1
|
Çoban G, Yıldız P, Şahin N, Ersöz C, Toprak A, Ünver N, Elagöz Ş. CD47 expression in urothelial carcinoma and its correlation with histopathological findings. Indian J Cancer 2023; 60:458-463. [PMID: 38078465 DOI: 10.4103/ijc.ijc_644_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 06/25/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND The incidence of bladder cancers (BCs) is increasing day by day in both males and females with increased smoking. New treatment protocols are required due to the long follow-up times and high recurrence rates. CD47 (integrin-associated protein) is a membrane receptor that is effective in normal and pathophysiological events such as apoptosis, proliferation, adhesion, and immunity. Phagocytosis of both normal and tumor cells is prevented, by binding to the ligand signal regulatory protein-1 (SIRP-1)α on macrophages. Anti-CD47 antibodies can eliminate the binding and may be effective in treatment. METHODS The study included 194 cases with urothelial carcinoma (UC) who underwent transurethral resection (TUR) of the bladder and had been followed up for one year. Cytoplasmic and membranous staining was preferred for CD47-positive staining. Staining results were compared with tumor grades, pathologic tumor stage, recurrence, and metastasis grade. RESULTS The prevalence and intensity of CD47 staining in BCs were evaluated in this study. High-grade tumors were stained more pronouncedly compared with low-grade tumors and normal epithelium. The prevalence of CD47 staining was significant in pT2 (Pathological tumor stage 2, invades of muscularis propria) tumors, and its correlation with pTa (Pathological tumor stage a, noninvasive papillary carcinoma) tumors was significant ( P < 0.001). In the intensity evaluation, there was a significant difference between pTa and pT2 and between pT1 (Pathological tumor stage 1, invades lamina propria) and pT2 ( P = 0.003). CONCLUSION CD47 is expressed strongly in high-grade tumors. The prevalence and intensity of CD47 staining are high in pathologic tumor stage, recurrence, and distant metastases and are considered poor prognostic markers. We believe that anti-CD47 antibodies can be used as an alternative to the current treatment or in combination with other medications, and the systemic side effects that may occur with intravesical treatment can be prevented.
Collapse
Affiliation(s)
- Ganime Çoban
- Department of Pathology, Bezmialem Vakif University, Faculty of Medicine, Istanbul, Turkey
| | - Pelin Yıldız
- Department of Pathology, Bezmialem Vakif University, Faculty of Medicine, Istanbul, Turkey
| | - Nurhan Şahin
- Department of Pathology, Bezmialem Vakif University, Faculty of Medicine, Istanbul, Turkey
| | - Cevper Ersöz
- Department of Urology, Bezmialem Vakif University, Faculty of Medicine, Istanbul, Turkey
| | - Ali Toprak
- Department of Biostatistics, Bezmialem Vakif University, Faculty of Medicine, Istanbul, Turkey
| | - Nurcan Ünver
- Department of Pathology, Yedikule Pulmonary Diseases and Thoracic Surgery Education and Research Hospital, Istanbul, Turkey
| | - Şahande Elagöz
- Department of Pathology, Bezmialem Vakif University, Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
2
|
Demirci A, Ordu M. The prognostic effect of immunohistochemical staining rates in patients with non-muscle-invasive bladder cancer. INDIAN J PATHOL MICR 2023; 66:502-510. [PMID: 37530330 DOI: 10.4103/ijpm.ijpm_1236_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Context Despite the follow-up protocols developed in non-muscle-invasive bladder cancer patients, progression and recurrence could not be prevented. Aims We aimed to investigate whether proteins such as OCT-4, CD47, p53, Ki-67, and Survivin, which increase in bladder cancer cells, can be used as prognostic markers for patients with non-muscle-invasive bladder cancer. Settings and Design The study included a total of 89 patients with newly diagnosed non-muscle-invasive bladder cancer between January 2015 and December 2020. Materials and Methods Levels of OCT-4, CD47, p53, Kİ-67, and Survivin proteins in cancer cells were determined with a semi-quantitative immunohistochemical experiment. Pathological data and survival rates were compared according to the staining rates. Statistical Analysis Used Data obtained in the study were analyzed statistically with SPSS 22.0 (SPSS, Chicago, IL, USA). Results The mean age of the patients was 64.25 ± 9.91 years, and the median follow-up period was 55 months. Recurrence rate was determined to be 36% (n = 32), and the rate of progression at 40.4% (n = 36). The staining rates were stronger for each marker in the progression group and advanced-stage tumors (p < 0.001). The findings of the multivariate analysis carried out as part of the study showed that older age and higher tumor stage were independent risk factors for recurrence-free survival (HR = 1.048 and 7.074, respectively; P = 0.02). Also, higher tumor stages, diameters, and grades were associated with reduced progression-free survival (HR = 0.105, 0.395, 0.225, respectively; P < 0.05). Conclusions Although immunohistochemical staining rates are promising, it is more appropriate to use tumor characteristics when assessing survival rate in patients with non-muscle-invasive bladder cancer.
Collapse
Affiliation(s)
- Aykut Demirci
- Department of Urology, Aksaray University Training and Research Hospital, Aksaray, Turkey
| | - Melike Ordu
- Department of Medical Pathology, Aksaray University Training and Research Hospital, Aksaray, Turkey
| |
Collapse
|
3
|
Yehya A, Youssef J, Hachem S, Ismael J, Abou-Kheir W. Tissue-specific cancer stem/progenitor cells: Therapeutic implications. World J Stem Cells 2023; 15:323-341. [PMID: 37342220 PMCID: PMC10277968 DOI: 10.4252/wjsc.v15.i5.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 05/26/2023] Open
Abstract
Surgical resection, chemotherapy, and radiation are the standard therapeutic modalities for treating cancer. These approaches are intended to target the more mature and rapidly dividing cancer cells. However, they spare the relatively quiescent and intrinsically resistant cancer stem cells (CSCs) subpopulation residing within the tumor tissue. Thus, a temporary eradication is achieved and the tumor bulk tends to revert supported by CSCs' resistant features. Based on their unique expression profile, the identification, isolation, and selective targeting of CSCs hold great promise for challenging treatment failure and reducing the risk of cancer recurrence. Yet, targeting CSCs is limited mainly by the irrelevance of the utilized cancer models. A new era of targeted and personalized anti-cancer therapies has been developed with cancer patient-derived organoids (PDOs) as a tool for establishing pre-clinical tumor models. Herein, we discuss the updated and presently available tissue-specific CSC markers in five highly occurring solid tumors. Additionally, we highlight the advantage and relevance of the three-dimensional PDOs culture model as a platform for modeling cancer, evaluating the efficacy of CSC-based therapeutics, and predicting drug response in cancer patients.
Collapse
Affiliation(s)
- Amani Yehya
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Joe Youssef
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Sana Hachem
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Jana Ismael
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| |
Collapse
|
4
|
Votava M, Bartolini R, Capkova L, Smetanova J, Jiri V, Kuchar M, Kalfert D, Plzak J, Bartunkova J, Strizova Z. The expression profiles of CD47 in the tumor microenvironment of salivary gland cancers: a next step in histology-driven immunotherapy. BMC Cancer 2022; 22:1021. [PMID: 36171566 PMCID: PMC9520840 DOI: 10.1186/s12885-022-10114-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Salivary gland carcinomas (SGC) are extremely rare malignancies with only limited treatment options for the metastatic phase of the disease. Treatment with anti-CD47 antibodies could represent a potent therapy for SGCs by promoting the phagocytic clearance of tumor cells through various mechanisms. However, the efficacy of anti-CD47 therapy is largely dependent on the expression of CD47 within the tumor microenvironment (TME). MATERIALS AND METHODS In 43 patients with SGC, we were the first to investigate the CD47 expression in both tumor cells and tumor-infiltrating immune cells (TIIC) in the center and periphery of primary tumors. We also correlated the data with the clinicopathological variables of the patients and offered novel insights into the potential effectiveness of anti-CD47 therapy in SGCs. RESULTS We observed that the CD47+ tumor cells are outnumbered by CD47+ TIICs in mucoepidermoid carcinoma. In the tumor center, the proportion of CD47+ tumor cells was comparable to the proportion of CD47+ TIICs in most histological subtypes. In low-grade tumors, significantly higher expression of CD47 was observed in TIICs in the periphery of the tumor as compared to the center of the tumor. CONCLUSION The reason for a high expression of 'don't eat me' signals in TIICs in the tumor periphery is unclear. However, we hypothesize that in the tumor periphery, upregulation of CD47 in TIICs could be a mechanism to protect newly recruited leukocytes from macrophage-mediated phagocytosis, while also allowing the removal of old or exhausted leukocytes in the tumor center.
Collapse
Affiliation(s)
- Michal Votava
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague 5, Czech Republic
| | - Robin Bartolini
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TT, UK
| | - Linda Capkova
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague 5, Czech Republic
| | - Jitka Smetanova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague 5, Czech Republic
| | - Vachtenheim Jiri
- Third Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague 5, Czech Republic
| | - Martin Kuchar
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Bulovka, 18081, Prague, Czech Republic
| | - David Kalfert
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague 5, Czech Republic
| | - Jan Plzak
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague 5, Czech Republic
| | - Jirina Bartunkova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague 5, Czech Republic
| | - Zuzana Strizova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague 5, Czech Republic.
| |
Collapse
|
5
|
Weeda V, Mestrum SGC, Leers MPG. Flow Cytometric Identification of Hematopoietic and Leukemic Blast Cells for Tailored Clinical Follow-Up of Acute Myeloid Leukemia. Int J Mol Sci 2022; 23:ijms231810529. [PMID: 36142442 PMCID: PMC9506284 DOI: 10.3390/ijms231810529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Acute myeloid leukemia (AML) is a myeloid malignancy that is characterized by the accumulation of leukemic blast cells, which originate from hematopoietic stem cells that have undergone leukemic transformation and/or are more mature progenitors that have gained stemness features. Currently, no consensus exists for the flow cytometric identification of normal blast cells and their leukemic counterparts by their antigenic expression profile. Differentiating between the benign cells and the malignant cells is crucial for the further deployment of immunophenotype panels for the clinical follow-up of AML patients. This review provides an overview of immunophenotypic markers that allow the identification of leukemic blast cells in the bone marrow with multiparameter flow cytometry. This technique allows the identification of hematopoietic blast cells at the level of maturing cells by their antigen expression profile. While aberrant antigen expression of a single immunophenotypic marker cell cannot be utilized in order to differentiate leukemic blast cells from normal blast cells, combinations of multiple immunophenotypic markers can enable the distinction of normal and leukemic blast cells. The identification of these markers has provided new perspectives for tailored clinical follow-up, including therapy management, diagnostics, and prognostic purposes. The immunophenotypic marker panels, however, should be developed by carefully considering the variable antigen marker expression profile of individual patients.
Collapse
Affiliation(s)
- Vera Weeda
- Department of Clinical Chemistry & Hematology, Zuyderland Medical Centre, 6162BG Sittard-Geleen, The Netherlands
| | - Stefan G. C. Mestrum
- Department of Clinical Chemistry & Hematology, Zuyderland Medical Centre, 6162BG Sittard-Geleen, The Netherlands
- Department of Molecular Cell Biology, GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, 6200MD Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-6-36176124
| | - Math P. G. Leers
- Department of Clinical Chemistry & Hematology, Zuyderland Medical Centre, 6162BG Sittard-Geleen, The Netherlands
| |
Collapse
|
6
|
Mehraj U, Ganai RA, Macha MA, Hamid A, Zargar MA, Bhat AA, Nasser MW, Haris M, Batra SK, Alshehri B, Al-Baradie RS, Mir MA, Wani NA. The tumor microenvironment as driver of stemness and therapeutic resistance in breast cancer: New challenges and therapeutic opportunities. Cell Oncol (Dordr) 2021; 44:1209-1229. [PMID: 34528143 DOI: 10.1007/s13402-021-00634-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Breast cancer (BC), the second most common cause of cancer-related deaths, remains a significant threat to the health and wellness of women worldwide. The tumor microenvironment (TME), comprising cellular components, such as cancer-associated fibroblasts (CAFs), immune cells, endothelial cells and adipocytes, and noncellular components such as extracellular matrix (ECM), has been recognized as a critical contributor to the development and progression of BC. The interplay between TME components and cancer cells promotes phenotypic heterogeneity, cell plasticity and cancer cell stemness that impart tumor dormancy, enhanced invasion and metastasis, and the development of therapeutic resistance. While most previous studies have focused on targeting cancer cells with a dismal prognosis, novel therapies targeting stromal components are currently being evaluated in preclinical and clinical studies, and are already showing improved efficacies. As such, they may offer better means to eliminate the disease effectively. CONCLUSIONS In this review, we focus on the evolving concept of the TME as a key player regulating tumor growth, metastasis, stemness, and the development of therapeutic resistance. Despite significant advances over the last decade, several clinical trials focusing on the TME have failed to demonstrate promising effectiveness in cancer patients. To expedite clinical efficacy of TME-directed therapies, a deeper understanding of the TME is of utmost importance. Secondly, the efficacy of TME-directed therapies when used alone or in combination with chemo- or radiotherapy, and the tumor stage needs to be studied. Likewise, identifying molecular signatures and biomarkers indicating the type of TME will help in determining precise TME-directed therapies.
Collapse
Affiliation(s)
- Umar Mehraj
- Department of Bioresources, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Rais A Ganai
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science & Technology , Awantipora, Jammu & Kashmir, India
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science & Technology , Awantipora, Jammu & Kashmir, India
| | - Abid Hamid
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, India
| | - Mohammed A Zargar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, India
| | - Ajaz A Bhat
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mohammad Haris
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar.,Laboratory of Animal Research, Qatar University, Doha, Qatar
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska, Lincoln, NE, USA.,Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Almajmaah, Kingdom of Saudi Arabia
| | - Raid Saleem Al-Baradie
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Almajmaah, Kingdom of Saudi Arabia
| | - Manzoor A Mir
- Department of Bioresources, University of Kashmir, Srinagar, Jammu & Kashmir, India.
| | - Nissar Ahmad Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, India.
| |
Collapse
|
7
|
CD47 Potentiates Inflammatory Response in Systemic Lupus Erythematosus. Cells 2021; 10:cells10051151. [PMID: 34068752 PMCID: PMC8151692 DOI: 10.3390/cells10051151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 01/20/2023] Open
Abstract
Background: To investigate the role of CD47 in inflammatory responses in systemic lupus erythematosus (SLE). Methods: Expression of CD47 and signal regulatory protein alpha (SIRPα) by peripheral blood mononuclear cells (PBMCs) and changes in CD47 expression after exposure to SLE serum, healthy control (HC) serum, recombinant interferon (IFN)-α, or tumor necrosis factor (TNF)-α were examined. Human monocytes and THP1 cells were incubated with lipopolysaccharide (LPS), an anti-CD47 antibody, or both. TNF-α production was examined. Sera from SLE patients and HCs were screened to detect autoantibodies specific for CD47. Results: Twenty-five SLE patients and sixteen HCs were enrolled. CD47 expression by monocytes from SLE patients was higher than those from HCs (mean fluorescence intensity ± SD: 815.9 ± 269.4 vs. 511.5 ± 199.4, respectively; p < 0.001). CD47 expression by monocytes correlated with SLE disease activity (Spearman’s rho = 0.467, p = 0.019). IFN-α but not TNF-α, increased CD47 expression. Exposing monocytes to an anti-CD47 antibody plus LPS increased TNF-α production by 21.0 ± 10.9-fold (compared with 7.3 ± 5.5-fold for LPS alone). Finally, levels of autoantibodies against CD47 were higher in SLE patients than in HCs (21.4 ± 7.1 ng/mL vs. 16.1 ± 3.1 ng/mL, respectively; p = 0.02). Anti-CD47 antibody levels did not correlate with disease activity (Spearman’s rho = −0.11, p = 0.759) or CD47 expression on CD14 monocytes (Spearman’s rho = 0.079, p = 0.838) in patients. Conclusions: CD47 expression by monocytes is upregulated in SLE and correlates with disease activity. CD47 contributes to augmented inflammatory responses in SLE. Targeting CD47 might be a novel treatment for SLE.
Collapse
|
8
|
Hydrogen gas represses the progression of lung cancer via down-regulating CD47. Biosci Rep 2021; 40:222726. [PMID: 32314789 PMCID: PMC7189362 DOI: 10.1042/bsr20192761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/17/2020] [Accepted: 04/20/2020] [Indexed: 01/28/2023] Open
Abstract
Hydrogen gas (H2) has been identified to play an anti-tumor role in several kinds of cancers, but the molecular mechanisms remain largely unknown. In our previous study, our project group found that H2 could decrease the expression of CD47 in lung cancer A549 cells via the next-generation sequencing, indicating that CD47 might be involved in H2-mediated lung cancer repression. Therefore, the present study aimed to explore the effects of CD47 on H2-induced lung cancer repression. Western blotting and real-time PCR (RT-PCR) assays were used to detect the levels of proteins and mRNAs, respectively. Cell proliferation, invasion, migration and apoptosis were detected by using the cell counting kit-8 (CCK-8), Transwell chambers, wound healing and flow cytometry assays, respectively. The results showed that H2 treatment caused decreases in the expression levels of CD47 and cell division control protein 42 (CDC42) in a dose-dependent manner. Up-regulation of CD47 abolished H2 roles in promoting lung cancer cell apoptosis and repressing cell growth, invasion and migration in both A549 and H1975 cell lines. However, knockdown of CD47 enhanced H2 role in lung cancer inhibition. Moreover, we also observed that H2 treatment induced obvious inhibitions in the expression levels of CDC42 and CD47 in mice tumor tissues, as well as reinforced macrophage-mediated phagocytosis in A549 and H1975 cells. In conclusion, the current study reveals that H2 inhibits the progression of lung cancer via down-regulating CD47, which might be a potent method for lung cancer treatment.
Collapse
|
9
|
Fontana F, Bartolo R, Santos HA. Biohybrid Nanosystems for Cancer Treatment: Merging the Best of Two Worlds. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:135-162. [PMID: 33543459 DOI: 10.1007/978-3-030-58174-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
During the last 20+ years, research into the biomedical application of nanotechnology has helped in reshaping cancer treatment. The clinical use of several passively targeted nanosystems resulted in improved quality of care for patients. However, the therapeutic efficacy of these systems is not superior to the original drugs. Moreover, despite extensive investigations into actively targeted nanocarriers, numerous barriers still remain before their successful clinical translation, including sufficient bloodstream circulation time and efficient tumor targeting. The combination of synthetic nanomaterials with biological elements (e.g., cells, cell membranes, and macromolecules) is presently the cutting-edge research in cancer nanotechnology. The features provided by the biological moieties render the particles with prolonged bloodstream circulation time and homotopic targeting to the tumor site. Moreover, cancer cell membranes serve as sources of neoantigens, useful in the formulation of nanovaccines. In this chapter, we will discuss the advantages of biohybrid nanosystems in cancer chemotherapy, immunotherapy, and combined therapy, as well as highlight their preparation methods and clinical translatability.
Collapse
Affiliation(s)
- Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Raquél Bartolo
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
10
|
Qi L, Jiang-Hua M, Ge-Liang H, Qing C, Ya-Ming L. MiR-34a Inhibits Spinal Cord Injury and Blocks Spinal Cord Neuron Apoptosis by Activating Phatidylinositol 3-kinase (PI3K)/AKT Pathway Through Targeting CD47. Curr Neurovasc Res 2020; 16:373-381. [PMID: 31490756 DOI: 10.2174/1567202616666190906102343] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 07/27/2019] [Accepted: 08/05/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Dysregulation of miR-34a has been reported for its implication in neuronal development. This study aims to explore the effect and possible mechanism of miR-34a on neuron apoptosis induced by Spinal Cord Injury (SCI). MATERIALS AND METHODS SCI model was established using Allen's weight-drop method and rats in the sham group were performed with laminectomy without weight-drop injury. Basso Bcattie Bresnahan (BBB) rating scale was applied to evaluate the locomotor function of rats. Pathological changes of spinal cord tissues in SCI rats were observed after hematoxylin and eosin (HE) staining. Rats were separately injected with miR-34a agomir, miR-34a agomir NC, si-CD47 and si- CD47 NC before their spinal cord tissues were collected for terminal-deoxynucleoitidyl Transferase Mediated nick end labeling (TUNEL) staining. Expressions of miR-34a, si-CD47, apoptosis related proteins and AKT pathway related proteins were measured by quantitative reverse transcription- polymerase chain reaction (qRT-PCR) and western blot. RESULTS SCI rat models were successfully established evidenced by decreased BBB scores and HE staining. Injection of miR-34a agomir and/or si-CD47 could suppress neuron cell apoptosis, with deceased apoptotic index (AI) and pro-apoptotic protein (cleaved caspase-3 and Bax) levels, and increased expressions of anti-apoptotic proteins (Bcl-2 and Mcl-1). Phosphorylated levels of phatidylinositol 3-kinase (PI3K) and AKT were further increased in rats injected with miR-34a agomir and si-CD47, compared with miR-34a agomir or si-CD47 injection alone. CONCLUSION MiR-34a can downregulate CD47 expression to activate PI3K/AKT signal pathway, and thus inhibit SCI induced spinal neuron apoptosis.
Collapse
Affiliation(s)
- Liao Qi
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ming Jiang-Hua
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hu Ge-Liang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chen Qing
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Li Ya-Ming
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
11
|
Labib M, Philpott DN, Wang Z, Nemr C, Chen JB, Sargent EH, Kelley SO. Magnetic Ranking Cytometry: Profiling Rare Cells at the Single-Cell Level. Acc Chem Res 2020; 53:1445-1457. [PMID: 32662263 DOI: 10.1021/acs.accounts.0c00179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cellular heterogeneity in biological systems presents major challenges in the diagnosis and treatment of disease and also complicates the deconvolution of complex cellular phenomena. Single-cell analysis methods provide information that is not masked by the intrinsic heterogeneity of the bulk population and can therefore be applied to gain insights into heterogeneity among different cell subpopulations with fine resolution. Over the last 5 years, an explosion in the number of single-cell measurement methods has occurred. However, most of these methods are applicable to pure populations of cultured cells and are not able to handle high levels of phenotypic heterogeneity or a large background of nontarget cells. Microfluidics is an attractive tool for single cell manipulation as it enables individual encasing of single cells, allowing for high-throughput analysis with precise control of the local environment. Our laboratory has developed a new microfluidics-based analytical strategy to meet this unmet need referred to as magnetic ranking cytometry (MagRC). Cells expressing a biomarker of interest are labeled with receptor-coated magnetic nanoparticles and isolated from nontarget cells using a microfluidic device. The device ranks the cells according to the level of bound magnetic nanoparticles, which corresponds to the expression level of a target biomarker. Over the last several years, two generations of MagRC devices have been developed for different applications. The first-generation MagRC devices are powerful tools for the quantitation and analysis of rare cells present in heterogeneous samples, such as circulating tumor cells, stem cells, and pathogenic bacteria. The second-generation MagRC devices are compatible with the efficient recovery of cells sorted on the basis of protein expression and can be used to analyze large populations of cells and perform phenotypic CRISPR screens. To improve analytical precision, newer iterations of the first-generation and second-generation MagRC devices have been integrated with electrochemical sensors and Hall effect sensors, respectively. Both generations of MagRC devices permit the isolation of viable cells, which sets the stage for a wide range of applications, such as generating cell lines from rare cells and in vitro screening for effective therapeutic interventions in cancer patients to realize the promise of personalized medicine. This Account summarizes the development and application of the MagRC and describes a suite of advances that have enabled single-cell tumor cell analysis and monitoring tumor response to therapy, stem cell analysis, and detection of pathogens.
Collapse
Affiliation(s)
- Mahmoud Labib
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - David N. Philpott
- Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Zongjie Wang
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Carine Nemr
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Jenise B. Chen
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Edward H. Sargent
- Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shana O. Kelley
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
12
|
Strizova Z, Vachtenheim J, Snajdauf M, Lischke R, Bartunkova J, Smrz D. Tumoral and paratumoral NK cells and CD8 + T cells of esophageal carcinoma patients express high levels of CD47. Sci Rep 2020; 10:13936. [PMID: 32811852 PMCID: PMC7435266 DOI: 10.1038/s41598-020-70771-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022] Open
Abstract
In a limited number of human malignancies, anti-CD47 therapy leads to the rapid clearance of tumor cells by macrophages. In esophageal squamous cell carcinoma, anti-CD47 treatment has shown promising results in vitro. However, the CD47 expression pattern in tumor-infiltrating lymphocytes (TILs), which are associated with prolonged overall survival and serve as a positive prognostic factor, is largely unknown. In this study, a total of 36 tissue samples from the tumor, peritumoral tissue, and adjacent healthy esophageal tissue was obtained from 12 esophageal carcinoma (EC) patients, and the surface expression of CD47 was evaluated in natural killer (NK) cells, CD8+ T cells, and the nonlymphocyte cell fraction. We found that the proportions of the evaluated cells and their CD47-expressing populations were comparable across the analyzed tissue compartments. However, the proportions of CD47-expressing populations in the analyzed tissue compartments were significantly higher in NK cells and CD8+ T cells than in the nonlymphocyte cell fraction. Importantly, the intensity of CD47 staining was also significantly higher in the tested immune cells than in the nonlymphocyte cell fraction. High expression of CD47 in tissue-infiltrating NK cells and CD8+ T cells in EC patients can, therefore, affect the efficacy of anti-CD47 therapy in EC.
Collapse
Affiliation(s)
- Zuzana Strizova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Praha 5, Czech Republic
| | - Jiri Vachtenheim
- Third Department of Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Martin Snajdauf
- Third Department of Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Robert Lischke
- Third Department of Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jirina Bartunkova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Praha 5, Czech Republic
| | - Daniel Smrz
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Praha 5, Czech Republic.
| |
Collapse
|
13
|
Immune checkpoint inhibition in myeloid malignancies: Moving beyond the PD-1/PD-L1 and CTLA-4 pathways. Blood Rev 2020; 45:100709. [PMID: 32487480 DOI: 10.1016/j.blre.2020.100709] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/26/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors (ICI) have yielded mixed but largely underwhelming results in clinical trials in patients with acute myeloid leukemia and myelodysplastic syndromes to date. However, increasing understanding of the immunologic landscape, potential biomarkers for benefits, and mechanisms of resistance, as well as the use of rational combinations, and identification of novel targets leaves plenty of room for optimism. Herein, we review recent advances in the preclinical and clinical development of ICI therapy in patients with myeloid malignancies and explore some of the important challenges facing the field such as the absence of validated biomarkers, the development of synergistic and safe combination therapies, and efforts to determine the best setting of ICI along the disease course. We finally foresee the future of the field and propose solutions to some of the major beforementioned obstacles.
Collapse
|
14
|
MicroRNA-200a Promotes Phagocytosis of Macrophages and Suppresses Cell Proliferation, Migration, and Invasion in Nasopharyngeal Carcinoma by Targeting CD47. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3723781. [PMID: 32149101 PMCID: PMC7054800 DOI: 10.1155/2020/3723781] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 12/18/2019] [Indexed: 01/29/2023]
Abstract
Nasopharyngeal carcinoma (NPC) causes severe oncogenic lesions in the nasopharynx. CD47, a transmembrane integrin-associated protein, plays a key role in the ability of tumor cells to escape phagocytosis, working as an immune checkpoint in the immune response. Besides this role, CD47 has been reported to regulate cell proliferation and migration. The present study addresses the relationship between CD47 and microRNA-200a and examines their regulatory mechanisms in NPC. Bioinformatics analyses and dual-luciferase reporter assays were used to confirm the putative relationship between miR-200a and CD47, and their interaction was further detected using western blotting and RT-PCR. Further, results showed that miR-200a affect NPC cell proliferation, migration, and invasion by regulating CD47. A cell phagocytosis assay showed that miR-200a and a CD47 monoclonal antibody increased the sensitivity of NPC cells to macrophage phagocytosis by inhibiting the functions of CD47. Additionally, miR-200a expression was suppressed and CD47 expression increased in both clinical NPC tissues and cell lines. Taken together, these results show the miR-200a/CD47 combination as a potential therapeutic for treatment of NPC.
Collapse
|
15
|
Nigro A, Ricciardi L, Salvato I, Sabbatino F, Vitale M, Crescenzi MA, Montico B, Triggiani M, Pepe S, Stellato C, Casolaro V, Dal Col J. Enhanced Expression of CD47 Is Associated With Off-Target Resistance to Tyrosine Kinase Inhibitor Gefitinib in NSCLC. Front Immunol 2020; 10:3135. [PMID: 32082304 PMCID: PMC7004973 DOI: 10.3389/fimmu.2019.03135] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/23/2019] [Indexed: 01/19/2023] Open
Abstract
Mutual interactions between cancer cells and the tumor microenvironment importantly contribute to the development of tyrosine kinase inhibitor (TKI) resistance in patients affected by EGFR-mutant NSCLC. In particular, immune recognition-associated proteins with impact on tumor cell clearance through phagocytosis, such as CD47 and calreticulin, could contribute to adaptive resistance and immune escape. Preclinical studies targeting the anti-phagocytic CD47 molecule showed promising results in different cancer types including lung cancer, but no data are available on its role in patients acquiring resistance to EGFR TKI treatment. We analyzed the functional contribution of CD47 and calreticulin to immune surveillance and evasion in a panel of NSCLC cell lines carrying sensitizing or resistant mutations in the EGFR gene, following treatment with the TKI gefitinib and after in vitro development of gefitinib resistance. While CD47 and calreticulin protein levels were markedly variable in both EGFR-mutant and wild-type cell lines, analysis of NSCLC transcriptomic dataset revealed selective overexpression of CD47 in patients carrying EGFR mutations. EGFR inhibition significantly reduced CD47 expression on the surface of pre-apoptotic cells, favoring more efficient engulfment of cancer cells by monocyte-derived dendritic cells. This was not necessarily associated with augmented surface exposure of calreticulin or other molecular markers of immunogenic cell death. Moreover, CD47 expression became up-regulated following in vitro drug resistance development, and blocking of this protein by a specific monoclonal antibody increased the clearance of EGFR-TKI resistant cells by phagocytes. Our study supports CD47 neutralization by specific monoclonal antibody as a promising immunotherapeutic option for naïve and resistant EGFR-mutant NSCLCs.
Collapse
Affiliation(s)
- Annunziata Nigro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| | - Luca Ricciardi
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| | - Ilaria Salvato
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| | - Francesco Sabbatino
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| | - Monica Vitale
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| | - Maria Assunta Crescenzi
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| | - Barbara Montico
- Immunopathology and Cancer Biomarkers, Translational Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Massimo Triggiani
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| | - Stefano Pepe
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| |
Collapse
|
16
|
Mukherjee S, Sonanini D, Maurer A, Daldrup-Link HE. The yin and yang of imaging tumor associated macrophages with PET and MRI. Am J Cancer Res 2019; 9:7730-7748. [PMID: 31695797 PMCID: PMC6831464 DOI: 10.7150/thno.37306] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022] Open
Abstract
Tumor associated macrophages (TAM) are key players in the cancer microenvironment. Molecular imaging modalities such as MRI and PET can be used to track and monitor TAM dynamics in tumors non-invasively, based on specific uptake and quantification of MRI-detectable nanoparticles or PET-detectable radiotracers. Particular molecular signatures can be leveraged to target anti-inflammatory TAM, which support tumor growth, and pro-inflammatory TAM, which suppress tumor growth. In addition, TAM-directed imaging probes can be designed to include immune modulating properties, thereby leading to combined diagnostic and therapeutic (theranostic) effects. In this review, we will discuss the complementary role of TAM-directed radiotracers and iron oxide nanoparticles for monitoring cancer immunotherapies with PET and MRI technologies. In addition, we will outline how TAM-directed imaging and therapy is interdependent and can be connected towards improved clinical outcomes
Collapse
|
17
|
High-throughput genome-wide phenotypic screening via immunomagnetic cell sorting. Nat Biomed Eng 2019; 3:796-805. [DOI: 10.1038/s41551-019-0454-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
|
18
|
Valent P, Sadovnik I, Eisenwort G, Bauer K, Herrmann H, Gleixner KV, Schulenburg A, Rabitsch W, Sperr WR, Wolf D. Immunotherapy-Based Targeting and Elimination of Leukemic Stem Cells in AML and CML. Int J Mol Sci 2019; 20:E4233. [PMID: 31470642 PMCID: PMC6747233 DOI: 10.3390/ijms20174233] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022] Open
Abstract
The concept of leukemic stem cells (LSC) has been developed with the idea to explain the clonal hierarchies and architectures in leukemia, and the more or less curative anti-neoplastic effects of various targeted drugs. It is now widely accepted that curative therapies must have the potential to eliminate or completely suppress LSC, as only these cells can restore and propagate the malignancy for unlimited time periods. Since LSC represent a minor cell fraction in the leukemic clone, little is known about their properties and target expression profiles. Over the past few years, several cell-specific immunotherapy concepts have been developed, including new generations of cell-targeting antibodies, antibody-toxin conjugates, bispecific antibodies, and CAR-T cell-based strategies. Whereas such concepts have been translated and may improve outcomes of therapy in certain lymphoid neoplasms and a few other malignancies, only little is known about immunological targets that are clinically relevant and can be employed to establish such therapies in myeloid neoplasms. In the current article, we provide an overview of the immunologically relevant molecular targets expressed on LSC in patients with acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). In addition, we discuss the current status of antibody-based therapies in these malignancies, their mode of action, and successful examples from the field.
Collapse
MESH Headings
- Acute Disease
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/immunology
- B7-H1 Antigen/metabolism
- CTLA-4 Antigen/antagonists & inhibitors
- CTLA-4 Antigen/immunology
- CTLA-4 Antigen/metabolism
- Humans
- Immunologic Factors/therapeutic use
- Immunotherapy/methods
- Immunotherapy/trends
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Leukemia, Myeloid/immunology
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid/therapy
- Molecular Targeted Therapy/methods
- Molecular Targeted Therapy/trends
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/immunology
- Neoplastic Stem Cells/metabolism
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria.
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Irina Sadovnik
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gregor Eisenwort
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Karin Bauer
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Harald Herrmann
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Department of Radiotherapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Karoline V Gleixner
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Axel Schulenburg
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Division of Blood and Bone Marrow Transplantation, Department of Internal Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Werner Rabitsch
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Division of Blood and Bone Marrow Transplantation, Department of Internal Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Dominik Wolf
- Department of Internal Medicine V (Hematology & Oncology), Medical University of Innsbruck, 1090 Innsbruck, Austria
- Medical Clinic 3, Oncology, Hematology, Immunoncology & Rheumatology, University Clinic Bonn (UKB), 53127 Bonn, Germany
| |
Collapse
|
19
|
Otsuka I. Cutaneous Metastasis after Surgery, Injury, Lymphadenopathy, and Peritonitis: Possible Mechanisms. Int J Mol Sci 2019; 20:E3286. [PMID: 31277406 PMCID: PMC6651228 DOI: 10.3390/ijms20133286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
Cutaneous metastases from internal malignancies are uncommon. Umbilical metastasis, also known as Sister Joseph nodule (SJN), develops in patients with carcinomatous peritonitis or superficial lymphadenopathy, while non-SJN skin metastases develop after surgery, injury, and lymphadenopathy. In this review, the possible mechanisms of skin metastases are discussed. SJNs develop by the contiguous or lymphatic spread of tumor cells. After surgery and injury, tumor cells spread by direct implantation or hematogenous metastasis, and after lymphadenopathy, they spread by extranodal extension. The inflammatory response occurring during wound healing is exploited by tumor cells and facilitates tumor growth. Macrophages are crucial drivers of tumor-promoting inflammation, which is a source of survival, growth and angiogenic factors. Angiogenesis is promoted by the vascular endothelial growth factor (VEGF), which also mediates tumor-associated immunodeficiency. In the subcutaneous tissues that surround metastatic lymph nodes, adipocytes promote tumor growth. In the elderly, age-associated immunosuppression may facilitate hematogenous metastasis. Anti-VEGF therapy affects recurrence patterns but at the same time, may increase the risk of skin metastases. Immune suppression associated with inflammation may play a key role in skin metastasis development. Thus, immune therapies, including immune checkpoint inhibitors reactivating cytotoxic T-cell function and inhibiting tumor-associated macrophage function, appear promising.
Collapse
Affiliation(s)
- Isao Otsuka
- Department of Obstetrics and Gynecology, Kameda Medical Center, Kamogawa 296-8602, Japan.
| |
Collapse
|
20
|
CD8+ T cells expand stem and progenitor cells in favorable but not adverse risk acute myeloid leukemia. Leukemia 2019; 33:2379-2392. [DOI: 10.1038/s41375-019-0441-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/08/2019] [Accepted: 02/21/2019] [Indexed: 12/17/2022]
|
21
|
Yang C, Shao T, Zhang H, Zhang N, Shi X, Liu X, Yao Y, Xu L, Zhu S, Cao J, Cheng H, Yan Z, Li Z, Niu M, Xu K. MiR-425 expression profiling in acute myeloid leukemia might guide the treatment choice between allogeneic transplantation and chemotherapy. J Transl Med 2018; 16:267. [PMID: 30285885 PMCID: PMC6167790 DOI: 10.1186/s12967-018-1647-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/26/2018] [Indexed: 01/08/2023] Open
Abstract
Background Acute myeloid leukemia (AML) is a highly heterogeneous disease. MicroRNAs function as important biomarkers in the clinical prognosis of AML. Methods This study identified miR-425 as a prognostic factor in AML by screening the TCGA dataset. A total of 162 patients with AML were enrolled for the study and divided into chemotherapy and allogeneic hematopoietic stem cell transplantation (allo-HSCT) groups. Results In the chemotherapy group, patients with high miR-425 expression had significantly longer overall survival (OS) and event-free survival (EFS) compared with patients with low miR-425 expression. In multivariate analyses, high miR-425 expression remained independently predictive of a better OS (HR = 0.502, P = 0.005) and EFS (HR = 0.432, P = 0.001) compared with patients with low miR-425 expression. Then, all patients were divided into two groups based on the median expression levels of miR-425. Notably, the patients undergoing allo-HSCT had significantly better OS (HR = 0.302, P < 0.0001) and EFS (HR = 0.379, P < 0.0001) compared with patients treated with chemotherapy in the low-miR-425-expression group. Mechanistically, high miR-425 expression levels were associated with a profile significantly involved in regulating cellular metabolism. Among these genes, MAP3K5, SMAD2, and SMAD5 were predicted targets of miR-425. Conclusions The expression of miR-425 may be useful in identifying patients in need of strategies to select the optimal therapy between chemotherapy and allo-HSCT treatment regimens. Patients with low miR-425 expression may consider early allo-HSCT.
Collapse
Affiliation(s)
- Chen Yang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tingting Shao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Huihui Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ninghan Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoying Shi
- School of Life Science & Medicine, Dalian University of Technology, Panjin, China
| | - Xuejiao Liu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yao Yao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Linyan Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shengyun Zhu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiang Cao
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hai Cheng
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhiling Yan
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhenyu Li
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mingshan Niu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
22
|
Zhang J, Jin S, Guo X, Qian W. Targeting the CD47-SIRPα signaling axis: current studies on B-cell lymphoma immunotherapy. J Int Med Res 2018; 46:4418-4426. [PMID: 30226089 PMCID: PMC6259379 DOI: 10.1177/0300060518799612] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The function of the immune system in cancer initiation and progression has been widely examined. Notably, immunotherapy has become a promising approach for cancer treatment. CD47, a member of the immunoglobulin superfamily, plays an important role in the immune regulation of cancer by binding to SIRPα. Multiple studies have detected high CD47 expression on the surface of tumor cells, which indicates poor prognosis. Treatments that block the interaction of CD47 and SIRPα significantly suppress tumor growth and metastasis through diverse mechanisms, such as phagocytosis, antibody-dependent cellular cytotoxicity, and apoptosis. Recently, several studies have reported increased CD47 expression on different types of lymphoma cells, indicating that the CD47-SIRPα pathway can be used as a therapeutic target in lymphoma. This review focuses on the role of CD47-SIRPα in B-cell lymphoma and discusses promising therapeutic strategies targeting the CD47-SIRPα axis, which yield insights into the immunotherapy of B-cell lymphoma.
Collapse
Affiliation(s)
- Jin Zhang
- 1 Department of Hematology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Shenhe Jin
- 1 Department of Hematology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Xiaojun Guo
- 2 Department of Hematology, First Affiliated Hospital of Jiaxing University, Jiaxing, P.R. China
| | - Wenbin Qian
- 3 Institute of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R. China.,4 Malignant Lymphoma Diagnosis and Therapy Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
23
|
Siegel J, Totonchy M, Damsky W, Berk-Krauss J, Castiglione F, Sznol M, Petrylak DP, Fischbach N, Goldberg SB, Decker RH, Stamatouli AM, Hafez N, Glusac EJ, Tomayko MM, Leventhal JS. Bullous disorders associated with anti-PD-1 and anti-PD-L1 therapy: A retrospective analysis evaluating the clinical and histopathologic features, frequency, and impact on cancer therapy. J Am Acad Dermatol 2018; 79:1081-1088. [PMID: 30025829 DOI: 10.1016/j.jaad.2018.07.008] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/30/2018] [Accepted: 07/04/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND Bullous disorders associated with anti-programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) therapy are increasingly reported and may pose distinct therapeutic challenges. Their frequency and impact on cancer therapy are not well established. OBJECTIVE To evaluate the clinical and histopathologic findings, frequency, and impact on cancer therapy of bullous eruptions due to anti-PD-1/PD-L1 therapy. METHODS We retrospectively reviewed the medical records of patients evaluated by the oncodermatology clinic and consultative service of Yale New Haven Hospital from 2016 to 2018. RESULTS We identified 9 of 853 patients who developed bullous eruptions (∼1%) that were treated with an-PD-1/PD-L1 therapy at our institution during the study period: 7 presented with bullous pemphigoid, 1 presented with bullous lichenoid dermatitis, and 1 presented with linear IgA bullous dermatosis in the context of vancomycin therapy. In all, 8 patients required systemic steroids, 5 required maintenance therapy, and 8 required interruption of immunotherapy. All 9 patients had an initial positive tumor response or stable disease, but 4 went on to develop disease progression. LIMITATIONS This was a retrospective study from a single tertiary care center. CONCLUSIONS Bullous disorders developed in approximately 1% of patients treated with anti-PD-1/PD-L1 therapy at our institution and frequently resulted in interruption of immune therapy and management with systemic corticosteroids and occasionally steroid-sparing agents.
Collapse
Affiliation(s)
- Jacob Siegel
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Mariam Totonchy
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - William Damsky
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Juliana Berk-Krauss
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Frank Castiglione
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Mario Sznol
- Department of Internal Medicine (Medical Oncology), Yale University School of Medicine, New Haven, Connecticut
| | - Daniel P Petrylak
- Department of Internal Medicine (Medical Oncology), Yale University School of Medicine, New Haven, Connecticut; Department of Urology, Yale University School of Medicine, New Haven, Connecticut
| | - Neal Fischbach
- Department of Internal Medicine (Medical Oncology), Yale University School of Medicine, New Haven, Connecticut
| | - Sarah B Goldberg
- Department of Internal Medicine (Medical Oncology), Yale University School of Medicine, New Haven, Connecticut
| | - Roy H Decker
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Angeliki M Stamatouli
- Department of Internal Medicine (Medical Oncology), Yale University School of Medicine, New Haven, Connecticut
| | - Navid Hafez
- Department of Internal Medicine (Medical Oncology), Yale University School of Medicine, New Haven, Connecticut
| | - Earl J Glusac
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Mary M Tomayko
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Jonathan S Leventhal
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
24
|
Zhang X, Chen W, Fan J, Wang S, Xian Z, Luan J, Li Y, Wang Y, Nan Y, Luo M, Li S, Tian W, Ju D. Disrupting CD47-SIRPα axis alone or combined with autophagy depletion for the therapy of glioblastoma. Carcinogenesis 2018. [DOI: 10.1093/carcin/bgy041] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xuyao Zhang
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Wei Chen
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiajun Fan
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Shaofei Wang
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zongshu Xian
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Jingyun Luan
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Yubin Li
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yichen Wang
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Yanyang Nan
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Man Luo
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Song Li
- ImmuneOnco Biopharma (Shanghai) Co., Ltd., Shanghai, China
| | - Wenzhi Tian
- ImmuneOnco Biopharma (Shanghai) Co., Ltd., Shanghai, China
| | - Dianwen Ju
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Varricchio L, Falchi M, Dall'Ora M, De Benedittis C, Ruggeri A, Uversky VN, Migliaccio AR. Calreticulin: Challenges Posed by the Intrinsically Disordered Nature of Calreticulin to the Study of Its Function. Front Cell Dev Biol 2017; 5:96. [PMID: 29218307 PMCID: PMC5703715 DOI: 10.3389/fcell.2017.00096] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022] Open
Abstract
Calreticulin is a Ca2+-binding chaperone protein, which resides mainly in the endoplasmic reticulum but also found in other cellular compartments including the plasma membrane. In addition to Ca2+, calreticulin binds and regulates almost all proteins and most of the mRNAs deciding their intracellular fate. The potential functions of calreticulin are so numerous that identification of all of them is becoming a nightmare. Still the recent discovery that patients affected by the Philadelphia-negative myeloproliferative disorders essential thrombocytemia or primary myelofibrosis not harboring JAK2 mutations carry instead calreticulin mutations disrupting its C-terminal domain has highlighted the clinical need to gain a deeper understanding of the biological activity of this protein. However, by contrast with other proteins, such as enzymes or transcription factors, the biological functions of which are strictly defined by a stable spatial structure imprinted by their amino acid sequence, calreticulin contains intrinsically disordered regions, the structure of which represents a highly dynamic conformational ensemble characterized by constant changes between several metastable conformations in response to a variety of environmental cues. This article will illustrate the Theory of calreticulin as an intrinsically disordered protein and discuss the Hypothesis that the dynamic conformational changes to which calreticulin may be subjected by environmental cues, by promoting or restricting the exposure of its active sites, may affect its function under normal and pathological conditions.
Collapse
Affiliation(s)
- Lilian Varricchio
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mario Falchi
- National HIV/AIDS Center, Istituto Superiore Sanità, Rome, Italy
| | - Massimiliano Dall'Ora
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| | - Caterina De Benedittis
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| | - Alessandra Ruggeri
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Russia
| | - Anna Rita Migliaccio
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| |
Collapse
|
26
|
Schupp J, Krebs FK, Zimmer N, Trzeciak E, Schuppan D, Tuettenberg A. Targeting myeloid cells in the tumor sustaining microenvironment. Cell Immunol 2017; 343:103713. [PMID: 29129292 DOI: 10.1016/j.cellimm.2017.10.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/26/2017] [Accepted: 10/26/2017] [Indexed: 12/24/2022]
Abstract
Myeloid cells are the most abundant cells in the tumor microenvironment (TME). The tumor recruits and modulates endogenous myeloid cells to tumor-associated macrophages (TAM), dendritic cells (DC), myeloid-derived suppressor cells (MDSC) and neutrophils (TAN), to sustain an immunosuppressive environment. Pathologically overexpressed mediators produced by cancer cells like granulocyte-macrophage colony-stimulating- and vascular endothelial growth factor induce myelopoiesis in the bone marrow. Excess of myeloid cells in the blood, periphery and tumor has been associated with tumor burden. In cancer, myeloid cells are kept at an immature state of differentiation to be diverted to an immunosuppressive phenotype. Here, we review human myeloid cells in the TME and the mechanisms for sustaining the hallmarks of cancer. Simultaneously, we provide an introduction into current and novel therapeutic approaches to redirect myeloid cells from a cancer promoting to a rather inflammatory, cancer inhibiting phenotype. In addition, the role of platelets for tumor promotion is discussed.
Collapse
Affiliation(s)
- Jonathan Schupp
- Department of Dermatology, University Medical Center, Mainz, Germany
| | - Franziska K Krebs
- Department of Dermatology, University Medical Center, Mainz, Germany; German Cancer Consortium (DKTK), partner site Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Niklas Zimmer
- Department of Dermatology, University Medical Center, Mainz, Germany
| | - Emily Trzeciak
- The Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
27
|
Golubovskaya V, Berahovich R, Zhou H, Xu S, Harto H, Li L, Chao CC, Mao MM, Wu L. CD47-CAR-T Cells Effectively Kill Target Cancer Cells and Block Pancreatic Tumor Growth. Cancers (Basel) 2017; 9:cancers9100139. [PMID: 29065481 PMCID: PMC5664078 DOI: 10.3390/cancers9100139] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/30/2022] Open
Abstract
CD47 is a glycoprotein of the immunoglobulin superfamily that is often overexpressed in different types of hematological and solid cancer tumors and plays important role in blocking phagocytosis, increased tumor survival, metastasis and angiogenesis. In the present report, we designed CAR (chimeric antigen receptor)-T cells that bind CD47 antigen. We used ScFv (single chain variable fragment) from mouse CD47 antibody to generate CD47-CAR-T cells for targeting different cancer cell lines. CD47-CAR-T cells effectively killed ovarian, pancreatic and other cancer cells and produced high level of cytokines that correlated with expression of CD47 antigen. In addition, CD47-CAR-T cells significantly blocked BxPC3 pancreatic xenograft tumor growth after intratumoral injection into NSG mice. Moreover, we humanized mouse CD47 ScFv and showed that it effectively bound CD47 antigen. The humanized CD47-CAR-T cells also specifically killed ovarian, pancreatic, and cervical cancer cell lines and produced IL-2 that correlated with expression of CD47. Thus, CD47-CAR-T cells can be used as a novel cellular therapeutic agent for treating different types of cancer.
Collapse
Affiliation(s)
| | | | - Hua Zhou
- Promab Biotechnologies, Richmond, CA 94806, USA.
| | - Shirley Xu
- Promab Biotechnologies, Richmond, CA 94806, USA.
| | - Hizkia Harto
- Promab Biotechnologies, Richmond, CA 94806, USA.
| | - Le Li
- Promab Biotechnologies, Richmond, CA 94806, USA.
- Forevertek Biotechnology, Changsha 410003, China.
| | | | | | - Lijun Wu
- Promab Biotechnologies, Richmond, CA 94806, USA.
| |
Collapse
|
28
|
Barwe SP, Quagliano A, Gopalakrishnapillai A. Eviction from the sanctuary: Development of targeted therapy against cell adhesion molecules in acute lymphoblastic leukemia. Semin Oncol 2017; 44:101-112. [PMID: 28923207 DOI: 10.1053/j.seminoncol.2017.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/10/2017] [Accepted: 06/29/2017] [Indexed: 02/04/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is a malignant hematological disease afflicting hematopoiesis in the bone marrow. While 80%-90% of patients diagnosed with ALL will achieve complete remission at some point during treatment, ALL is associated with high relapse rate, with a 5-year overall survival rate of 68%. The initial remission failure and the high rate of relapse can be attributed to intrinsic chemoprotective mechanisms that allow persistence of ALL cells despite therapy. These mechanisms are mediated, at least in part, through the engagement of cell adhesion molecules (CAMs) within the bone marrow microenvironment. This review assembles CAMs implicated in protection of leukemic cells from chemotherapy. Such studies are limited in ALL. Therefore, CAMs that are associated with poor outcomes or are overexpressed in ALL and have been shown to be involved in chemoprotection in other hematological cancers are also included. It is likely that these molecules play parallel roles in ALL because the CAMs identified to be a factor in ALL chemoresistance also work similarly in other hematological malignancies. We review the signaling mechanisms activated by the engagement of CAMs that provide protection from chemotherapy. Development of targeted therapies against CAMs could improve outcome and raise the overall cure rate in ALL.
Collapse
Affiliation(s)
- Sonali P Barwe
- Nemours Center for Childhood Cancer Research, A.I. DuPont Hospital for Children, Wilmington, DE.
| | - Anthony Quagliano
- Nemours Center for Childhood Cancer Research, A.I. DuPont Hospital for Children, Wilmington, DE
| | | |
Collapse
|
29
|
Ohkuri T, Kosaka A, Ishibashi K, Kumai T, Hirata Y, Ohara K, Nagato T, Oikawa K, Aoki N, Harabuchi Y, Celis E, Kobayashi H. Intratumoral administration of cGAMP transiently accumulates potent macrophages for anti-tumor immunity at a mouse tumor site. Cancer Immunol Immunother 2017; 66:705-716. [PMID: 28243692 PMCID: PMC11028681 DOI: 10.1007/s00262-017-1975-1] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 02/12/2017] [Indexed: 12/25/2022]
Abstract
Stimulator of IFN genes (STING) spontaneously contributes to anti-tumor immunity by inducing type I interferons (IFNs) following sensing of tumor-derived genomic DNAs in the tumor-bearing host. Although direct injection of STING ligands such as cyclic diguanylate monophosphate (c-di-GMP) and cyclic [G(2',5')pA(3',5')p] (cGAMP) into the tumor microenvironment exerts anti-tumor effects through strong induction of type I IFNs and activation of innate and adaptive immunity, the precise events caused by STING in the tumor microenvironment remain to be elucidated. We describe here our finding that a CD45+ CD11bmid Ly6C+ cell subset transiently accumulated in mouse tumor microenvironment of 4T1 breast cancer, squamous cell carcinomas, CT26 colon cancer, or B16F10 melanoma tissue after intratumoral injection of cGAMP. The accumulated cells displayed a macrophage (M ) phenotype since the cells were positive for F4/80 and MHC class II and negative for Ly6G. Intratumoral cGAMP treatment did not induce Mφ accumulation in STING-deficient mice. Depletion of CD8+ T cell using anti-CD8 mAb impaired the anti-tumor effects of cGAMP treatment. Depletion of the Mφ using clodronate liposomes impaired the anti-tumor effects of cGAMP treatment. Functional analysis indicated that the STING-triggered tumor-migrating Mφ exhibited phagocytic activity, production of tumor necrosis factor alpha TNFα), and high expression levels of T cell-recruiting chemokines, Cxcl10 and Cxcl11, IFN-induced molecules, MX dynamin-like GTPase 1 (Mx1) and 2'-5' oligoadenylate synthetase-like 1 (Oasl1), nitric oxide synthase 2 (Nos2), and interferon beta 1 (Ifnb1). These results indicate that the STING-triggered tumor-migrating Mφ participate in the anti-tumor effects of STING-activating compounds.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/pharmacology
- Breast Neoplasms/immunology
- Breast Neoplasms/pathology
- Breast Neoplasms/prevention & control
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/prevention & control
- Colonic Neoplasms/immunology
- Colonic Neoplasms/pathology
- Colonic Neoplasms/prevention & control
- Female
- Immunotherapy
- Injections, Intralesional
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Macrophages/drug effects
- Macrophages/immunology
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/prevention & control
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Nucleotides, Cyclic/administration & dosage
- Nucleotides, Cyclic/pharmacology
- Phagocytosis
Collapse
Affiliation(s)
- Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan.
| | - Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
| | - Kei Ishibashi
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
- Respiratory and Breast Center, Asahikawa Medical University Hospital, Asahikawa, 078-8510, Japan
| | - Takumi Kumai
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
- Cancer Immunology, Inflammation and Tolerance Program, Augusta University GRU Cancer Center, Augusta, GA, 30912, USA
| | - Yui Hirata
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Kenzo Ohara
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Toshihiro Nagato
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Kensuke Oikawa
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
| | - Naoko Aoki
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
| | - Yasuaki Harabuchi
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Esteban Celis
- Cancer Immunology, Inflammation and Tolerance Program, Augusta University GRU Cancer Center, Augusta, GA, 30912, USA
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan.
| |
Collapse
|
30
|
Amey CL, Karnoub AE. Targeting Cancer Stem Cells-A Renewed Therapeutic Paradigm. ONCOLOGY & HEMATOLOGY REVIEW 2017; 13:45-55. [PMID: 33959299 PMCID: PMC8098671 DOI: 10.17925/ohr.2017.13.01.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Metastasis is often accompanied by radio- and chemotherapeutic resistance to anticancer treatments and is the major cause of death in cancer patients. Better understanding of how cancer cells circumvent therapeutic insults and how disseminated cancer clones generate life-threatening metastases would therefore be paramount to the development of effective therapeutic approaches for clinical management of malignant disease. Mounting reports over the past two decades have provided evidence for the existence of a minor population of highly malignant cells within liquid and solid tumors, which are capable of self-renewing and of regenerating secondary growths with the heterogeneity of the primary tumors from which they derive. These cells, called tumor-initiating cells or cancer stem cells (CSCs) exhibit increased resistance to standard radio- and chemotherapies and appear to have mechanisms that enable them to evade immune surveillance. CSCs are therefore considered to be responsible for systemic residual disease after cancer therapy, as well as for disease relapse. How CSCs develop, the nature of the interactions they establish with their microenvironment, their phenotypic and functional characteristics, as well as their molecular dependencies have all taken center stage in cancer therapy. Indeed, improved understanding of CSC biology is critical to the development of important CSC-based anti-neoplastic approaches that have the potential to radically improve cancer management. Here, we summarize some of the most pertinent elements regarding CSC development and properties, and highlight some of the clinical modalities in current development as anti-CSC therapeutics.
Collapse
Affiliation(s)
| | - Antoine E Karnoub
- Department of Pathology, Beth Israel Deaconess Cancer Center and Harvard Medical School, Boston, Massachusetts, US; Harvard Stem Cell Institute, Cambridge, Massachusetts, US; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, US
| |
Collapse
|
31
|
Korczak-Kowalska G, Stelmaszczyk-Emmel A, Bocian K, Kiernozek E, Drela N, Domagała-Kulawik J. Expanding Diversity and Common Goal of Regulatory T and B Cells. II: In Allergy, Malignancy, and Transplantation. Arch Immunol Ther Exp (Warsz) 2017; 65:523-535. [PMID: 28470464 PMCID: PMC5688211 DOI: 10.1007/s00005-017-0471-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/19/2017] [Indexed: 01/03/2023]
Abstract
Regulation of immune response was found to play an important role in the course of many diseases such as autoimmune diseases, allergy, malignancy, organ transplantation. The studies on immune regulation focus on the role of regulatory cells (Tregs, Bregs, regulatory myeloid cells) in these disorders. The number and function of Tregs may serve as a marker of disease activity. As in allergy, the depletion of Tregs is observed and the results of allergen-specific immunotherapy could be measured by an increase in the population of IL-10+ regulatory cells. On the basis of the knowledge of anti-cancer immune response regulation, new directions in therapy of tumors are introduced. As the proportion of regulatory cells is increased in the course of neoplasm, the therapeutic action is directed at their inhibition. The depletion of Tregs may be also achieved by an anti-check-point blockade, anti-CD25 agents, and inhibition of regulatory cell recruitment to the tumor site by affecting chemokine pathways. However, the possible favorable role of Tregs in cancer development is considered and the plasticity of immune regulation should be taken into account. The new promising direction of the treatment based on regulatory cells is the prevention of transplant rejection. A different way of production and implementation of classic Tregs as well as other cell types such as double-negative cells, Bregs, CD4+ Tr1 cells are tested in ongoing trials. On the basis of the results of current studies, we could show in this review the significance of therapies based on regulatory cells in different disorders.
Collapse
Affiliation(s)
- Grażyna Korczak-Kowalska
- Department of Immunology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Anna Stelmaszczyk-Emmel
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Bocian
- Department of Immunology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Ewelina Kiernozek
- Department of Immunology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Nadzieja Drela
- Department of Immunology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
32
|
Schulze AB, Schmidt LH, Baie L, Heitkötter B, Kuemmel A, Mohr M, Buhl R, Hillmann H, Geißler G, Kelsch R, Görlich D, Berdel WE, Hartmann W, Wiewrodt R. Rhesus CE expression on patient red blood cells is an independent prognostic factor for adenocarcinoma of the lung. CLINICAL RESPIRATORY JOURNAL 2017; 12:1106-1117. [PMID: 28398662 DOI: 10.1111/crj.12638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/27/2017] [Accepted: 03/20/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The influence of blood group antigens on cancerogenesis is shown for distinct tumor types, yet the impact of Rhesus blood group antigens in lung cancer is not clarified. MATERIALS AND METHODS To investigate the impact of Rhesus blood groups a non-small cell lung cancer (NSCLC) collective (n = 1047) was analyzed retrospectively. Using a second cohort of n = 340 primarily operated stage I-III NSCLC patients, we evaluated immunohistochemistry of CD47-antibody stained tissue samples in correlation to histopathologic subtype and Rhesus blood group. RESULTS AND CONCLUSION In 516 of 1047 patients blood group data were available. Seven different RhCE phenotypes were grouped as "··ee," "ccE·," and "C·E·." Adenocarcinoma patients with Rh "··ee" revealed improved overall survival (29 (21.2-36.8) m; HR 1.00 [index]) compared with Rh "ccE·" (19 (1.9-36.1) m; HR 1.76 [1.15-2.70]) and Rh "C·E·" (10 (7.4-12.6) m; HR 2.65 [1.70-4.12]) univariately (P < .001) and multivariately (P < .001). Rh "··ee" showed reduced incidence of CNS-metastasis (P = .014) and metastasis count (P = .032) in stage IV adenocarcinoma. Immunohistochemistry associated CD47-positivity with adenocarcinomas (n = 340, P = .048). In n = 51 cases blood group data were available. The prognostic effect of Rh "··ee" compared with Rh "ccE·" and Rh "C·E·" was stated (P = .001), foremost in CD47-positive adenocarcinomas (Rh "··ee" vs. Rh "ccE·" and Rh "C·E·," P = .008). Inversely Rh "ccE·" or Rh "C·E·" was found beneficial in CD47-negative non-adenocarcinomas (P = .046). Phenotypic RhCE expression may be an independent prognostic factor for overall survival in adeno-NSCLC. We hypothesize an erythrocytic-immunologic interaction with tumor tissue, possibly altered by RhCE and CD47, resulting in a metastatic prone condition.
Collapse
Affiliation(s)
- A B Schulze
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - L H Schmidt
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - L Baie
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - B Heitkötter
- Gerhard Domagk Institute of Pathology, University Hospital Muenster, Muenster, Germany
| | - A Kuemmel
- III. Medical Department, Hematology, Oncology and Pneumology, University Hospital Mainz, Mainz, Germany
| | - M Mohr
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - R Buhl
- III. Medical Department, Hematology, Oncology and Pneumology, University Hospital Mainz, Mainz, Germany
| | - H Hillmann
- Institute of Transfusion Medicine and Transplantation Immunology, University Hospital Muenster, Muenster, Germany
| | - G Geißler
- Institute of Transfusion Medicine and Transplantation Immunology, University Hospital Muenster, Muenster, Germany
| | - R Kelsch
- Institute of Transfusion Medicine and Transplantation Immunology, University Hospital Muenster, Muenster, Germany
| | - D Görlich
- Institute of Biostatistics and Clinical Research, Westfaelische Wilhelms-Universitaet Muenster, Muenster, Germany
| | - W E Berdel
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - W Hartmann
- Gerhard Domagk Institute of Pathology, University Hospital Muenster, Muenster, Germany
| | - R Wiewrodt
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
33
|
Zhang X, Fan J, Wang S, Li Y, Wang Y, Li S, Luan J, Wang Z, Song P, Chen Q, Tian W, Ju D. Targeting CD47 and Autophagy Elicited Enhanced Antitumor Effects in Non–Small Cell Lung Cancer. Cancer Immunol Res 2017; 5:363-375. [DOI: 10.1158/2326-6066.cir-16-0398] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/10/2017] [Accepted: 03/24/2017] [Indexed: 11/16/2022]
|
34
|
Anti-leukemic activity and tolerability of anti-human CD47 monoclonal antibodies. Blood Cancer J 2017; 7:e536. [PMID: 28234345 PMCID: PMC5386341 DOI: 10.1038/bcj.2017.7] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/05/2017] [Indexed: 01/04/2023] Open
Abstract
CD47, a broadly expressed cell surface protein, inhibits cell phagocytosis via interaction with phagocyte-expressed SIRPα. A variety of hematological malignancies demonstrate elevated CD47 expression, suggesting that CD47 may mediate immune escape. We discovered three unique CD47-SIRPα blocking anti-CD47 monoclonal antibodies (mAbs) with low nano-molar affinity to human and cynomolgus monkey CD47, and no hemagglutination and platelet aggregation activity. To characterize the anti-cancer activity elicited by blocking CD47, the mAbs were cloned into effector function silent and competent Fc backbones. Effector function competent mAbs demonstrated potent activity in vitro and in vivo, while effector function silent mAbs demonstrated minimal activity, indicating that blocking CD47 only leads to a therapeutic effect in the presence of Fc effector function. A non-human primate study revealed that the effector function competent mAb IgG1 C47B222-(CHO) decreased red blood cells (RBC), hematocrit and hemoglobin by >40% at 1 mg/kg, whereas the effector function silent mAb IgG2σ C47B222-(CHO) had minimal impact on RBC indices at 1 and 10 mg/kg. Taken together, our findings suggest that targeting CD47 is an attractive therapeutic anti-cancer approach. However, the anti-cancer activity observed with anti-CD47 mAbs is Fc effector dependent as are the side effects observed on RBC indices.
Collapse
|
35
|
Koru-Sengul T, Santander AM, Miao F, Sanchez LG, Jorda M, Glück S, Ince TA, Nadji M, Chen Z, Penichet ML, Cleary MP, Torroella-Kouri M. Breast cancers from black women exhibit higher numbers of immunosuppressive macrophages with proliferative activity and of crown-like structures associated with lower survival compared to non-black Latinas and Caucasians. Breast Cancer Res Treat 2016; 158:113-126. [PMID: 27283835 DOI: 10.1007/s10549-016-3847-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 12/16/2022]
Abstract
Racial disparities in breast cancer incidence and outcome are a major health care challenge. Patients in the black race group more likely present with an early onset and more aggressive disease. The occurrence of high numbers of macrophages is associated with tumor progression and poor prognosis in solid malignancies. Macrophages are observed in adipose tissues surrounding dead adipocytes in "crown-like structures" (CLS). Here we investigated whether the numbers of CD163+ tumor-associated macrophages (TAMs) and/or CD163+ CLS are associated with patient survival and whether there are significant differences across blacks, non-black Latinas, and Caucasians. Our findings confirm that race is statistically significantly associated with the numbers of TAMs and CLS in breast cancer, and demonstrate that the highest numbers of CD163+ TAM/CLS are found in black breast cancer patients. Our results reveal that the density of CD206 (M2) macrophages is a significant predictor of progression-free survival univariately and is also significant after adjusting for race and for HER2, respectively. We examined whether the high numbers of TAMs detected in tumors from black women were associated with macrophage proliferation, using the Ki-67 nuclear proliferation marker. Our results reveal that TAMs actively divide when in contact with tumor cells. There is a higher ratio of proliferating macrophages in tumors from black patients. These findings suggest that interventions based on targeting TAMs may not only benefit breast cancer patients in general but also serve as an approach to remedy racial disparity resulting in better prognosis patients from minority racial groups.
Collapse
Affiliation(s)
- Tulay Koru-Sengul
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ana M Santander
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue Rosenstiel Medical School Building Suite 3123A, P.O. Box 016960 (R-138), Miami, FL, 33101, USA
| | - Feng Miao
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lidia G Sanchez
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue Rosenstiel Medical School Building Suite 3123A, P.O. Box 016960 (R-138), Miami, FL, 33101, USA
| | - Merce Jorda
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stefan Glück
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Celgene Corporation, Summit, NJ, USA
| | - Tan A Ince
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mehrad Nadji
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zhibin Chen
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue Rosenstiel Medical School Building Suite 3123A, P.O. Box 016960 (R-138), Miami, FL, 33101, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Manuel L Penichet
- Division of Surgical Oncology, Department of Surgery, UCLA, Los Angeles, CA, USA.,Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.,UCLA AIDS Institute, UCLA, Los Angeles, CA, USA.,The Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Margot P Cleary
- Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Marta Torroella-Kouri
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA. .,Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue Rosenstiel Medical School Building Suite 3123A, P.O. Box 016960 (R-138), Miami, FL, 33101, USA. .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|