1
|
Kastora S, Triantafyllidou O, Kounidas G, Vlahos N. Delineation of an unknown significance FANCA genetic variant in a recurrent breast cancer patient. BMJ Case Rep 2021; 14:14/3/e241251. [PMID: 33762291 PMCID: PMC7993164 DOI: 10.1136/bcr-2020-241251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Fanconi anaemia is a heterogeneous condition associated with mutations in the Fanconi anaemia complementation group (FANC). The FANC group has also been extensively associated with tumourigenesis due to its intricate association with the cellular repair mechanism. In this case report, we are drawing initial associations between a previously unreported FANC-A gene point mutation (P1222L) and familial breast cancer, by examining the presentation and management of a 65-year-old female patient with history of bilateral breast cancer of two different histological categories (ductal and in situ lobular). Here, we present a further genetic analysis beyond the common clinical practice to understand the patient's genetic predisposition and improve their long-term management.
Collapse
Affiliation(s)
- Stavroula Kastora
- Acute Medicine, Grampian University Hospitals NHS Trust, Aberdeen, UK
- School of Medicine, University of Aberdeen College of Life Sciences & Medicine, Aberdeen, UK
| | - Olga Triantafyllidou
- Reproductive Medicine Unit, "Leto" Maternity Hospital, Athens, Greece
- 2nd Department of Obstetrics and Gynaecology, Aretaieion Panepistemiako Nosokomeio, Athens, Attica, Greece
| | - Georgios Kounidas
- School of Medicine, University of Aberdeen College of Life Sciences & Medicine, Aberdeen, UK
| | - Nikolaos Vlahos
- 2nd Department of Obstetrics and Gynaecology, Aretaieion Panepistemiako Nosokomeio, Athens, Attica, Greece
| |
Collapse
|
2
|
Tan J, Lan L. The DNA secondary structures at telomeres and genome instability. Cell Biosci 2020; 10:47. [PMID: 32257105 PMCID: PMC7104500 DOI: 10.1186/s13578-020-00409-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/14/2020] [Indexed: 01/09/2023] Open
Abstract
Telomeric DNA are TTAGGG tandem repeats, which are susceptible for oxidative DNA damage and hotspot regions for formation of DNA secondary structures such as t-loop, D-loop, G-quadruplexes (G4), and R-loop. In the past two decades, unique DNA or RNA secondary structures at telomeres or some specific regions of genome have become promising therapeutic targets. G-quadruplex and R-loops at telomeres or transcribed regions of genome have been considered as the potential targets for cancer therapy. Here we discuss the potentials to target the secondary structures (G4s and R-loops) in genome as therapy approaches.
Collapse
Affiliation(s)
- Jun Tan
- Harvard Medical School, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129 USA
- Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02115 USA
| | - Li Lan
- Harvard Medical School, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129 USA
- Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02115 USA
| |
Collapse
|
3
|
Bravo-Navas S, Yáñez L, Romón Í, Pipaón C. Elevated FANCA expression determines a worse prognosis in chronic lymphocytic leukemia and interferes with p53 function. FASEB J 2019; 33:10477-10489. [PMID: 31251079 DOI: 10.1096/fj.201802439rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by a failure in the mechanisms of apoptosis that leads to an accumulation of mature B cells in peripheral blood, bone marrow, and lymphoid organs. The molecular basis of CLL remains unknown. Certain cytogenetic and molecular markers determine a bad prognosis in CLL. Fanconi anemia complementation (FANC) proteins have been related to chromosomal instability and alterations in the mechanisms of p53 activation, control of cell cycle, and apoptosis. We investigated the role of certain FANC proteins in CLL. Our data identified a group of patients with CLL with high expression of FANCA in peripheral B-CLL cells and we established its relationship with the deletion of 11q23 and a worse prognosis. When we investigated the molecular mechanisms of this bad prognosis, we observed a reduction in the expression of 2 p53 target genes, p21 and ∆Np73, in CLL primary cells transfected with FANCA. Functional studies demonstrated an impairment of p53 by FANCA. Moreover, we obtained evidence of a cooperation between FANCA and the NEDD8-interacting protein NUB1L in the destabilization of p53. For the first time, FANCA is reported as a bad prognosis marker by a mechanism other than its role in the Fanconi anemia-breast cancer DNA repair pathway.-Bravo-Navas, S., Yáñez, L., Romón, Í., Pipaón, C. Elevated FANCA expression determines a worse prognosis in chronic lymphocytic leukemia and interferes with p53 function.
Collapse
Affiliation(s)
- Sara Bravo-Navas
- Instituto de Investigación Marqués de Valdecilla (IDIVAL)-Hospital Marqués de Valdecilla, Santander, Spain
| | - Lucrecia Yáñez
- Instituto de Investigación Marqués de Valdecilla (IDIVAL)-Hospital Marqués de Valdecilla, Santander, Spain
| | - Íñigo Romón
- Instituto de Investigación Marqués de Valdecilla (IDIVAL)-Hospital Marqués de Valdecilla, Santander, Spain
| | - Carlos Pipaón
- Instituto de Investigación Marqués de Valdecilla (IDIVAL)-Hospital Marqués de Valdecilla, Santander, Spain
| |
Collapse
|
4
|
Lønning PE, Eikesdal HP, Løes IM, Knappskog S. Constitutional Mosaic Epimutations - a hidden cause of cancer? Cell Stress 2019; 3:118-135. [PMID: 31225507 PMCID: PMC6551830 DOI: 10.15698/cst2019.04.183] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/11/2022] Open
Abstract
Silencing of tumor suppressor genes by promoter hypermethylation is a key mechanism to facilitate cancer progression in many malignancies. While promoter hypermethylation can occur at later stages of the carcinogenesis process, constitutional methylation of key tumor suppressors may be an initiating event whereby cancer is started. Constitutional BRCA1 methylation due to cis-acting germline genetic variants is associated with a high risk of breast and ovarian cancer. However, this seems to be a rare event, restricted to a very limited number of families. In contrast, mosaic constitutional BRCA1 methylation is detected in 4-7% of newborn females without germline BRCA1 mutations. While the cause of such methylation is poorly understood, mosaic normal tissue BRCA1 methylation is associated with a 2-3 fold increased risk of high-grade serous ovarian cancer (HGSOC). As such, BRCA1 methylation may be the cause of a significant number of ovarian cancers. Given the molecular similarities between HGSOC and basal-like breast cancer, the findings with respect to HGSOC suggest that constitutional BRCA1 methylation could be a risk factor for basal-like breast cancer as well. Similar to BRCA1, some specific germline variants in MLH1 and MSH2 are associated with promoter methylation and a high risk of colorectal cancers in rare hereditary cases of the disease. However, as many as 15% of all colorectal cancers are of the microsatellite instability (MSI) "high" subtype, in which commonly the tumors harbor MLH1 hypermethylation. Constitutional mosaic methylation of MLH1 in normal tissues has been detected but not formally evaluated as a potential risk factor for incidental colorectal cancers. However, the findings with respect to BRCA1 in breast and ovarian cancer raises the question whether mosaic MLH1 methylation is a risk factor for MSI positive colorectal cancer as well. As for MGMT, a promoter variant is associated with elevated methylation across a panel of solid cancers, and MGMT promoter methylation may contribute to an elevated cancer risk in several of these malignancies. We hypothesize that constitutional mosaic promoter methylation of crucial tumor suppressors may trigger certain types of cancer, similar to germline mutations inactivating the same particular genes. Such constitutional methylation events may be a spark to ignite cancer development, and if associated with a significant cancer risk, screening for such epigenetic alterations could be part of cancer prevention programs to reduce cancer mortality in the future.
Collapse
Affiliation(s)
- Per E. Lønning
- K.G.Jebsen Center for Genome Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Hans P. Eikesdal
- K.G.Jebsen Center for Genome Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Inger M. Løes
- K.G.Jebsen Center for Genome Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Stian Knappskog
- K.G.Jebsen Center for Genome Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
5
|
|
6
|
Stoepker C, Ameziane N, van der Lelij P, Kooi IE, Oostra AB, Rooimans MA, van Mil SE, Brink A, Dietrich R, Balk JA, Ylstra B, Joenje H, Feller SM, Brakenhoff RH. Defects in the Fanconi Anemia Pathway and Chromatid Cohesion in Head and Neck Cancer. Cancer Res 2015; 75:3543-53. [PMID: 26122845 DOI: 10.1158/0008-5472.can-15-0528] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/19/2015] [Indexed: 11/16/2022]
Abstract
Failure to repair DNA damage or defective sister chromatid cohesion, a process essential for correct chromosome segregation, can be causative of chromosomal instability (CIN), which is a hallmark of many types of cancers. We investigated how frequent this occurs in head and neck squamous cell carcinoma (HNSCC) and whether specific mechanisms or genes could be linked to these phenotypes. The genomic instability syndrome Fanconi anemia is caused by mutations in any of at least 16 genes regulating DNA interstrand crosslink (ICL) repair. Since patients with Fanconi anemia have a high risk to develop HNSCC, we investigated whether and to which extent Fanconi anemia pathway inactivation underlies CIN in HNSCC of non-Fanconi anemia individuals. We observed ICL-induced chromosomal breakage in 9 of 17 (53%) HNSCC cell lines derived from patients without Fanconi anemia. In addition, defective sister chromatid cohesion was observed in five HNSCC cell lines. Inactivation of FANCM was responsible for chromosomal breakage in one cell line, whereas in two other cell lines, somatic mutations in PDS5A or STAG2 resulted in inadequate sister chromatid cohesion. In addition, FANCF methylation was found in one cell line by screening an additional panel of 39 HNSCC cell lines. Our data demonstrate that CIN in terms of ICL-induced chromosomal breakage and defective chromatid cohesion is frequently observed in HNSCC. Inactivation of known Fanconi anemia and chromatid cohesion genes does explain CIN in the minority of cases. These findings point to phenotypes that may be highly relevant in treatment response of HNSCC.
Collapse
Affiliation(s)
- Chantal Stoepker
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Najim Ameziane
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Petra van der Lelij
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Irsan E Kooi
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Anneke B Oostra
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Martin A Rooimans
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Saskia E van Mil
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Arjen Brink
- Department of Otolaryngology-Head and Neck Surgery, VU University Medical Center, Amsterdam, the Netherlands
| | - Ralf Dietrich
- German Fanconi Anemia Support Group and Research Fund, Unna-Siddinghausen, Germany
| | - Jesper A Balk
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Bauke Ylstra
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
| | - Hans Joenje
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Stephan M Feller
- Biological Systems Architecture Group, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, United Kingdom
| | - Ruud H Brakenhoff
- Department of Otolaryngology-Head and Neck Surgery, VU University Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Abstract
Fanconi anemia (FA) represents a paradigm of rare genetic diseases, where the quest for cause and cure has led to seminal discoveries in cancer biology. Although a total of 16 FA genes have been identified thus far, the biochemical function of many of the FA proteins remains to be elucidated. FA is rare, yet the fact that 5 FA genes are in fact familial breast cancer genes and FA gene mutations are found frequently in sporadic cancers suggest wider applicability in hematopoiesis and oncology. Establishing the interaction network involving the FA proteins and their associated partners has revealed an intersection of FA with several DNA repair pathways, including homologous recombination, DNA mismatch repair, nucleotide excision repair, and translesion DNA synthesis. Importantly, recent studies have shown a major involvement of the FA pathway in the tolerance of reactive aldehydes. Moreover, despite improved outcomes in stem cell transplantation in the treatment of FA, many challenges remain in patient care.
Collapse
|
8
|
Martínez S, Pérez L, Galmarini CM, Aracil M, Tercero JC, Gago F, Albella B, Bueren JA. Inhibitory effects of marine-derived DNA-binding anti-tumour tetrahydroisoquinolines on the Fanconi anaemia pathway. Br J Pharmacol 2014; 170:871-82. [PMID: 23937566 DOI: 10.1111/bph.12331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 07/22/2013] [Accepted: 07/26/2013] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE We have previously shown that cells with a defective Fanconi anaemia (FA) pathway are hypersensitive to trabectedin, a DNA-binding anti-cancer tetrahydroisoquinoline (DBAT) whose adducts functionally mimic a DNA inter-strand cross link (ICL). Here we expand these observations to new DBATs and investigate whether our findings in primary untransformed cells can be reproduced in human cancer cells. EXPERIMENTAL APPROACH Initially, the sensitivity of transformed and untransformed cells, deficient or not in one component of the FA pathway, to mitomycin C (MMC) and three DBATs, trabectedin, Zalypsis and PM01183, was assessed. Then, the functional interaction of these drugs with the FA pathway was comparatively investigated. KEY RESULTS While untransformed FA-deficient haematopoietic cells were hypersensitive to both MMC and DBATs, the response of FA-deficient squamous cell carcinoma (SCC) cells to DBATs was similar to that of their respective FA-competent counterparts, even though these FA-deficient SCC cells were hypersensitive to MMC. Furthermore, while MMC always activated the FA pathway, the DBATs inhibited the FA pathway in the cancer cell lines tested and this enhanced their response to MMC. CONCLUSIONS AND IMPLICATIONS Our data show that although DBATs functionally interact with DNA as do agents that generate classical ICL, these drugs should be considered as FA pathway inhibitors rather than activators. Moreover, this effect was most significant in a variety of cancer cells. These inhibitory effects of DBATs on the FA pathway could be exploited clinically with the aim of 'fanconizing' cancer cells in order to make them more sensitive to other anti-tumour drugs.
Collapse
Affiliation(s)
- Sandra Martínez
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), E-28040, Madrid, Spain; Pharmamar S.A., Avda. de los Reyes, 1 - Pol. Ind. La Mina, E-28770, Colmenar Viejo, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Wienk H, Slootweg JC, Speerstra S, Kaptein R, Boelens R, Folkers GE. The Fanconi anemia associated protein FAAP24 uses two substrate specific binding surfaces for DNA recognition. Nucleic Acids Res 2013; 41:6739-49. [PMID: 23661679 PMCID: PMC3711432 DOI: 10.1093/nar/gkt354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
To maintain the integrity of the genome, multiple DNA repair systems exist to repair damaged DNA. Recognition of altered DNA, including bulky adducts, pyrimidine dimers and interstrand crosslinks (ICL), partially depends on proteins containing helix-hairpin-helix (HhH) domains. To understand how ICL is specifically recognized by the Fanconi anemia proteins FANCM and FAAP24, we determined the structure of the HhH domain of FAAP24. Although it resembles other HhH domains, the FAAP24 domain contains a canonical hairpin motif followed by distorted motif. The HhH domain can bind various DNA substrates; using nuclear magnetic resonance titration experiments, we demonstrate that the canonical HhH motif is required for double-stranded DNA (dsDNA) binding, whereas the unstructured N-terminus can interact with single-stranded DNA. Both DNA binding surfaces are used for binding to ICL-like single/double-strand junction-containing DNA substrates. A structural model for FAAP24 bound to dsDNA has been made based on homology with the translesion polymerase iota. Site-directed mutagenesis, sequence conservation and charge distribution support the dsDNA-binding model. Analogous to other HhH domain-containing proteins, we suggest that multiple FAAP24 regions together contribute to binding to single/double-strand junction, which could contribute to specificity in ICL DNA recognition.
Collapse
Affiliation(s)
- Hans Wienk
- Bijvoet Center For Biomolecular Research, NMR Spectroscopy, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
10
|
Mapping genetic alterations causing chemoresistance in cancer: identifying the roads by tracking the drivers. Oncogene 2013; 32:5315-30. [PMID: 23474753 DOI: 10.1038/onc.2013.48] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/16/2013] [Accepted: 01/16/2013] [Indexed: 12/12/2022]
Abstract
Although new agents are implemented to cancer therapy, we lack fundamental understandings of the mechanisms of chemoresistance, the main obstacle to cure in cancer. Here we review clinical evidence linking molecular defects to drug resistance across different tumour forms and discuss contemporary experimental evidence exploring these mechanisms. Although evidence, in general, is sparse and fragmentary, merging knowledge links drug resistance, and also sensitivity, to defects in functional pathways having a key role in cell growth arrest or death and DNA repair. As these pathways may act in concert, there is a need to explore multiple mechanisms in parallel. Taking advantage of massive parallel sequencing and other novel high-throughput technologies and base research on biological hypotheses, we now have the possibility to characterize functional defects related to these key pathways and to design a new generation of studies identifying the mechanisms controlling resistance to different treatment regimens in different tumour forms.
Collapse
|
11
|
Romick-Rosendale LE, Lui VWY, Grandis JR, Wells SI. The Fanconi anemia pathway: repairing the link between DNA damage and squamous cell carcinoma. Mutat Res 2013; 743-744:78-88. [PMID: 23333482 DOI: 10.1016/j.mrfmmm.2013.01.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 01/03/2013] [Accepted: 01/05/2013] [Indexed: 12/18/2022]
Abstract
Fanconi anemia (FA) is a rare inherited recessive disease caused by mutations in one of fifteen genes known to encode FA pathway components. In response to DNA damage, nuclear FA proteins associate into high molecular weight complexes through a cascade of post-translational modifications and physical interactions, followed by the repair of damaged DNA. Hematopoietic cells are particularly sensitive to the loss of these interactions, and bone marrow failure occurs almost universally in FA patients. FA as a disease is further characterized by cancer susceptibility, which highlights the importance of the FA pathway in tumor suppression, and will be the focus of this review. Acute myeloid leukemia is the most common cancer type, often subsequent to bone marrow failure. However, FA patients are also at an extreme risk of squamous cell carcinoma (SCC) of the head and neck and gynecological tract, with an even greater incidence in those individuals who have received a bone marrow transplant and recovered from hematopoietic disease. FA tumor suppression in hematopoietic versus epithelial compartments could be mechanistically similar or distinct. Definition of compartment specific FA activities is now critical to assess the effects of today's bone marrow failure treatments on tomorrow's solid tumor development. It is our hope that current therapies can then be optimized to decrease the risk of malignant transformation in both hematopoietic and epithelial cells. Here we review our current understanding of the mechanisms of action of the Fanconi anemia pathway as it contributes to stress responses, DNA repair and squamous cell carcinoma susceptibility.
Collapse
Affiliation(s)
- Lindsey E Romick-Rosendale
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Vivian W Y Lui
- Department of Otolaryngology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jennifer R Grandis
- Department of Otolaryngology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Susanne I Wells
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
12
|
BIK (NBK) is a mediator of the sensitivity of Fanconi anaemia group C lymphoblastoid cell lines to interstrand DNA cross-linking agents. Biochem J 2013; 448:153-63. [PMID: 22873408 DOI: 10.1042/bj20120327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
FA (Fanconi anaemia) is a rare hereditary disorder characterized by congenital malformations, progressive bone marrow failure and an extraordinary predisposition to develop cancer. At present, 15 genes have been related to this condition and mutations of them have also been found in different types of cancer. Bone marrow failure threatens the life of FA patients during the first decade of their life, but the mechanisms underlying this process are not completely understood. In the present study we investigate a possible imbalance between the expression of pro- and anti-apoptotic proteins as a cause for the hypersensitivity of FANCC (FA, complementation group C)-deficient cells to genotoxic stress. We found a BIK (Bcl-2 interacting killer) over-expression in lymphoblastoid cell lines derived from FA-C patients when compared with their phenotypically corrected counterparts. This overexpression has a transcriptional basis since the regulatory region of the gene shows higher activity in FANCC-deficient cells. We demonstrate the involvement of BIK in the sensitivity of FA-C lymphoblasts to interstrand DNA cross-linking agents as it is induced by these drugs and interference of its expression in these cells preserves their viability and reduces apoptosis. We investigate the mechanism of BIK overexpression in FANCC-deficient cells by analysing the activity of many different signalling pathways in these cells. Finally, we provide evidence of a previously undescribed indirect epigenetic regulation of BIK in FA-C lymphoblasts mediated by ΔNp73, an isoform of p73 lacking its transactivation domain that activates BIK through a proximal element in its promoter.
Collapse
|
13
|
Kaplan KB, Li R. A prescription for 'stress'--the role of Hsp90 in genome stability and cellular adaptation. Trends Cell Biol 2012; 22:576-83. [PMID: 22959309 DOI: 10.1016/j.tcb.2012.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/08/2012] [Accepted: 08/12/2012] [Indexed: 12/11/2022]
Abstract
Changes in cell homeostasis, or cell 'stress', are thought to tax the ability of the Hsp90 chaperone to facilitate an array of processes critical for genome maintenance. Here, we review the current understanding of how the Hsp90 chaperone machinery ensures the function of proteins important for DNA repair, recombination, and chromosome segregation. We discuss the idea that cell stress can overload Hsp90, resulting in genomic instability that may have important implications for stress adaptation and selection. The importance of Hsp90 in genome maintenance and its limited capacity to buffer the proteome may underlie the initiation or progression of diseases such as cancer.
Collapse
Affiliation(s)
- Kenneth B Kaplan
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
14
|
Liu HT, Wang LL, Liu LX. Advances in understanding mechanisms underlying the antitumor activity of curcumin analogue EF24. Shijie Huaren Xiaohua Zazhi 2012; 20:1853-1857. [DOI: 10.11569/wcjd.v20.i20.1853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Curcumin, a natural polyphenol which was first extracted by Vogel and Pelletier from rhizomes of the plant Curcuma longa L, has potent anticarcinogenic activity and low toxic side effects in a wide variety of tumor cells. It has been listed as a third-generation chemoprophylactic drug by the US National Cancer Institute. However, the therapeutic benefit is hampered by its low absorption after transdermal or oral application. Ames et al. have developed a series of novel synthetic curcumin analogs that are more potent and have better water solubility than curcumin. One of these leading compounds, EF24, exhibits about 10-fold greater cytotoxic activity against various cancer cell lines in relation to curcumin. This article will review the recent advances in understanding mechanisms underlying the antitumor activity of EF24.
Collapse
|
15
|
Unraveling the role of FANCD2 in chronic myeloid leukemia. Leukemia 2012; 26:1447-8. [DOI: 10.1038/leu.2012.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|