative review summarizes the current literature on the involvement of FA genes in sporadic and familial breast cancer with a focus on clinical data derived from large cohorts.
Collapse
Affiliation(s)
- Panagiota Gianni
- Department of Internal Medicine III, Hematology, Oncology, Palliative Medicine, Rheumatology and Infectious Diseases, University Hospital Ulm, Germany
| | - Evangelia Matenoglou
- Medical School, Aristotle University of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Geropoulos
- Thoracic Surgery Department, University College London Hospitals NHS Foundation Trust, London
| | - Nirav Agrawal
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY
| | - Harsha Adnani
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY
| | - Stefanos Zafeiropoulos
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, New York, NY
| | - Santiago J Miyara
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, New York, NY
| | - Sara Guevara
- Department of Surgery, North Shore University Hospital, Manhasset, New York, NY
| | - James M Mumford
- Department of Family Medicine, Glen Cove Hospital, Glen Cove, New York, NY; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, NY
| | - Ernesto P Molmenti
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Department of Surgery, North Shore University Hospital, Manhasset, New York, NY; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, NY
| | - Dimitrios Giannis
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY.
| |
Collapse
|
4
|
Veninga A, De Simone I, Heemskerk JWM, Cate HT, van der Meijden PEJ. Clonal hematopoietic mutations linked to platelet traits and the risk of thrombosis or bleeding. Haematologica 2020; 105:2020-2031. [PMID: 32554558 PMCID: PMC7395290 DOI: 10.3324/haematol.2019.235994] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
Platelets are key elements in thrombosis, particularly in atherosclerosis-associated arterial thrombosis (atherothrombosis), and hemostasis. Megakaryocytes in the bone marrow, differentiated from hematopoietic stem cells are generally considered as a uniform source of platelets. However, recent insights into the causes of malignancies, including essential thrombocytosis, indicate that not only inherited but also somatic mutations in hematopoietic cells are linked to quantitative or qualitative platelet abnormalities. In particular cases, these form the basis of thrombo-hemorrhagic complications regularly observed in patient groups. This has led to the concept of clonal hematopoiesis of indeterminate potential (CHIP), defined as somatic mutations caused by clonal expansion of mutant hematopoietic cells without evident disease. This concept also provides clues regarding the importance of platelet function in relation to cardiovascular disease. In this summative review, we present an overview of genes associated with clonal hematopoiesis and altered platelet production and/or functionality, like mutations in JAK2 We consider how reported CHIP genes can influence the risk of cardiovascular disease, by exploring the consequences for platelet function related to (athero)thrombosis, or the risk of bleeding. More insight into the functional consequences of the CHIP mutations may favor personalized risk assessment, not only with regard to malignancies but also in relation to thrombotic vascular disease.
Collapse
Affiliation(s)
- Alicia Veninga
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht
| | - Ilaria De Simone
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht
| | - Hugo Ten Cate
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht.,Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center, Maastricht.,Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Paola E J van der Meijden
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht .,Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center, Maastricht
| |
Collapse
|
5
|
Tarsounas M, Sung P. The antitumorigenic roles of BRCA1-BARD1 in DNA repair and replication. Nat Rev Mol Cell Biol 2020; 21:284-299. [PMID: 32094664 PMCID: PMC7204409 DOI: 10.1038/s41580-020-0218-z] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2020] [Indexed: 11/09/2022]
Abstract
The tumour suppressor breast cancer type 1 susceptibility protein (BRCA1) promotes DNA double-strand break (DSB) repair by homologous recombination and protects DNA replication forks from attrition. BRCA1 partners with BRCA1-associated RING domain protein 1 (BARD1) and other tumour suppressor proteins to mediate the initial nucleolytic resection of DNA lesions and the recruitment and regulation of the recombinase RAD51. The discovery of the opposing functions of BRCA1 and the p53-binding protein 1 (53BP1)-associated complex in DNA resection sheds light on how BRCA1 influences the choice of homologous recombination over non-homologous end joining and potentially other mutagenic pathways of DSB repair. Understanding the functional crosstalk between BRCA1-BARD1 and its cofactors and antagonists will illuminate the molecular basis of cancers that arise from a deficiency or misregulation of chromosome damage repair and replication fork maintenance. Such knowledge will also be valuable for understanding acquired tumour resistance to poly(ADP-ribose) polymerase (PARP) inhibitors and other therapeutics and for the development of new treatments. In this Review, we discuss recent advances in elucidating the mechanisms by which BRCA1-BARD1 functions in DNA repair, replication fork maintenance and tumour suppression, and its therapeutic relevance.
Collapse
Affiliation(s)
- Madalena Tarsounas
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK.
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
6
|
Lønning PE, Eikesdal HP, Løes IM, Knappskog S. Constitutional Mosaic Epimutations - a hidden cause of cancer? Cell Stress 2019; 3:118-135. [PMID: 31225507 PMCID: PMC6551830 DOI: 10.15698/cst2019.04.183] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/11/2022] Open
Abstract
Silencing of tumor suppressor genes by promoter hypermethylation is a key mechanism to facilitate cancer progression in many malignancies. While promoter hypermethylation can occur at later stages of the carcinogenesis process, constitutional methylation of key tumor suppressors may be an initiating event whereby cancer is started. Constitutional BRCA1 methylation due to cis-acting germline genetic variants is associated with a high risk of breast and ovarian cancer. However, this seems to be a rare event, restricted to a very limited number of families. In contrast, mosaic constitutional BRCA1 methylation is detected in 4-7% of newborn females without germline BRCA1 mutations. While the cause of such methylation is poorly understood, mosaic normal tissue BRCA1 methylation is associated with a 2-3 fold increased risk of high-grade serous ovarian cancer (HGSOC). As such, BRCA1 methylation may be the cause of a significant number of ovarian cancers. Given the molecular similarities between HGSOC and basal-like breast cancer, the findings with respect to HGSOC suggest that constitutional BRCA1 methylation could be a risk factor for basal-like breast cancer as well. Similar to BRCA1, some specific germline variants in MLH1 and MSH2 are associated with promoter methylation and a high risk of colorectal cancers in rare hereditary cases of the disease. However, as many as 15% of all colorectal cancers are of the microsatellite instability (MSI) "high" subtype, in which commonly the tumors harbor MLH1 hypermethylation. Constitutional mosaic methylation of MLH1 in normal tissues has been detected but not formally evaluated as a potential risk factor for incidental colorectal cancers. However, the findings with respect to BRCA1 in breast and ovarian cancer raises the question whether mosaic MLH1 methylation is a risk factor for MSI positive colorectal cancer as well. As for MGMT, a promoter variant is associated with elevated methylation across a panel of solid cancers, and MGMT promoter methylation may contribute to an elevated cancer risk in several of these malignancies. We hypothesize that constitutional mosaic promoter methylation of crucial tumor suppressors may trigger certain types of cancer, similar to germline mutations inactivating the same particular genes. Such constitutional methylation events may be a spark to ignite cancer development, and if associated with a significant cancer risk, screening for such epigenetic alterations could be part of cancer prevention programs to reduce cancer mortality in the future.
Collapse
Affiliation(s)
- Per E. Lønning
- K.G.Jebsen Center for Genome Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Hans P. Eikesdal
- K.G.Jebsen Center for Genome Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Inger M. Løes
- K.G.Jebsen Center for Genome Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Stian Knappskog
- K.G.Jebsen Center for Genome Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
7
|
Lakhi NA, Mizejewski GJ. Alpha-fetoprotein and Fanconi Anemia: Relevance to DNA Repair and Breast Cancer Susceptibility. Fetal Pediatr Pathol 2017; 36:49-61. [PMID: 27690720 DOI: 10.1080/15513815.2016.1225873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Elevations of serum alpha-fetoprotein (sAFP) have been reported in fetal and infant states of anemia. Fanconi anemia (FA) belongs to a family of genetic instability disorders which lack the capability to repair DNA breaks. The lesion occurs at a checkpoint regulatory step of the G2 to mitotic transition, allowing FA cells to override cell-cycle arrest. FA DNA repair pathways contain complementation groups known as FANC proteins. FANC proteins form multi-protein complexes with BRCA proteins and are involved in homologous DNA repair. An impaired cascade in these events imparts an increased breast cancer susceptibility to female FA patients. Elevations of sAFP have availed this fetal protein to serve as a biomarker for FA disease. However, the origin of the synthesis of sAFA has not been determined in FA patients. We hypothesize that hematopoietic multipotent progenitor stem cells in the bone marrow are the source of sAFP production in FA patients.
Collapse
Affiliation(s)
- Nisha A Lakhi
- a Department of Obstetrics and Gynecology , Richmond University Medical Center , Staten Island , New York , USA
| | - Gerald J Mizejewski
- b Wadsworth Center , New York State Department of Health , Albany , New York , USA
| |
Collapse
|
8
|
Ma XD, Cai GQ, Zou W, Huang YH, Zhang JR, Wang DT, Chen BL. First evidence for the contribution of the genetic variations of BRCA1-interacting protein 1 (BRIP1) to the genetic susceptibility of cervical cancer. Gene 2013; 524:208-13. [PMID: 23644138 DOI: 10.1016/j.gene.2013.04.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/06/2013] [Accepted: 04/08/2013] [Indexed: 02/06/2023]
Abstract
BRIP1 (BRCA1-interacting protein 1), a DNA-dependent ATPase and a DNA helicase, is critical for BRCA-associated DNA damage repair functions, and may be involved in the development of cervical cancer. Genetic markers in different regions of the BRIP1 gene have a plausible role in modulating the risk of cervical cancer. In this study, we evaluate the association between the BRIP1 variations and the risk of cervix cancer. We examined the potential association between cervical cancer and eighteen single nucleotide polymorphisms (SNPs, rs2048718, rs16945692, rs4968451, rs6504074, rs4988344, rs8077088, rs10515211, rs9897121, rs9906313, rs2159450, rs4986764, rs11871785, rs4986763, rs11079454, rs7213430, rs34289250, rs4988345 and rs12937080) of the BRIP1 gene using the MassARRAY system. The participants enrolled in this study included 298 patients with cervical cancer and 286 healthy women as the healthy controls from a Chinese Han population. The results showed that rs16945692 (intron 1), rs4968451 (intron 4), rs4986764 (exon 18) and rs7213430 (3'UTR) were significantly associated with cervical cancer (P<0.05). Furthermore, strong linkage disequilibrium (LD) was observed in three blocks (D'>0.9), and significantly more T-A-C-A haplotypes (block 1) (P=0.001) were found in the patients with cervical cancer. Significantly higher frequencies of C-A-T haplotypes (block 2) (P=0.018) and A-A haplotypes (block 3) (P=0.009) were detected in the healthy controls than in the patients with cervical cancer, suggesting that they may show protective effects against cervical cancer. These findings point to a role for the BRIP1 gene polymorphisms in cervical cancer in a Chinese Han population, and may be informative for future genetic or biological studies on cervical cancer.
Collapse
Affiliation(s)
- X D Ma
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, 17 Changle West Road, Xi'an 710032, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Mapping genetic alterations causing chemoresistance in cancer: identifying the roads by tracking the drivers. Oncogene 2013; 32:5315-30. [PMID: 23474753 DOI: 10.1038/onc.2013.48] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/16/2013] [Accepted: 01/16/2013] [Indexed: 12/12/2022]
Abstract
Although new agents are implemented to cancer therapy, we lack fundamental understandings of the mechanisms of chemoresistance, the main obstacle to cure in cancer. Here we review clinical evidence linking molecular defects to drug resistance across different tumour forms and discuss contemporary experimental evidence exploring these mechanisms. Although evidence, in general, is sparse and fragmentary, merging knowledge links drug resistance, and also sensitivity, to defects in functional pathways having a key role in cell growth arrest or death and DNA repair. As these pathways may act in concert, there is a need to explore multiple mechanisms in parallel. Taking advantage of massive parallel sequencing and other novel high-throughput technologies and base research on biological hypotheses, we now have the possibility to characterize functional defects related to these key pathways and to design a new generation of studies identifying the mechanisms controlling resistance to different treatment regimens in different tumour forms.
Collapse
|
10
|
JOSEPH JERRY D, GRINER NICHOLASB, TAO LUWEI. TUMOR SUPPRESSOR PATHWAYS AND CELLULAR ORIGINS OF BREAST CANCER: NEW COMPLEXITIES AND NEW HOPES. ACTA ACUST UNITED AC 2012. [DOI: 10.1142/s179398441000002x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Heritable breast cancer syndromes have identified the recognition and processing of DNA double strand breaks as a fundamental vulnerability in the breast epithelium. The role of homology-directed DNA repair is particularly prominent, indicating that this repair pathway is rate-limiting. Although the activities of the tumor suppressor genes underlying heritable breast cancer act in a common pathway of DNA double strand break repair, the specific lesions result in surprisingly different patterns of biomarkers in the breast cancers, suggesting that they arise from different cell types that include the luminal, basal and progenitor cells within the breast epithelium. Therefore, each cell type appears to have distinct underlying vulnerabilities in repair of DNA double strand breaks. While the heterogeneity of targets poses a challenge to develop specific therapies, these pathways also render tumor cells sensitive to drugs targeting double strand break repair pathways offering new options for therapies. As double strand break repair is a common pathway underlying breast cancer risk, therapies that enhance the proficiency of this pathway offer a strategy for chemoprevention.
Collapse
Affiliation(s)
- D. JOSEPH JERRY
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, Massachusetts 01003, USA
| | - NICHOLAS B. GRINER
- Graduate Program in Molecular and Cellular Biology, 661 North Pleasant Street, Amherst, Massachusetts 01003, USA
| | - LUWEI TAO
- Graduate Program in Molecular and Cellular Biology, 661 North Pleasant Street, Amherst, Massachusetts 01003, USA
| |
Collapse
|
11
|
Valeri A, Martínez S, Casado JA, Bueren JA. Fanconi anaemia: from a monogenic disease to sporadic cancer. Clin Transl Oncol 2011; 13:215-21. [PMID: 21493181 DOI: 10.1007/s12094-011-0645-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The dissection of the molecular pathways participating in genetic instability disorders has rendered invaluable information about the mechanisms of cancer pathogenesis and progression, and is offering a unique opportunity to establish targeted anticancer therapies. Fanconi anaemia (FA) is a paradigm of cancer-prone inherited monogenic disorders. Moreover, accumulated evidence indicates that genetic and epigenetic alterations in FA genes can also play an important role in sporadic cancer in the general population. Here, we summarise current progress in the understanding of the molecular biology of FA and review the principal mechanisms accounting for a disrupted FA pathway in sporadic cancer. Additionally, we discuss the impact of these findings in the development of new anticancer therapies, particularly with DNA interstrand crosslinkers and with new inhibitors of the FA and/or alternative DNA repair pathways.
Collapse
Affiliation(s)
- Antonio Valeri
- Hematopoiesis and Gene Therapy Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) y Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | | | | | | |
Collapse
|
12
|
Ataxia telangiectasia mutated nuclear localization in head and neck cancer cells is PPP2R2B-dependent. ASIAN BIOMED 2010. [DOI: 10.2478/abm-2010-0046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Background: Protein phosphatase 2A (PP2A) has been implicated in radiation-induced activation of cellular responses, likely by its ability to regulate the autophosphorylation of the ataxia telangiectasia mutated (ATM) protein, a key molecule involved in the DNA damage response initiated by double-stranded DNA breaks. Interestingly, a hereditary defect in the PPP2R2B gene, which encodes the beta isoform of PP2A regulatory subunit B, causes autosomal dominant spinocerebellar ataxia 12, a clinical condition resembling that of ataxia telangiectasia patients. Moreover, PPP2R2B is significantly down-regulated in many human cancers, including head and neck squamous cell carcinomas (HNSCCs). Objective: Examine whether PPP2R2B regulates ATM function, thereby contributing to tumor progression due to the resulting defective DNA repair. Methods: The roles of PPP2R2B were evaluated in irradiated HNSCC cell lines, siRNAPPP2R2B cells and okadaic acid treated cells. Expression of PPP2R2B was measured by microarray, Western blot analysis and real time quantitative rtPCR. ATM quantity and localization, ATM phosphorylation and γ-H2AX were determined by Western blot analysis and/or immunofluorescence assay. Clonogenic cell survival assay was performed to determine ionizing radiation sensitivity. Results: PPP2R2B expression is reduced in multiple tumor types, including HNSCCs. Indeed, HNSCC cell lines that have lower PPP2R2B mRNA expression and siRNAPPP2R2B cells lower basal and radiation-induced levels of phosphorylated ATM and the consequent reduction in the levels of phosphorylation of the downstream ATM target, γ-H2AX. Depletion of PPP2R2B and inhibition of PP2A with okadaic acid resulted in limited ATM nuclear localization. Finally, siRNAPPP2R2B cells displayed enhanced sensitivity to death after radiation. Conclusion: In HNSCCs, ATM nuclear localization is PPP2R2B dependent, and decreased PPP2R2B expression may result in limited ATM activation by preventing its nuclear accumulation and ATM-chromatin interaction. Therefore, decreased PPP2R2B expression in HNSCCs may contribute to genomic instability, cancer development and radiation sensitivity by limiting ATM functions.
Collapse
|
13
|
Rantakari P, Nikkilä J, Jokela H, Ola R, Pylkäs K, Lagerbohm H, Sainio K, Poutanen M, Winqvist R. Inactivation of Palb2 gene leads to mesoderm differentiation defect and early embryonic lethality in mice. Hum Mol Genet 2010; 19:3021-9. [PMID: 20484223 DOI: 10.1093/hmg/ddq207] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mutations of the PALB2 tumor suppressor gene in humans are associated with hereditary predisposition to breast and also some other cancers. In the present study, we have characterized mice deficient in Palb2. The data show that the Palb2((+/-)) mice are normal and fertile, and lack macroscopic tumors when followed up till the age of 8 months. Homozygous (HO) Palb2((-/-)) mice present with embryonic lethality and die at E9.5 at the latest. The mutant embryos are smaller in size, developmentally retarded and display defective mesoderm differentiation after gastrulation. In Palb2((-/-)) embryos, the expression of cyclin-dependent kinase inhibitor p21 is increased, and Palb2((-/-)) blastocysts show a growth defect in vitro. Hence, the phenotype of the Palb2((-/-)) mice in many regards resembles those previously reported for Brca1 and Brca2 knockout mice. The similarity in the phenotypes between Palb2, Brca1 and Brca2 knockout mice further supports the functional relationship shown in vitro for these three proteins. Accordingly, our data in vivo suggest that a key function for PALB2 is to interact with and to build up appropriate communication between BRCA1 and BRCA2, thereby licensing the successful performance of the physiological tasks mediated by these two proteins, particularly in homologous recombination and in proper DNA damage response signaling.
Collapse
Affiliation(s)
- Pia Rantakari
- Department of Physiology, Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, FIN-20520 Turku, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Taneja P, Maglic D, Kai F, Zhu S, Kendig RD, Fry EA, Inoue K. Classical and Novel Prognostic Markers for Breast Cancer and their Clinical Significance. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2010; 4:15-34. [PMID: 20567632 PMCID: PMC2883240 DOI: 10.4137/cmo.s4773] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of biomarkers ensures breast cancer patients receive optimal treatment. Established biomarkers such as estrogen receptor (ER) and progesterone receptor (PR) have been playing significant roles in the selection and management of patients for endocrine therapy. HER2 is a strong predictor of response to trastuzumab. Recently, the roles of ER as a negative and HER2 as a positive indicator for chemotherapy have been established. Ki67 has traditionally been recognized as a poor prognostic factor, but recent studies suggest that measurement of Ki67-positive cells during treatment will more effectively predict treatment efficacy for both anti-hormonal and chemotherapy. p53 mutations are found in 20–35% of human breast cancers and are associated with aggressive disease with poor clinical outcome when the DNA-binding domain is mutated. The utility of cyclin D1 as a predictor of breast cancer prognosis is controversial, but cyclin D1b overexpression is associated with poor prognosis. Likewise, overexpression of the low molecular weight form of cyclin E1 protein predicts poor prognosis. Breast cancers from BRCA1/2 carriers often show high nuclear grades, negativity to ER/PR/HER2, and p53 mutations, and thus, are associated with poor prognosis. The prognostic values of other molecular markers, such as p14ARF, TBX2/3, VEGF in breast cancer are also discussed. Careful evaluation of these biomarkers with current treatment modality is required to determine whether their measurement or monitoring offer significant clinical benefits.
Collapse
|
15
|
Abstract
Geneticists estimate that 5% to 10% of all cancers diagnosed in the pediatric age range occur in children born with a genetic mutation that directly increases their lifetime risk for neoplasia. However, despite the fact that only a fraction of cancers in children occur as a result of an identified inherited predisposition, characterizing genetic mutations responsible for increased cancer risk in such syndromes has resulted in a profound understanding of relevant molecular pathways involved in carcinogenesis and/or resistance to neoplasia. Importantly, because most cancer predisposition syndromes result in an increased risk of a small number of defined malignancies, personalized prophylactic surveillance and preventive measures can be implemented in affected patients. Lastly, many of the same genetic targets identified from cancer-prone families are mechanistically involved in the majority of sporadic cancers in adults and children, thereby underscoring the clinical relevance of knowledge gained from these defined syndromes and introducing novel therapeutic opportunities to the broader oncologic community. This review highlights the clinical and genetic features of many of the known constitutional genetic syndromes that predispose to malignancy in children and young adults.
Collapse
|
16
|
Showalter SL, Charles S, Belin J, Cozzitorto J, Einstein P, Richards NG, Sauter PK, Kennedy EP, Witkiewicz A, Brody JR, Yeo CJ. Identifying pancreatic cancer patients for targeted treatment: the challenges and limitations of the current selection process and vision for the future. Expert Opin Drug Deliv 2010; 7:273-84. [DOI: 10.1517/17425240903544462] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Crespi B, Summers K, Dorus S. Evolutionary genomics of human intellectual disability. Evol Appl 2010; 3:52-63. [PMID: 25567903 PMCID: PMC3352458 DOI: 10.1111/j.1752-4571.2009.00098.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 07/28/2009] [Indexed: 01/28/2023] Open
Abstract
Previous studies have postulated that X-linked and autosomal genes underlying human intellectual disability may have also mediated the evolution of human cognition. We have conducted the first comprehensive assessment of the extent and patterns of positive Darwinian selection on intellectual disability genes in humans. We report three main findings. First, as noted in some previous reports, intellectual disability genes with primary functions in the central nervous system exhibit a significant concentration to the X chromosome. Second, there was no evidence for a higher incidence of recent positive selection on X-linked than autosomal intellectual disability genes, nor was there a higher incidence of selection on such genes overall, compared to sets of control genes. However, the X-linked intellectual disability genes inferred to be subject to recent positive selection were concentrated in the Rho GTP-ase pathway, a key signaling pathway in neural development and function. Third, among all intellectual disability genes, there was evidence for a higher incidence of recent positive selection on genes involved in DNA repair, but not for genes involved in other functions. These results provide evidence that alterations to genes in the Rho GTP-ase and DNA-repair pathways may play especially-important roles in the evolution of human cognition and vulnerability to genetically-based intellectual disability.
Collapse
Affiliation(s)
- Bernard Crespi
- Department of Biosciences, Simon Fraser UniversityBurnaby, BC, Canada
| | - Kyle Summers
- Department of Biology, East Carolina UniversityGreenville, NC, USA
| | - Steve Dorus
- Department of Biology and Biochemistry, University of BathBath, UK
| |
Collapse
|
18
|
Affiliation(s)
- Mats Ljungman
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
19
|
Barroso E, Pita G, Arias JI, Menendez P, Zamora P, Blanco M, Benitez J, Ribas G. The Fanconi anemia family of genes and its correlation with breast cancer susceptibility and breast cancer features. Breast Cancer Res Treat 2009; 118:655-60. [PMID: 19536649 DOI: 10.1007/s10549-009-0439-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Accepted: 06/03/2009] [Indexed: 01/14/2023]
Abstract
Fanconi anemia (FA) family of proteins participates in the DNA repair pathway by homologous recombination, and it is currently formed by 13 genes. Some of these proteins also confer susceptibility to hereditary breast and ovarian cancer (HBOC), since FANCD1 is the BRCA2 breast cancer susceptibility gene, and FANCN/PALB2 and FANCJ/BRIP1 explain 2% of non-BRCA1/2 HBOC families. Thus, there is an important connection between FA and BRCA pathways. In a previous case-control association study analysing FANCA, FANCD2 and FANCL, we reported an association between FANCD2 and sporadic breast cancer (BC) risk (OR = 1.35). In order to know whether variants in other FA genes could also be involved in this association, we have extended our study with the rest of FA genes and some others implicated in the BRCA pathway. We have also analyzed the correlation with survival, nodal metastasis and hormonal receptors (ER- and PR-). A total of 61 SNPs in ten FA genes (FANC-B, -C, -D1, -E, -F, -G, -I, -J, -M, -N) and five FA related genes (ATM, ATR, BRCA1, H2AX and USP1) were studied in a total of 547 consecutive and nonrelated sporadic BC cases and 552 unaffected controls from the Spanish population. Association analyses reported marginal statistically significant results with the minor allele of intronic SNPs in three genes: BRCA1, BRCA2/FANCD1, and ATM. Survival association with SNPs on FANCC and BRCA2/FANCD1 genes were also reported. Sub-group analyses revealed associations between SNPs on FANCI and ATM and nodal metastasis status and between FANCJ/BRIP1 and FANCN/PALB2 and PR- status.
Collapse
|
20
|
Wagner JM, Karnitz LM. Cisplatin-induced DNA damage activates replication checkpoint signaling components that differentially affect tumor cell survival. Mol Pharmacol 2009; 76:208-14. [PMID: 19403702 DOI: 10.1124/mol.109.055178] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cisplatin and other platinating agents are some of the most widely used chemotherapy agents. These drugs exert their antiproliferative effects by creating intrastrand and interstrand DNA cross-links, which block DNA replication. The cross-links mobilize signaling and repair pathways, including the Rad9-Hus1-Rad1-ATR-Chk1 pathway, a pathway that helps tumor cells survive the DNA damage inflicted by many chemotherapy agents. Here we show that Rad9 and ATR play critical roles in helping tumor cells survive cisplatin treatment. However, depleting Chk1 with small interfering RNA or inhibiting Chk1 with 3-(carbamoylamino)-5-(3-fluorophenyl)-N-(3-piperidyl)thiophene-2-carboxamide (AZD7762) did not sensitize these cells to cisplatin, oxaliplatin, or carboplatin. Moreover, when Rad18, Rad51, BRCA1, BRCA2, or FancD2 was disabled, Chk1 depletion did not further sensitize the cells to cisplatin. In fact, Chk1 depletion reversed the sensitivity seen when Rad18 was disabled. Collectively, these studies suggest that the pharmacological manipulation of Chk1 may not be an effective strategy to sensitize tumors to platinating agents.
Collapse
Affiliation(s)
- Jill M Wagner
- Department of Molecular Pharmacology & Experimental Therapeutics and Division of Oncology Research, Mayo Clinic, College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW The proportion of breast cancers directly attributable to determinant hereditary factors is estimated to be 5-10%. A number of recent findings with regard to hereditary breast cancer should affect the criteria and scope of routine genetic testing and, soon, breast cancer therapy. RECENT FINDINGS The number of genes causing genetic cancer has expanded, mostly with genes that encode proteins that function in the BRCA1/2 pathways. The risk level associated with some genes is still under investigation, but is high for specific mutations. Some mutant alleles occur frequently, some are rare. High-throughput technologies will progressively allow investigating all genes involved in genetic (breast) cancer risks in all individuals for whom this information could be relevant. This and the emerging novel treatment options specific for cancers in mutation carriers will oblige us to progressively drop all currently used selection criteria such as familial phenotype for genomic testing. A major challenge remains the effective penetration of this knowledge in the professional and lay community, the broad application and financing of this high-throughput technology, and the identification of as yet unknown breast cancer predisposition genes. SUMMARY The assessment of breast cancer predisposition genes, previously only an optional predictive genetic test, is growing in importance as it also becomes a therapeutic predictive test.
Collapse
|
22
|
Campeau PM, Foulkes WD, Tischkowitz MD. Hereditary breast cancer: new genetic developments, new therapeutic avenues. Hum Genet 2008; 124:31-42. [PMID: 18575892 DOI: 10.1007/s00439-008-0529-1] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 06/13/2008] [Indexed: 12/24/2022]
Abstract
Six genes confer a high risk for developing breast cancer (BRCA1/2, TP53, PTEN, STK11, CDH1). Both BRCA1 and BRCA2 have DNA repair functions, and BRCA1/2 deficient tumors are now being targeted by poly(ADP-ribose) polymerase inhibitors. Other genes conferring an increased risk for breast cancer include ATM, CHEK2, PALB2, BRIP1 and genome-wide association studies have identified lower penetrance alleles including FGFR2, a minor allele of which is associated with breast cancer. We review recent findings related to the function of some of these genes, and discuss how they can be targeted by various drugs. Gaining deeper insights in breast cancer susceptibility will improve our ability to identify those families at increased risk and permit the development of new and more specific therapeutic approaches.
Collapse
Affiliation(s)
- Philippe M Campeau
- Department of Medical Genetics, McGill University Health Centre, McGill University, Montreal, QC, Canada.
| | | | | |
Collapse
|
23
|
Beneke S. Poly(ADP-ribose) polymerase activity in different pathologies--the link to inflammation and infarction. Exp Gerontol 2008; 43:605-614. [PMID: 18511226 DOI: 10.1016/j.exger.2008.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 03/25/2008] [Accepted: 04/14/2008] [Indexed: 12/27/2022]
Abstract
DNA repair and aging are two phenomena closely connected to each other. The poly(ADP-ribosyl)ation reaction has been implicated in both of them. Poly(ADP-ribose) was originally discovered as an enzymatic reaction product after DNA damage. Soon it became evident that it is necessary for regulation of different repair pathways. Also, evidence accumulated that poly(ADP-ribose) formation capacity is at least correlated with the life span of mammalian species. As a NAD(+)-consuming process, poly(ADP-ribosyl)ation can lead to cell death by energy depletion. This finding opened the area for investigation of poly(ADP-ribose) polymerase activity and polymer formation in pathologies. This review provides an introduction into the wide and complex field of poly(ADP-ribosyl)ation in different pathologies with regards of cell death regulation, inflammation and resulting tissue damage.
Collapse
Affiliation(s)
- Sascha Beneke
- University of Konstanz, Molecular Toxicology Group, Universiteatsstr. 10, Box X911, 78457 Konstanz, Germany
| |
Collapse
|