1
|
Alontaga AY, Cano P, Ozakinci H, Puskas JA, Stewart PA, Welsh EA, Yoder SJ, Hicks JK, Saltos AN, Bossler AD, Haura EB, Koomen JM, Boyle TA. Implementation of a High-Accuracy Targeted Gene Expression Panel for Clinical Care. J Mol Diagn 2024; 26:685-699. [PMID: 38777037 PMCID: PMC11299514 DOI: 10.1016/j.jmoldx.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
This study describes the validation of a clinical RNA expression panel with evaluation of concordance between gene copy gain by a next-generation sequencing (NGS) assay and high gene expression by an RNA expression panel. The RNA Salah Targeted Expression Panel (RNA STEP) was designed with input from oncologists to include 204 genes with utility for clinical trial prescreening and therapy selection. RNA STEP was validated with the nanoString platform using remnant formalin-fixed, paraffin-embedded-derived RNA from 102 patients previously tested with a validated clinical NGS panel. The repeatability, reproducibility, and concordance of RNA STEP results with NGS results were evaluated. RNA STEP demonstrated high repeatability and reproducibility, with excellent correlation (r > 0.97, P < 0.0001) for all comparisons. Comparison of RNA STEP high gene expression (log2 ratio ≥ 2) versus NGS DNA-based gene copy number gain (copies ≥ 5) for 38 mutually covered genes revealed an accuracy of 93.0% with a positive percentage agreement of 69.4% and negative percentage agreement of 93.8%. Moderate correlation was observed between platforms (r = 0.53, P < 0.0001). Concordance between high gene expression and gene copy number gain varied by specific gene, and some genes had higher accuracy between assays. Clinical implementation of RNA STEP provides gene expression data complementary to NGS and offers a tool for prescreening patients for clinical trials.
Collapse
Affiliation(s)
- Aileen Y Alontaga
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Pedro Cano
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Hilal Ozakinci
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - John A Puskas
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Paul A Stewart
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Eric A Welsh
- Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Sean J Yoder
- Molecular Genomics Core Facility, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - J Kevin Hicks
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Andreas N Saltos
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Aaron D Bossler
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - John M Koomen
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida; Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Theresa A Boyle
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida; Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida.
| |
Collapse
|
2
|
Current advances in prognostic and diagnostic biomarkers for solid cancers: Detection techniques and future challenges. Biomed Pharmacother 2021; 146:112488. [PMID: 34894516 DOI: 10.1016/j.biopha.2021.112488] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022] Open
Abstract
Solid cancers are one of the leading causes of cancer related deaths, characterized by rapid growth of tumour, and local and distant metastases. Current advances on multimodality care have substantially improved local control and metastasis-free survival of patients by resection of primary tumour. The major concern in disease prognosis is the timely detection of resectable or metastatic tumour, thus reinforcing the need for identification of biomarkers for premalignant lesions of solid cancer. This ultimately improves the outcome for the patients. Therefore, the purpose of this review is to update the recent advancements on prognostic and diagnostic biomarkers to enhance early detection of common solid cancers including, breast, lung, colorectal, prostate and stomach cancer. We also provide an insight into Food and Drug Administration (FDA)-approved solid cancers biomarkers; various conventional techniques used for detection of prognostic and diagnostic biomarkers and discuss approaches to turn challenges in this field into opportunities.
Collapse
|
3
|
Aguado C, Teixido C, Román R, Reyes R, Giménez-Capitán A, Marin E, Cabrera C, Viñolas N, Castillo S, Muñoz S, Arcocha A, López-Vilaró L, Sullivan I, Aldeguer E, Rodríguez S, Moya I, Viteri S, Cardona AF, Palmero R, Sainz C, Mesa-Guzmán M, Lozano MD, Aguilar-Hernández A, Martínez-Bueno A, González-Cao M, Gonzalvo E, Leenders WPJ, Rosell R, Montuenga LM, Prat A, Molina-Vila MA, Reguart N. Multiplex RNA-based detection of clinically relevant MET alterations in advanced non-small cell lung cancer. Mol Oncol 2020; 15:350-363. [PMID: 33236532 PMCID: PMC7858100 DOI: 10.1002/1878-0261.12861] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/23/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
MET inhibitors have shown activity in non‐small‐cell lung cancer patients (NSCLC) with MET amplification and exon 14 skipping (METΔex14). However, patient stratification is imperfect, and thus, response rates have varied widely. Here, we studied MET alterations in 474 advanced NSCLC patients by nCounter, an RNA‐based technique, together with next‐generation sequencing (NGS), fluorescence in situ hybridization (FISH), immunohistochemistry (IHC), and reverse transcriptase polymerase chain reaction (RT–PCR), exploring correlation with clinical benefit. Of the 474 samples analyzed, 422 (89%) yielded valid results by nCounter, which identified 13 patients (3%) with METΔex14 and 15 patients (3.5%) with very‐high MET mRNA expression. These two subgroups were mutually exclusive, displayed distinct phenotypes and did not generally coexist with other drivers. For METΔex14, 3/8 (37.5%) samples positive by nCounter tested negative by NGS. Regarding patients with very‐high MET mRNA, 92% had MET amplification by FISH and/or NGS. However, FISH failed to identify three patients (30%) with very‐high MET RNA expression, among which one received MET tyrosine kinase inhibitor treatment deriving clinical benefit. Our results indicate that quantitative mRNA‐based techniques can improve the selection of patients for MET‐targeted therapies.
Collapse
Affiliation(s)
- Cristina Aguado
- Laboratory of Oncology, Pangaea Oncology, Quirón Dexeus University Hospital, Barcelona, Spain
| | - Cristina Teixido
- Thoracic Oncology Unit, Department of Pathology, Hospital Clínic, Barcelona, Spain.,Translational Genomics and Targeted Therapeutics in Solid Tumors, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ruth Román
- Laboratory of Oncology, Pangaea Oncology, Quirón Dexeus University Hospital, Barcelona, Spain
| | - Roxana Reyes
- Thoracic Oncology Unit, Department of Medical Oncology, Hospital Clínic, Barcelona, Spain
| | - Ana Giménez-Capitán
- Laboratory of Oncology, Pangaea Oncology, Quirón Dexeus University Hospital, Barcelona, Spain
| | - Elba Marin
- Translational Genomics and Targeted Therapeutics in Solid Tumors, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Thoracic Oncology Unit, Department of Medical Oncology, Hospital Clínic, Barcelona, Spain
| | - Carlos Cabrera
- Dr Rosell Oncology Institute, Dexeus University Hospital Quiron Salud Group, Barcelona, Spain
| | - Nuria Viñolas
- Thoracic Oncology Unit, Department of Medical Oncology, Hospital Clínic, Barcelona, Spain
| | - Sergi Castillo
- Division of Medical Oncology, Hospital General de Granollers, Barcelona, Spain
| | - Silvia Muñoz
- Division of Medical Oncology, Hospital General de Granollers, Barcelona, Spain
| | - Ainara Arcocha
- Thoracic Oncology Unit, Department of Medical Oncology, Hospital Clínic, Barcelona, Spain
| | - Laura López-Vilaró
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ivana Sullivan
- Division of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Erika Aldeguer
- Laboratory of Oncology, Pangaea Oncology, Quirón Dexeus University Hospital, Barcelona, Spain
| | - Sonia Rodríguez
- Laboratory of Oncology, Pangaea Oncology, Quirón Dexeus University Hospital, Barcelona, Spain
| | - Irene Moya
- Dr Rosell Oncology Institute, Dexeus University Hospital Quiron Salud Group, Barcelona, Spain
| | - Santiago Viteri
- Dr Rosell Oncology Institute, Dexeus University Hospital Quiron Salud Group, Barcelona, Spain.,Dr Rosell Oncology Institute, Teknon Medical Center, Quiron Salud Group, Barcelona, Spain
| | - Andrés Felipe Cardona
- Foundation for Clinical and Applied Cancer Research-FICMAC, Bogotá, Colombia.,Clinical and Translational Oncology Group, Institute of Oncology, Clínica del Country, Bogotá, Colombia
| | - Ramon Palmero
- Division of Medical Oncology, Catalan Institute of Oncology, L'Hospitalet, Barcelona, Spain
| | - Cristina Sainz
- Center for Applied Medical Research (CIMA), University of Navarra, Spain.,CIBERONC, Madrid, Spain
| | | | - Maria D Lozano
- CIBERONC, Madrid, Spain.,IDISNA, Pamplona, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | | | | | - María González-Cao
- Dr Rosell Oncology Institute, Dexeus University Hospital Quiron Salud Group, Barcelona, Spain
| | - Elena Gonzalvo
- Thoracic Oncology Unit, Department of Pathology, Hospital Clínic, Barcelona, Spain
| | - William P J Leenders
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Rafael Rosell
- Dr Rosell Oncology Institute, Dexeus University Hospital Quiron Salud Group, Barcelona, Spain.,Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Luis M Montuenga
- Center for Applied Medical Research (CIMA), University of Navarra, Spain.,CIBERONC, Madrid, Spain.,IDISNA, Pamplona, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Aleix Prat
- Translational Genomics and Targeted Therapeutics in Solid Tumors, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Thoracic Oncology Unit, Department of Medical Oncology, Hospital Clínic, Barcelona, Spain
| | - Miguel A Molina-Vila
- Laboratory of Oncology, Pangaea Oncology, Quirón Dexeus University Hospital, Barcelona, Spain
| | - Noemi Reguart
- Translational Genomics and Targeted Therapeutics in Solid Tumors, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Thoracic Oncology Unit, Department of Medical Oncology, Hospital Clínic, Barcelona, Spain
| |
Collapse
|
4
|
Jordan SE, Saad H, Covarrubias AS, Siemon J, Pearson JM, Slomovitz BM, Huang M, Pinto A, Schlumbrecht M, George SH. mRNA expression in low grade serous ovarian cancer: Results of a nanoString assay in a diverse population. Gynecol Oncol 2020; 159:554-562. [PMID: 32951896 PMCID: PMC8054444 DOI: 10.1016/j.ygyno.2020.08.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/24/2020] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Mutations in the MAP kinase pathway (KRAS, NRAS, BRAF) are common in low grade serous ovarian carcinoma (LGSOC). The effect of these and other mutations on RNA transcription in this disease is poorly understood. Our objective was to describe patterns of somatic mutations and gene transcription in a racially diverse population with LGSOC. METHODS Utilizing an institutional tumor registry, patients with LGSOC were identified and charts were reviewed. RNA was extracted from available tumor tissue. Commercial tumor profiling results were analyzed with PanCancer pathway nanoString mRNA expression data. Along with nanoString n-Solver software, Chi-squared, Fishers Exact, and Cox proportional hazards models were used for statistical analysis, with significance set at p < 0.05. RESULTS 39 patients were identified-20% Black, 43% Hispanic, and 36% non-Hispanic White. 18 patients had commercial somatic DNA test results, and 23 had available tumor tissue for RNA extraction and nanoString analysis. The most common somatic alterations identified was KRAS (11 patients, 61%), followed by ERCC1 and TUBB3 (9 each, 50%). KRAS mutations were less common in smokers (14.3% vs 90.9%, p = 0.002). RNA expression analysis demonstrated a greater than two-fold decrease in expression of HRAS in tumors from older patients (p = 0.04), and a greater than two-fold decrease in the expression of HRAS in recurrent tumors (p = 0.007). No significant differences were seen in somatic testing results, RNA expression analysis, or progression free survival between different racial and ethnic cohorts. CONCLUSIONS Somatic deficiencies in ERCC1, TUBB3, and KRAS are common in LGSOC in a population of minority patients. HRAS demonstrates decreased expression in tumors from older patients and recurrent tumors.
Collapse
Affiliation(s)
- Scott E Jordan
- Sylvester Comprehensive Cancer Center, University of Miami, Division of Gynecologic Oncology, USA
| | - Heba Saad
- University of Miami Miller School of Medicine, Department of Pathology, USA
| | - Alex Sanchez Covarrubias
- Sylvester Comprehensive Cancer Center, University of Miami, Division of Gynecologic Oncology, USA
| | - John Siemon
- Sylvester Comprehensive Cancer Center, University of Miami, Division of Gynecologic Oncology, USA
| | - J Matt Pearson
- Sylvester Comprehensive Cancer Center, University of Miami, Division of Gynecologic Oncology, USA
| | - Brian M Slomovitz
- Sylvester Comprehensive Cancer Center, University of Miami, Division of Gynecologic Oncology, USA; Dr. Slomovitz present affiliation: Broward Health, Florida International University Wertheim College Of Medicine, USA
| | - Marilyn Huang
- Sylvester Comprehensive Cancer Center, University of Miami, Division of Gynecologic Oncology, USA
| | - Andre Pinto
- University of Miami Miller School of Medicine, Department of Pathology, USA
| | - Matthew Schlumbrecht
- Sylvester Comprehensive Cancer Center, University of Miami, Division of Gynecologic Oncology, USA
| | - Sophia Hl George
- Sylvester Comprehensive Cancer Center, University of Miami, Division of Gynecologic Oncology, USA.
| |
Collapse
|
5
|
Yan W, Jamal M, Tan SH, Song Y, Young D, Chen Y, Katta S, Ying K, Ravindranath L, Woodle T, Kohaar I, Cullen J, Kagan J, Srivastava S, Dobi A, McLeod DG, Rosner IL, Sesterhenn IA, Srinivasan A, Srivastava S, Petrovics G. Molecular profiling of radical prostatectomy tissue from patients with no sign of progression identifies ERG as the strongest independent predictor of recurrence. Oncotarget 2019; 10:6466-6483. [PMID: 31741711 PMCID: PMC6849651 DOI: 10.18632/oncotarget.27294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/19/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND As a major cause of morbidity and mortality among men, prostate cancer is a heterogenous disease, with a vast heterogeneity in the biology of the disease and in clinical outcome. While it often runs an indolent course, local progression or metastasis may eventually develop, even among patients considered "low risk" at diagnosis. Therefore, biomarkers that can discriminate aggressive from indolent disease at an early stage would greatly benefit patients. We hypothesized that tissue specimens from early stage prostate cancers may harbor predictive signatures for disease progression. METHODS We used a cohort of radical prostatectomy patients with longitudinal follow-up, who had tumors with low grade and stage that revealed no signs of future disease progression at surgery. During the follow-up period, some patients either remained indolent (non-BCR) or progressed to biochemical recurrence (BCR). Total RNA was extracted from tumor, and adjacent normal epithelium of formalin-fixed-paraffin-embedded (FFPE) specimens. Differential gene expression in tumors, and in tumor versus normal tissues between BCR and non-BCR patients were analyzed by NanoString using a customized CodeSet of 151 probes. RESULTS After controlling for false discovery rates, we identified a panel of eight genes (ERG, GGT1, HDAC1, KLK2, MYO6, PLA2G7, BICD1 and CACNAID) that distinguished BCR from non-BCR patients. We found a clear association of ERG expression with non-BCR, which was further corroborated by quantitative RT-PCR and immunohistochemistry assays. CONCLUSIONS Our results identified ERG as the strongest predictor for BCR and showed that potential prognostic prostate cancer biomarkers can be identified from FFPE tumor specimens.
Collapse
Affiliation(s)
- Wusheng Yan
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
- These authors contributed equally to this work
| | - Muhammad Jamal
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
- These authors contributed equally to this work
| | - Shyh-Han Tan
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
- These authors contributed equally to this work
| | - Yingjie Song
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Denise Young
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Yongmei Chen
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Shilpa Katta
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Kai Ying
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Lakshmi Ravindranath
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Tarah Woodle
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Indu Kohaar
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Jennifer Cullen
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Jacob Kagan
- Division of Cancer Prevention, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Sudhir Srivastava
- Division of Cancer Prevention, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Albert Dobi
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - David G. McLeod
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Inger L. Rosner
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | | | - Alagarsamy Srinivasan
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Shiv Srivastava
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Gyorgy Petrovics
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
| |
Collapse
|
6
|
Gender Related Changes in Gene Expression Induced by Valproic Acid in A Mouse Model of Autism and the Correction by S-adenosyl Methionine. Does It Explain the Gender Differences in Autistic Like Behavior? Int J Mol Sci 2019; 20:ijms20215278. [PMID: 31652960 PMCID: PMC6862653 DOI: 10.3390/ijms20215278] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
In previous studies we produced autism like behavioral changes in mice by Valproic acid (VPA) with significant differences between genders. S-adenosine methionine (SAM) prevented the autism like behavior in both genders. The expression of 770 genes of pathways involved in neurophysiology and neuropathology was studied in the prefrontal cortex of 60 days old male and female mice using the NanoString nCounter. In females, VPA induced statistically significant changes in the expression of 146 genes; 71 genes were upregulated and 75 downregulated. In males, VPA changed the expression of only 19 genes, 16 were upregulated and 3 downregulated. Eight genes were similarly changed in both genders. When considering only the genes that were changed by at least 50%, VPA changed the expression of 15 genes in females and 3 in males. Only Nts was similarly downregulated in both genders. SAM normalized the expression of most changed genes in both genders. We presume that genes that are involved in autism like behavior in our model were similarly changed in both genders and corrected by SAM. The behavioral and other differences between genders may be related to genes that were differently affected by VPA in males and females and/or differently affected by SAM.
Collapse
|
7
|
Lee J, Kim ST, Kim K, Lee H, Kozarewa I, Mortimer PGS, Odegaard JI, Harrington EA, Lee J, Lee T, Oh SY, Kang JH, Kim JH, Kim Y, Ji JH, Kim YS, Lee KE, Kim J, Sohn TS, An JY, Choi MG, Lee JH, Bae JM, Kim S, Kim JJ, Min YW, Min BH, Kim NKD, Luke S, Kim YH, Hong JY, Park SH, Park JO, Park YS, Lim HY, Talasaz A, Hollingsworth SJ, Kim KM, Kang WK. Tumor Genomic Profiling Guides Patients with Metastatic Gastric Cancer to Targeted Treatment: The VIKTORY Umbrella Trial. Cancer Discov 2019; 9:1388-1405. [PMID: 31315834 DOI: 10.1158/2159-8290.cd-19-0442] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/02/2019] [Accepted: 07/12/2019] [Indexed: 12/24/2022]
Abstract
The VIKTORY (targeted agent eValuation In gastric cancer basket KORea) trial was designed to classify patients with metastatic gastric cancer based on clinical sequencing and focused on eight different biomarker groups (RAS aberration, TP53 mutation, PIK3CA mutation/amplification, MET amplification, MET overexpression, all negative, TSC2 deficient, or RICTOR amplification) to assign patients to one of the 10 associated clinical trials in second-line (2L) treatment. Capivasertib (AKT inhibitor), savolitinib (MET inhibitor), selumetinib (MEK inhibitor), adavosertib (WEE1 inhibitor), and vistusertib (TORC inhibitor) were tested with or without chemotherapy. Seven hundred seventy-two patients with gastric cancer were enrolled, and sequencing was successfully achieved in 715 patients (92.6%). When molecular screening was linked to seamless immediate access to parallel matched trials, 14.7% of patients received biomarker-assigned drug treatment. The biomarker-assigned treatment cohort had encouraging response rates and survival when compared with conventional 2L chemotherapy. Circulating tumor (ctDNA) analysis demonstrated good correlation between high MET copy number by ctDNA and response to savolitinib. SIGNIFICANCE: Prospective clinical sequencing revealed that baseline heterogeneity between tumor samples from different patients affected response to biomarker-selected therapies. VIKTORY is the first and largest platform study in gastric cancer and supports both the feasibility of tumor profiling and its clinical utility.This article is highlighted in the In This Issue feature, p. 1325.
Collapse
Affiliation(s)
- Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyuk Lee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Iwanka Kozarewa
- Oncology Translational Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Peter G S Mortimer
- Clinical, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Elizabeth A Harrington
- Oncology Translational Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Juyoung Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Taehyang Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Yong Oh
- Dong-A University School of Medicine, Busan, Korea
| | - Jung-Hun Kang
- Department of Internal Medicine, College of Medicine, Gyeongsang National University, Jinju, Korea
| | - Jung Hoon Kim
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Youjin Kim
- Division of Hematology-Oncology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Jun Ho Ji
- Division of Hematology-Oncology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Young Saing Kim
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Kyoung Eun Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Ewha Womans University, Seoul, Korea
| | - Jinchul Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Tae Sung Sohn
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji Yeong An
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Min-Gew Choi
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jun Ho Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Moon Bae
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae J Kim
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yang Won Min
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byung-Hoon Min
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Nayoung K D Kim
- Samsung Genome Institute, Seoul, Korea.,Clinical, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Sally Luke
- Oncology Translational Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Young Hwa Kim
- Clinical, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Jung Yong Hong
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se Hoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joon Oh Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Suk Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ho Yeong Lim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | - Kyoung-Mee Kim
- Department of Pathology & Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Won Ki Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
8
|
Kanda M, Murotani K, Tanaka H, Miwa T, Umeda S, Tanaka C, Kobayashi D, Hayashi M, Hattori N, Suenaga M, Yamada S, Nakayama G, Fujiwara M, Kodera Y. A novel dual-marker expression panel for easy and accurate risk stratification of patients with gastric cancer. Cancer Med 2018; 7:2463-2471. [PMID: 29733517 PMCID: PMC6010733 DOI: 10.1002/cam4.1522] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/06/2018] [Accepted: 04/05/2018] [Indexed: 12/19/2022] Open
Abstract
Development of specific biomarkers is necessary for individualized management of patients with gastric cancer. The aim of this study was to design a simple expression panel comprising novel molecular markers for precise risk stratification. Patients (n = 200) who underwent gastrectomy for gastric cancer were randomly assigned into learning and validation sets. Tissue mRNA expression levels of 15 candidate molecular markers were determined using quantitative PCR analysis. A dual‐marker expression panel was created according to concordance index (C‐index) values of overall survival for all 105 combinations of two markers in the learning set. The reproducibility and clinical significance of the dual‐marker expression panel were evaluated in the validation set. The patient characteristics of the learning and validation sets were well balanced. The C‐index values of combinations were significantly higher compared with those of single markers. The panel with the highest C‐index (0.718) of the learning set comprised SYT8 and MAGED2, which clearly stratified patients into low‐, intermediate‐, and high‐risk groups. The reproducibility of the panel was demonstrated in the validation set. High expression scores were significantly associated with larger tumor size, vascular invasion, lymph node metastasis, peritoneal metastasis, and advanced disease. The dual‐marker expression panel provides a simple tool that clearly stratifies patients with gastric cancer into low‐, intermediate‐, and high risk after gastrectomy.
Collapse
Affiliation(s)
- Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenta Murotani
- Clinical Research Centre, Aichi Medical University Hospital, Nagakute, Japan
| | - Haruyoshi Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Miwa
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Umeda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chie Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Kobayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norifumi Hattori
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaya Suenaga
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Goro Nakayama
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michitaka Fujiwara
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
9
|
Lee SJ, Lee J, Park SH, Park JO, Lim HY, Kang WK, Park YS, Kim ST. c-MET Overexpression in Colorectal Cancer: A Poor Prognostic Factor for Survival. Clin Colorectal Cancer 2018; 17:165-169. [PMID: 29576428 DOI: 10.1016/j.clcc.2018.02.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Increased mesenchymal-epithelial transition factor gene (c-MET) expression in several human malignancies is related to increased tumor progression and is a new potential drug target for several types of cancers. In the present study, we investigated the incidence of c-MET overexpression and its prognostic significance in patients with colorectal cancer (CRC). PATIENTS AND METHODS We retrospectively reviewed the data from 255 stage IV CRC patients who had results from a c-MET immunohistochemical test at Samsung Medical Center. We explored the relationships between c-MET overexpression and clinicopathological features and survival. RESULTS Primary tumor sites were 67 right-sided colon, 98 left-sided colon, and 90 rectum. Forty-two patients (16.7%) had poorly differentiated or mucinous carcinoma. Among the 255 patients, 39 (15.3%) exhibited c-MET overexpression. There was no significant difference in the prevalence of c-MET overexpression according to primary site, histologic differentiation, molecular markers, or metastatic sites. In a comparison of the tumor response to first-line chemotherapy according to the level of c-MET expression, we found no significant difference in either partial response or disease control rate. In the survival analysis, patients with c-MET overexpression had significantly shorter overall survival (39 vs. 27 months; P = .018) and progression-free survival (PFS) during bevacizumab treatment (10 vs. 7 months; P = .024). CONCLUSION c-MET overexpression, which was detected in 39 CRC patients (15.3%) irrespective of primary sites or molecular markers, indicated a poor survival prognosis and predicted shorter PFS during bevacizumab treatment in patients with CRC. Further studies are warranted to elucidate the value of c-MET-targeted therapy in CRC patients.
Collapse
Affiliation(s)
- Su Jin Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se Hoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joon Oh Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ho Yeong Lim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Ki Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Suk Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
10
|
Farran B, Müller S, Montenegro RC. Gastric cancer management: Kinases as a target therapy. Clin Exp Pharmacol Physiol 2018; 44:613-622. [PMID: 28271563 DOI: 10.1111/1440-1681.12743] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/19/2017] [Accepted: 02/20/2017] [Indexed: 12/16/2022]
Abstract
The molecular diagnostics revolution has reshaped the practice of oncology by facilitating the identification of genetic, epigenetic and proteomic modifications correlated with cancer, thus delineating 'oncomaps' for various cancer types. These advances have enhanced our understanding of gastric cancer, one of the most fatal diseases worldwide, and culminated in the approval of novel molecular therapies such as trastuzumab. Gastric tumours display recurrent aberrations in key kinase oncogenes such as Her2, epidermal growth factor receptor (EGFR), PI3K, mTOR or c-Met, suggesting that these receptors are amenable to inhibition using specific drug agents. In this review, we examine the mutational landscape of gastric cancer, the use of kinase inhibitors as targeted therapies in gastric tumours and the clinical trials underway for novel inhibitors, highlighting successes, failures and future directions.
Collapse
Affiliation(s)
- Batoul Farran
- Department of Structural and Molecular Biology, University College London, London, UK
| | - Susanne Müller
- Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Frankfurt am Main, DE, Germany
| | - Raquel C Montenegro
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
11
|
Lee J, Cristescu R, Kim KM, Kim K, Kim ST, Park SH, Kang WK. Development of mesenchymal subtype gene signature for clinical application in gastric cancer. Oncotarget 2017; 8:66305-66315. [PMID: 29029513 PMCID: PMC5630413 DOI: 10.18632/oncotarget.19985] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/18/2017] [Indexed: 02/06/2023] Open
Abstract
Previously, in the Asian Cancer Research Group (ACRG) project, we defined four distinct molecular subtypes in gastric cancer (GC). Mesenchymal (microsatellite stable with epithelial-to-mesenchymal transition phenotype, MSS/EMT) tumors showed the worst prognosis among all the subtypes. To develop a gene signature for predicting mesenchymal subtype GC, we conducted gene expression profiling using a NanoString assay in 70 ACRG specimens. The gene signature was validated in an independent set obtained from the prospective Adjuvant chemoRadioTherapy In Stomach Tumor (ARTIST) trial. The association between the mesenchymal subtype and survival was investigated. After cross-platform concordance test performed in 70 ACRG specimens, a 71-gene MSS/EMT signature was obtained. In the validation set, the gene signature predicted that 20 of 73 (27%) patients had mesenchymal tumors. Patients with mesenchymal subtype had diffuse GC, poorly-differentiated or signet ring cell carcinoma, and were microsatellite stable. The estimated hazard ratio for survival in patients with mesenchymal GC compared to those with non-mesenchymal tumors was 2.262 (95% confidence interval, 1.410 to 3.636; P=0.001). The survival difference remained significant when the subtypes were analyzed according to clinical prognostic parameters. This study suggested that the NanoString-based 71-gene signature for mesenchymal subtype is a strong predictor of the outcome in patients with GC.
Collapse
Affiliation(s)
- Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Razvan Cristescu
- Department of Genetics and Pharmacogenomics (GpGx), Merck Research Laboratories, Merck Sharpe & Dohme, Boston, MA, USA
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se Hoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Ki Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Heo MH, Kim HK, Lee H, Kim KM, Lee J, Park SH, Park JO, Lim HY, Kang WK, Park YS, Kim ST. The Clinical Impact of c-MET Over-Expression in Advanced Biliary Tract Cancer (BTC). J Cancer 2017. [PMID: 28638453 PMCID: PMC5479244 DOI: 10.7150/jca.17898] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background: c-MET is a proto-oncogene that encodes the tyrosine kinase receptor for hepatocyte growth factor (HGF). Activation of HGF-c-MET signaling involves cell invasiveness and evokes metastasis through direct involvement of tumor angiogenesis. However, the value of c-MET overexpression is still unknown in metastatic biliary tract cancer (BTC). Methods: We analyzed the incidence and clinicopathologic characteristics of c-MET overexpression in advanced BTC. Moreover, we investigated the value of c-MET overexpression in predicting response to gemicitabine plus cisplatin (GC), a first line standard regimen, and as a prognostic marker in metastatic BTC. Results: The BTC subtype distribution (N=44) was as follows: intrahepatic cholangiocarcinoma (IHCC, n=7), extrahepatic cholangiocarcinoma (EHCC, n=25) and gallbladder cancer (GBC, n=12). Liver (52.3%) was the predominant metastatic site, followed by lymph nodes (36.4%) and bone (15.9%). Among the 44 patients analyzed for c-MET expression, 15 (34.1%) exhibited c-MET overexpression in tumor tissues. There was no significant difference in the prevalence of c-MET overexpression among primary sites in EHCC (7/25, 28.0%), IHCC (3/7, 42.9%), and GBC (5/12, 41.7%). There was also no significant correlation between specific clinicopathologic variables and c-MET expression. Comparing the tumor-response to GC according to c-MET expression (overexpression vs. non-overexpression), there was no significant difference in either RR or DCR (p=0.394 and p >0.999, respectively). The median PFS for all 44 patients was 9.00 months (95% CI, 7.5-10.5 months) and there was no significant difference for PFS between patients with c-MET overexpression and those without (p=0.917). The median OS was 14.4 months (95% CI, 11.9-16.9 months). There was no significant difference in OS between patients with c-MET overexpression compared to those without (13.7 vs. 14.4 months, respectively; p=0.708). Conclusions: c-MET overexpression was detected in 34.1% of advanced BTC patients irrespective of tumor location. c-MET overexpression did not predict response to GC or survival. Further studies are needed to fully elucidate the value of c-MET overexpression as a novel biomarker in these patients.
Collapse
Affiliation(s)
- Mi Hwa Heo
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Kyung Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hansang Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyoung-Mee Kim
- Department of Pathology & Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se Hoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joon Oh Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ho Yeong Lim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Ki Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Suk Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Greer PL, Bear DM, Lassance JM, Bloom ML, Tsukahara T, Pashkovski SL, Masuda FK, Nowlan AC, Kirchner R, Hoekstra HE, Datta SR. A Family of non-GPCR Chemosensors Defines an Alternative Logic for Mammalian Olfaction. Cell 2016; 165:1734-1748. [PMID: 27238024 DOI: 10.1016/j.cell.2016.05.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/14/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
Abstract
Odor perception in mammals is mediated by parallel sensory pathways that convey distinct information about the olfactory world. Multiple olfactory subsystems express characteristic seven-transmembrane G-protein-coupled receptors (GPCRs) in a one-receptor-per-neuron pattern that facilitates odor discrimination. Sensory neurons of the "necklace" subsystem are nestled within the recesses of the olfactory epithelium and detect diverse odorants; however, they do not express known GPCR odor receptors. Here, we report that members of the four-pass transmembrane MS4A protein family are chemosensors expressed within necklace sensory neurons. These receptors localize to sensory endings and confer responses to ethologically relevant ligands, including pheromones and fatty acids, in vitro and in vivo. Individual necklace neurons co-express many MS4A proteins and are activated by multiple MS4A ligands; this pooling of information suggests that the necklace is organized more like subsystems for taste than for smell. The MS4As therefore define a distinct mechanism and functional logic for mammalian olfaction.
Collapse
Affiliation(s)
- Paul L Greer
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel M Bear
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jean-Marc Lassance
- Departments of Molecular and Cellular Biology and Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Howard Hughes Medical Institute, Cambridge, MA 02138, USA
| | | | - Tatsuya Tsukahara
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Stan L Pashkovski
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Francis Kei Masuda
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra C Nowlan
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Rory Kirchner
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Hopi E Hoekstra
- Departments of Molecular and Cellular Biology and Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Howard Hughes Medical Institute, Cambridge, MA 02138, USA
| | | |
Collapse
|
14
|
Kim ST, Ahn TJ, Lee E, Do IG, Lee SJ, Park SH, Park JO, Park YS, Lim HY, Kang WK, Kim SH, Lee J, Kim HC. Exploratory biomarker analysis for treatment response in KRAS wild type metastatic colorectal cancer patients who received cetuximab plus irinotecan. BMC Cancer 2015; 15:747. [PMID: 26486455 PMCID: PMC4617450 DOI: 10.1186/s12885-015-1759-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 10/09/2015] [Indexed: 01/13/2023] Open
Abstract
Background More than half of the patients selected based on KRAS mutation status fail to respond to the treatment with cetuximab in metastatic colorectal cancer (mCRC). We designed a study to identify additional biomarkers that could act as indicators for cetuximab treatment in mCRC. Methods We investigated 58 tumor samples from wild type KRAS CRC patients treated with cetuximab plus irinotecan (CI). We conducted the genotyping for mutations in either BRAF or PIK3CA and profiled comprehensively the expression of 522 kinase genes. Results BRAF mutation was detected in 5.1 % (3/58) of patients. All 50 patients showed wild type PIK3CA. Gene expression patterns that categorized patients with or without the disease control to CI were compared by supervised classification analysis. PSKH1, TLK2 and PHKG2 were overexpressed significantly in patients with the disease control to IC. The higher expression value of PSKH1 (r = 0.462, p < 0.001) and TLK2 (r = 0.361, p = 0.005) had the significant correlation to prolonged PFS. Conclusion The result of this work demonstrated that expression nature of kinase genes such as PSKH1, TLK2 and PHKG2 may be informative to predict the efficacy of CI in wild type KRAS CRC. Mutations in either BRAF or PIK3CA were rare subsets in wild type KRAS CRC.
Collapse
Affiliation(s)
- Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. .,Colorectal Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Tae Jin Ahn
- Department of Pathology & Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. .,Samsung Genome Institute, Samsung Biological Research Institute, Seoul, Korea.
| | - Eunjin Lee
- Department of Pathology & Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. .,Samsung Genome Institute, Samsung Biological Research Institute, Seoul, Korea.
| | - In-Gu Do
- Department of Pathology & Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Su Jin Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. .,Colorectal Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Se Hoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. .,Colorectal Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Joon Oh Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. .,Colorectal Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. .,Innovative Cancer Medicine Institute, Samsung Medical Center, Seoul, Korea.
| | - Young Suk Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. .,Colorectal Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Ho Yeong Lim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. .,Colorectal Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Won Ki Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. .,Colorectal Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Suk Hyeong Kim
- Department of Pathology & Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. .,Colorectal Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. .,Colorectal Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Hee Cheol Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. .,Colorectal Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|