1
|
Individual 3D-printed fixation masks for radiotherapy: first clinical experiences. Int J Comput Assist Radiol Surg 2021; 16:1043-1049. [PMID: 34021859 PMCID: PMC8166668 DOI: 10.1007/s11548-021-02393-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/27/2021] [Indexed: 11/13/2022]
Abstract
Purpose To show the feasibility of 3D-printed fixation masks for whole brain radiation therapy in a clinical setting and perform a first comparison to an established thermoplastic mask system. Methods Six patients were irradiated with whole brain radiotherapy using individually 3D-printed masks. Daily image guidance and position correction were performed prior to each irradiation fraction. The vectors of the daily position correction were compared to two collectives of patients, who were irradiated using the standard thermoplastic mask system (one cohort with head masks; one cohort with head and neck masks). Results The mean systematic errors in the experimental cohort ranged between 0.59 and 2.10 mm which is in a comparable range to the control groups (0.18 mm–0.68 mm and 0.34 mm–2.96 mm, respectively). The 3D-printed masks seem to be an alternative to the established thermoplastic mask systems. Nevertheless, further investigation will need to be performed. Conclusion The prevailing study showed a reliable and reproducible interfractional positioning accuracy using individually 3D-printed masks for whole brain irradiation in a clinical routine. Further investigations, especially concerning smaller target volumes or other areas of the body, need to be performed before using the system on a larger basis.
Collapse
|
2
|
Evaluation of setup errors in conformal radiotherapy for pelvic tumours: Case of the Regional Center of Oncology, Agadir. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
3
|
Kim SH, Oh SA, Yea JW, Park JW. Prospective assessment of inter- or intra-fractional variation according to body weight or volume change in patients with head and neck cancer undergoing radiotherapy. PLoS One 2019; 14:e0216655. [PMID: 31095583 PMCID: PMC6522006 DOI: 10.1371/journal.pone.0216655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/25/2019] [Indexed: 12/25/2022] Open
Abstract
This study aimed to prospectively investigate the association between body weight (ΔBW) or body volume variations (ΔBV) and inter- or intra-fractional variations (Δ(inter) or Δ(intra)) in patients with head and neck cancer (HNC) undergoing radiotherapy (RT). This study enrolled patients with HNC from December 2015 to December 2017. All patients underwent curative intensity-modulated RT (IMRT) either as definitive or adjuvant treatment. Six-dimensional inter- and intra-fractional variations (Δ(inter) and Δ(intra)) were obtained with ExacTrac (BrainLAB, Feldkirchen, Germany) system. BV was measured 7.5 cm cranio-caudally from the centre using cone beam computed tomography. The BW, BV, and Δ(inter) were calculated based on the value obtained on the first treatment day after each simulation. Both Δ(inter) and Δ(intra) were considered in calculating the optimal margins for planning target volume (PTV), which was calculated using van Herk’s formula. In total, 678 fractions with 39 simulations in 22 patients were analysed. The average ΔBW and ΔBV was -0.43±1.90 kg (range, -7.3 to 5.0) and -24.34±69.0 cc (range, -247.15 to 214.88), respectively. In correlation analysis, Δ(intra) was more associated with ΔBW or ΔBV than Δ(inter). Receiver operating characteristic analysis showed Δ(intra) could differentiate ΔBW from ΔBV, while Δ(inter) could not. The optimal margins for PTV considering both Δ(inter) and Δ(intra) were 3.70 mm, 4.52 mm, and 5.12 mm for the right-left, superior-inferior, and anterior-posterior directions, respectively. In conclusion, the PTV margin of 6 mm for anterior-posterior direction and 5 mm for the other directions were needed. ΔBW or ΔBV correlated with Δ(intra) rather than Δ(inter). Therefore, ΔBW or ΔBV should be assessed for accurate IMRT in patients with HNC.
Collapse
Affiliation(s)
- Seong Hoon Kim
- Department of Radiation Oncology, Yeungnam University College of Medicine, Nam-gu, Daegu, South Korea
- Department of Radiation Oncology, Yeungnam University Medical Center, Nam-gu, Daegu, South Korea
| | - Se An Oh
- Department of Radiation Oncology, Yeungnam University Medical Center, Nam-gu, Daegu, South Korea
| | - Ji Woon Yea
- Department of Radiation Oncology, Yeungnam University College of Medicine, Nam-gu, Daegu, South Korea
- Department of Radiation Oncology, Yeungnam University Medical Center, Nam-gu, Daegu, South Korea
| | - Jae Won Park
- Department of Radiation Oncology, Yeungnam University College of Medicine, Nam-gu, Daegu, South Korea
- Department of Radiation Oncology, Yeungnam University Medical Center, Nam-gu, Daegu, South Korea
- * E-mail:
| |
Collapse
|
4
|
De Luca V, Banerjee J, Hallack A, Kondo S, Makhinya M, Nouri D, Royer L, Cifor A, Dardenne G, Goksel O, Gooding MJ, Klink C, Krupa A, Le Bras A, Marchal M, Moelker A, Niessen WJ, Papiez BW, Rothberg A, Schnabel J, van Walsum T, Harris E, Lediju Bell MA, Tanner C. Evaluation of 2D and 3D ultrasound tracking algorithms and impact on ultrasound-guided liver radiotherapy margins. Med Phys 2018; 45:4986-5003. [PMID: 30168159 DOI: 10.1002/mp.13152] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Compensation for respiratory motion is important during abdominal cancer treatments. In this work we report the results of the 2015 MICCAI Challenge on Liver Ultrasound Tracking and extend the 2D results to relate them to clinical relevance in form of reducing treatment margins and hence sparing healthy tissues, while maintaining full duty cycle. METHODS We describe methodologies for estimating and temporally predicting respiratory liver motion from continuous ultrasound imaging, used during ultrasound-guided radiation therapy. Furthermore, we investigated the trade-off between tracking accuracy and runtime in combination with temporal prediction strategies and their impact on treatment margins. RESULTS Based on 2D ultrasound sequences from 39 volunteers, a mean tracking accuracy of 0.9 mm was achieved when combining the results from the 4 challenge submissions (1.2 to 3.3 mm). The two submissions for the 3D sequences from 14 volunteers provided mean accuracies of 1.7 and 1.8 mm. In combination with temporal prediction, using the faster (41 vs 228 ms) but less accurate (1.4 vs 0.9 mm) tracking method resulted in substantially reduced treatment margins (70% vs 39%) in contrast to mid-ventilation margins, as it avoided non-linear temporal prediction by keeping the treatment system latency low (150 vs 400 ms). Acceleration of the best tracking method would improve the margin reduction to 75%. CONCLUSIONS Liver motion estimation and prediction during free-breathing from 2D ultrasound images can substantially reduce the in-plane motion uncertainty and hence treatment margins. Employing an accurate tracking method while avoiding non-linear temporal prediction would be favorable. This approach has the potential to shorten treatment time compared to breath-hold and gated approaches, and increase treatment efficiency and safety.
Collapse
Affiliation(s)
- Valeria De Luca
- Computer Vision Laboratory, ETH Zurich, Zürich, Switzerland
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Andre Hallack
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | | | - Maxim Makhinya
- Computer Vision Laboratory, ETH Zurich, Zürich, Switzerland
| | | | - Lucas Royer
- Institut de Recherche Technologique b-com, Rennes, France
| | | | | | - Orcun Goksel
- Computer Vision Laboratory, ETH Zurich, Zürich, Switzerland
| | | | - Camiel Klink
- Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Maud Marchal
- Institut de Recherche Technologique b-com, Rennes, France
| | - Adriaan Moelker
- Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | - Wiro J Niessen
- Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Julia Schnabel
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Theo van Walsum
- Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Muyinatu A Lediju Bell
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, USA
| | | |
Collapse
|
5
|
Gurney-Champion OJ, McQuaid D, Dunlop A, Wong KH, Welsh LC, Riddell AM, Koh DM, Oelfke U, Leach MO, Nutting CM, Bhide SA, Harrington KJ, Panek R, Newbold KL. MRI-based Assessment of 3D Intrafractional Motion of Head and Neck Cancer for Radiation Therapy. Int J Radiat Oncol Biol Phys 2018; 100:306-316. [PMID: 29229323 PMCID: PMC5777665 DOI: 10.1016/j.ijrobp.2017.10.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/14/2017] [Accepted: 10/03/2017] [Indexed: 01/25/2023]
Abstract
PURPOSE To determine the 3-dimensional (3D) intrafractional motion of head and neck squamous cell carcinoma (HNSCC). METHODS AND MATERIALS Dynamic contrast-enhanced magnetic resonance images from 56 patients with HNSCC in the treatment position were analyzed. Dynamic contrast-enhanced magnetic resonance imaging consisted of 3D images acquired every 2.9 seconds for 4 minutes 50 seconds. Intrafractional tumor motion was studied in the 3 minutes 43 seconds of images obtained after initial contrast enhancement. To assess tumor motion, rigid registration (translations only) was performed using a region of interest (ROI) mask around the tumor. The results were compared with bulk body motion from registration to all voxels. Motion was split into systematic motion and random motion. Correlations between the tumor site and random motion were tested. The within-subject coefficient of variation was determined from 8 patients with repeated baseline measures. Random motion was also assessed at the end of the first week (38 patients) and second week (25 patients) of radiation therapy to investigate trends of motion. RESULTS Tumors showed irregular occasional rapid motion (eg, swallowing or coughing), periodic intermediate motion (respiration), and slower systematic drifts throughout treatment. For 95% of the patients, displacements due to systematic and random motion were <1.4 mm and <2.1 mm, respectively, 95% of the time. The motion without an ROI mask was significantly (P<.0001, Wilcoxon signed rank test) less than the motion with an ROI mask, indicating that tumors can move independently from the bony anatomy. Tumor motion was significantly (P=.005, Mann-Whitney U test) larger in the hypopharynx and larynx than in the oropharynx. The within-subject coefficient of variation for random motion was 0.33. The average random tumor motion did not increase notably during the first 2 weeks of treatment. CONCLUSIONS The 3D intrafractional tumor motion of HNSCC is small, with systematic motion <1.4 mm and random motion <2.1 mm 95% of the time.
Collapse
Affiliation(s)
- Oliver J Gurney-Champion
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK.
| | - Dualta McQuaid
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Alex Dunlop
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Kee H Wong
- Department of Clinical Oncology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Liam C Welsh
- Department of Clinical Oncology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Angela M Riddell
- Department of Radiology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Dow-Mu Koh
- Department of Radiology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Uwe Oelfke
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Martin O Leach
- CR UK Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Christopher M Nutting
- Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Shreerang A Bhide
- Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Kevin J Harrington
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Rafal Panek
- Department of Medical Physics and Clinical Engineering, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Kate L Newbold
- Department of Clinical Oncology, The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
6
|
Haefner MF, Giesel FL, Mattke M, Rath D, Wade M, Kuypers J, Preuss A, Kauczor HU, Schenk JP, Debus J, Sterzing F, Unterhinninghofen R. 3D-Printed masks as a new approach for immobilization in radiotherapy - a study of positioning accuracy. Oncotarget 2018; 9:6490-6498. [PMID: 29464087 PMCID: PMC5814227 DOI: 10.18632/oncotarget.24032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 01/02/2018] [Indexed: 11/25/2022] Open
Abstract
We developed a new approach to produce individual immobilization devices for the head based on MRI data and 3D printing technologies. The purpose of this study was to determine positioning accuracy with healthy volunteers. 3D MRI data of the head were acquired for 8 volunteers. In-house developed software processed the image data to generate a surface mesh model of the immobilization mask. After adding an interface for the couch, the fixation setup was materialized using a 3D printer with acrylonitrile butadiene styrene (ABS). Repeated MRI datasets (n=10) were acquired for all volunteers wearing their masks thus simulating a setup for multiple fractions. Using automatic image-to-image registration, displacements of the head were calculated relative to the first dataset (6 degrees of freedom). The production process has been described in detail. The absolute lateral (x), vertical (y) and longitudinal (z) translations ranged between −0.7 and 0.5 mm, −1.8 and 1.4 mm, and −1.6 and 2.4 mm, respectively. The absolute rotations for pitch (x), yaw (y) and roll (z) ranged between −0.9 and 0.8°, −0.5 and 1.1°, and −0.6 and 0.8°, respectively. The mean 3D displacement was 0.9 mm with a standard deviation (SD) of the systematic and random error of 0.2 mm and 0.5 mm, respectively. In conclusion, an almost entirely automated production process of 3D printed immobilization masks for the head derived from MRI data was established. A high level of setup accuracy was demonstrated in a volunteer cohort. Future research will have to focus on workflow optimization and clinical evaluation.
Collapse
Affiliation(s)
- Matthias Felix Haefner
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), 69120 Heidelberg, Germany
| | - Frederik Lars Giesel
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Matthias Mattke
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), 69120 Heidelberg, Germany
| | - Daniel Rath
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Moritz Wade
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120 Heidelberg, Germany.,Institute of Antropomatics and Robotics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Jacob Kuypers
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120 Heidelberg, Germany.,Institute of Antropomatics and Robotics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Alan Preuss
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120 Heidelberg, Germany.,Institute of Antropomatics and Robotics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Jens-Peter Schenk
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Juergen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), 69120 Heidelberg, Germany
| | - Florian Sterzing
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), 69120 Heidelberg, Germany.,Department of Radiation Oncology Kempten, 87439 Kempten, Germany
| | - Roland Unterhinninghofen
- Institute of Antropomatics and Robotics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany.,Institute of Robotics and Mechatronics, German Aerospace Center, 82234 Oberpfaffenhofen-Weßling, Germany
| |
Collapse
|
7
|
Takada K, Kumada H, Liem PH, Sakurai H, Sakae T. Development of Monte Carlo based real-time treatment planning system with fast calculation algorithm for boron neutron capture therapy. Phys Med 2016; 32:1846-1851. [PMID: 27889131 DOI: 10.1016/j.ejmp.2016.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 11/25/2022] Open
Abstract
PURPOSE We simulated the effect of patient displacement on organ doses in boron neutron capture therapy (BNCT). In addition, we developed a faster calculation algorithm (NCT high-speed) to simulate irradiation more efficiently. METHODS We simulated dose evaluation for the standard irradiation position (reference position) using a head phantom. Cases were assumed where the patient body is shifted in lateral directions compared to the reference position, as well as in the direction away from the irradiation aperture. For three groups of neutron (thermal, epithermal, and fast), flux distribution using NCT high-speed with a voxelized homogeneous phantom was calculated. The three groups of neutron fluxes were calculated for the same conditions with Monte Carlo code. These calculated results were compared. RESULTS In the evaluations of body movements, there were no significant differences even with shifting up to 9mm in the lateral directions. However, the dose decreased by about 10% with shifts of 9mm in a direction away from the irradiation aperture. When comparing both calculations in the phantom surface up to 3cm, the maximum differences between the fluxes calculated by NCT high-speed with those calculated by Monte Carlo code for thermal neutrons and epithermal neutrons were 10% and 18%, respectively. The time required for NCT high-speed code was about 1/10th compared to Monte Carlo calculation. CONCLUSIONS In the evaluation, the longitudinal displacement has a considerable effect on the organ doses. We also achieved faster calculation of depth distribution of thermal neutron flux using NCT high-speed calculation code.
Collapse
Affiliation(s)
- Kenta Takada
- Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Hiroaki Kumada
- Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Peng Hong Liem
- NAIS Co., Inc., 416, Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1112, Japan
| | - Hideyuki Sakurai
- Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takeji Sakae
- Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
8
|
Cachexia induces head and neck changes in locally advanced oropharyngeal carcinoma during definitive cisplatin and image-guided volumetric-modulated arc radiation therapy. Eur J Clin Nutr 2016; 70:738-42. [PMID: 27071508 DOI: 10.1038/ejcn.2016.61] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/20/2016] [Accepted: 03/03/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND/OBJECTIVES Cancer cachexia is a syndrome characterized by weight loss (WL) and sarcopenia. Aim of the study was to assess the impact of cachexia on head and neck changes during definitive cisplatin and image-guided volumetric-modulated arc radiation therapy in a series of locally advanced oropharyngeal cancer. SUBJECTS/METHODS Volume variations of sternocleidomastoid muscle (SCM) were considered as surrogate of muscle changes related to sarcopenia. Two head and neck diameters, encompassing the cranial limits of II and III nodal levels (defined as 'head diameter' and 'neck diameter', respectively), were measured. All parameters were defined retrospectively by means of on-board cone beam computed tomography images at 1-8th to 15-22th and at last fraction (fx) of radiotherapy (RT). Cachexia was defined as WL >5% during treatment. Analysis was conducted correlating the parameter changes with three WL ranges: <5, 5-9 and>10%. RESULTS Thirty patients were evaluated. One hundred and fifty contoured SCMs and three hundred diameters were collected. Median WL was 6.5% (range, 0-16%). The most significant SCM shrinkage was recorded at 15th fx (mean 1.6 cc) related to WL 5-9% and WL >10% (P 0.001). For 'head diameter', the peak reduction was recorded at the 15th fx (mean 8 mm), statistically correlated to WL >10% (P 0.001). The peak reduction in 'neck diameter' was registered at the 22th fx (mean 6 mm), with a gradual reduction until the end of treatment for WL >5%. CONCLUSIONS In a homogeneous cohort of patients, present study quantified the impact of cachexia on head and neck changes. Present data could provide adaptive RT implications for further investigations.
Collapse
|
9
|
Availability of applying diaphragm matching with the breath-holding technique in stereotactic body radiation therapy for liver tumors. Phys Med 2016; 32:557-61. [DOI: 10.1016/j.ejmp.2016.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 02/13/2016] [Accepted: 02/23/2016] [Indexed: 11/19/2022] Open
|