1
|
Jeng LB, Chan WL, Teng CF. Independent prognostic significance of tissue and circulating microrna biomarkers in hepatocellular carcinoma. Discov Oncol 2025; 16:281. [PMID: 40056315 DOI: 10.1007/s12672-025-02043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/04/2025] [Indexed: 03/10/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. Although many therapeutic modalities have been established for treating HCC patients, the outcomes of patients remain unsatisfactory. Development of independent prognostic biomarkers is thus an important need to allow for early diagnosis and timely treatment. MicroRNAs (miRNAs) are the most studied class of small non-coding RNAs. It has been shown that miRNAs play essential roles in the multiple steps of HCC tumorigenesis and progression. Furthermore, the baseline expression levels of many miRNAs are altered in tumor tissues and blood circulation of HCC patients. Therefore, miRNAs have emerged as independent biomarkers for the prediction of HCC prognosis. This review provides a comprehensive literature-based summary of tissue and circulating miRNA biomarkers with independent prognostic significance in HCC.
Collapse
Affiliation(s)
- Long-Bin Jeng
- Organ Transplantation Center, China Medical University Hospital, Taichung, 404, Taiwan
- Department of Surgery, China Medical University Hospital, Taichung, 404, Taiwan
- Cell Therapy Center, China Medical University Hospital, Taichung, 404, Taiwan
| | - Wen-Ling Chan
- Department of Public Health, College of Public Health, China Medical University, Taichung, 404, Taiwan
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, 413, Taiwan
| | - Chiao-Fang Teng
- Organ Transplantation Center, China Medical University Hospital, Taichung, 404, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, No. 91, Hsueh-Shih Rd., Northern Dist., Taichung, 404, Taiwan.
- Master Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, 404, Taiwan.
| |
Collapse
|
2
|
Song G, Yu X, Shi H, Sun B, Amateau S. miRNAs in HCC, pathogenesis, and targets. Hepatology 2024:01515467-990000000-01097. [PMID: 39626210 DOI: 10.1097/hep.0000000000001177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
Liver cancer is the third leading cause of cancer-related mortality worldwide. HCC, the most common type of primary liver cancer, is driven by complex genetic, epigenetic, and environmental factors. MicroRNAs, a class of naturally occurring small noncoding RNAs, play crucial roles in HCC by simultaneously modulating the expression of multiple genes in a fine-tuning manner. Significant progress has been made in understanding how miRNAs influence key oncogenic pathways, including cell proliferation, apoptosis, angiogenesis, and epithelial-mesenchymal transition (EMT), as well as their role in modulating the immune microenvironment in HCC. Due to the unexpected stability of miRNAs in the blood and fixed HCC tumors, recent advancements also highlight their potential as noninvasive diagnostic tools. Restoring or inhibiting specific miRNAs has offered promising strategies for targeted HCC treatment by suppressing malignant hepatocyte growth and enhancing antitumor immunity. In this comprehensive review, we consolidate previous research and provide the latest insights into how miRNAs regulate HCC and their therapeutic and diagnostic potential. We delve into the dysregulation of miRNA biogenesis in HCC, the roles of miRNAs in the proliferation and apoptosis of malignant hepatocytes, angiogenesis and metastasis of HCC, the immune microenvironment in HCC, and drug resistance. We also discuss the therapeutic and diagnostic potential of miRNAs and delivery approaches of miRNA drugs to overcome the limitations of current HCC treatment options. By thoroughly summarizing the roles of miRNAs in HCC, our goal is to advance the development of effective therapeutic drugs with minimal adverse effects and to establish precise tools for early diagnosis of HCC.
Collapse
Affiliation(s)
- Guisheng Song
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiaofan Yu
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Hongtao Shi
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Department of Cardiology, the First Hospital of Shanxi Medical University, Taiyuan City, China
| | - Bo Sun
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Stuart Amateau
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
Ghionescu AV, Sorop A, Linioudaki E, Coman C, Savu L, Fogarasi M, Lixandru D, Dima SO. A predicted epithelial-to-mesenchymal transition-associated mRNA/miRNA axis contributes to the progression of diabetic liver disease. Sci Rep 2024; 14:27678. [PMID: 39532948 PMCID: PMC11557572 DOI: 10.1038/s41598-024-77416-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Despite public health measures, type 2 diabetes (T2D) is still a significant concern worldwide, given its associated complications, including hepatic alterations. The role of epithelial-to-mesenchymal transition (EMT) in liver fibrosis is well established. However, its effects on the progression of diabetic liver diseases are not well understood. Therefore, this study aims to investigate the mRNA/miRNA axes involved in this process. Bioinformatic analysis revealed new EMT-associated genes (CDH2, ITGB1, COL4A1, COL1A1, TNC, CCN2, and JUN), which showed higher expression in obese T2D and hepatocellular carcinoma (HCC) patients. In addition, six miRNAs (miR-21-5p, miR-26a-5p, miR-34a-5p, miR-106a-5p, miR-320a-3p and miR-424-5p) have been found as potential targets. Among them, miR-26a-5p and miR-424-5p were significantly downregulated in nonalcoholic steatohepatitis (NASH) and HCC (p < 0.05), being considered potential negative regulators of the EMT process. In our hepatic mesenchymal culture model, miR-26a-5p negatively regulated cadherin 2 (also known as N-cadherin, CDH2) and promoted the cadherin 1 (also known as E-cadherin, CDH1) expression. Our results reveal potential molecules involved in liver tumor development. Moreover, we observe that miR-26a-5p impairs EMT in the initial stages of diabetic liver disease by inhibiting CDH2 and could be a valuable target in this pathology.
Collapse
Grants
- 629PED/2022 CCCDI-UEFISCDI, project number PN-III-P2-2.1-PED-2021-3180, within PNCDI III
- 629PED/2022 CCCDI-UEFISCDI, project number PN-III-P2-2.1-PED-2021-3180, within PNCDI III
- 629PED/2022 CCCDI-UEFISCDI, project number PN-III-P2-2.1-PED-2021-3180, within PNCDI III
- 629PED/2022 CCCDI-UEFISCDI, project number PN-III-P2-2.1-PED-2021-3180, within PNCDI III
- 629PED/2022 CCCDI-UEFISCDI, project number PN-III-P2-2.1-PED-2021-3180, within PNCDI III
- 629PED/2022 CCCDI-UEFISCDI, project number PN-III-P2-2.1-PED-2021-3180, within PNCDI III
- 629PED/2022 CCCDI-UEFISCDI, project number PN-III-P2-2.1-PED-2021-3180, within PNCDI III
- 28571/02.10.2023 UMFCD
Collapse
Affiliation(s)
- Alina-Veronica Ghionescu
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Andrei Sorop
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
| | - Ekaterini Linioudaki
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Cristin Coman
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- "Cantacuzino" National Medico-Military Institute for Research and Development, Bucharest, Romania
| | - Lorand Savu
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Marton Fogarasi
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Daniela Lixandru
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania.
- University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania.
| | - Simona Olimpia Dima
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
4
|
Zhu J, Wang L. The Role of lncRNA-miR-26a-mRNA Network in Cancer Progression and Treatment. Biochem Genet 2024; 62:1443-1461. [PMID: 37730965 DOI: 10.1007/s10528-023-10475-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/24/2023] [Indexed: 09/22/2023]
Abstract
The role of non-coding RNAs in regulating biological processes associated with cancer progression, such as proliferation, migration, and apoptosis, has been extensively studied. Long non-coding RNAs (lncRNAs) play a role in regulating these processes through various mechanisms, including transcriptional and post-transcriptional modifications. In post-transcriptional regulation, lncRNAs can bind to specific miRNAs and affect their function, which can either promote or inhibit cancer development. The interaction between lncRNAs, miRNAs, and mRNAs forms a network known as competitive endogenous RNA (ceRNA), which is involved in cancer progression or inhibition. One specific miRNA called miR-26a-5p has been identified as having tumor-suppressive properties. However, when lncRNAs bind to and inhibit miR-26a-5p, it can lead to cancer progression. Therefore, targeting this ceRNA network could be a promising strategy for preventing cancer development. This review will first discuss the anticancer effects of miR-26a-5p and then explore the involvement of the lncRNA-miR26a-5p-mRNA axis in cancer progression and potential targeted therapies.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Oncology, Daye People's Hospital, Daye, Hubei, 435100, China.
| | - Liya Wang
- Department of Obstetrics and Gynecology, Pengren Hospital, Daye, Hubei, 435100, China
| |
Collapse
|
5
|
Chen J, He F, Peng H, Guo J. The underlying mechanism and targeted therapy strategy of miRNAs cross-regulating EMT process through multiple signaling pathways in hepatocellular carcinoma. Front Mol Biosci 2024; 11:1378386. [PMID: 38584703 PMCID: PMC10995332 DOI: 10.3389/fmolb.2024.1378386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/04/2024] [Indexed: 04/09/2024] Open
Abstract
The consistent notion holds that hepatocellular carcinoma (HCC) initiation, progression, and clinical treatment failure treatment failure are affected by the accumulation of various genetic and epigenetic alterations. MicroRNAs (miRNAs) play an irreplaceable role in a variety of physiological and pathological states. meanwhile, epithelial-mesenchymal transition (EMT) is a crucial biological process that controls the development of HCC. miRNAs regulate the intermediation state of EMTor mesenchymal-epithelial transition (MTE)thereby regulating HCC progression. Notably, miRNAs regulate key HCC-related molecular pathways, including the Wnt/β-catenin pathway, PTEN/PI3K/AKT pathway, TGF-β pathway, and RAS/MAPK pathway. Therefore, we comprehensively reviewed how miRNAs produce EMT effects by multiple signaling pathways and their potential significance in the pathogenesis and treatment response of HCC. emphasizing their molecular pathways and progression in HCC initiation. Additionally, we also pay attention to regulatory mechanisms that are partially independent of signaling pathways. Finally, we summarize and propose miRNA-targeted therapy and diagnosis and defense strategies forHCC. The identification of the mechanism leading to the activation of EMT programs during HCC disease processes also provides a new protocol for the plasticity of distinct cellular phenotypes and possible therapeutic interventions. Consequently, we summarize the latest progress in this direction, with a promising path for further insight into this fast-moving field.
Collapse
Affiliation(s)
- Juan Chen
- Department of Pathology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Fuguo He
- Department of Pathology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Peng
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Jinjun Guo
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Yüregir Y, Kaçaroğlu D, Yaylacı S. Regulation of Hepatocellular Carcinoma Epithelial-Mesenchymal Transition Mechanism and Targeted Therapeutic Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1450:93-102. [PMID: 37452258 DOI: 10.1007/5584_2023_781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Hepatocellular carcinoma (HCC) is a primary liver malignancy that accounts for the majority of liver cancer cases, with multiple risk factors including chronic hepatitis B and C infections, alcohol abuse, and non-alcoholic fatty liver disease (NAFLD). Despite advancements in diagnosis and treatment, the survival rate of patients with advanced HCC remains low, creating an urgent need for new therapeutic targets and strategies.One biological process crucial to HCC progression is the epithelial-mesenchymal transition (EMT). EMT is a process that enables epithelial cells to acquire mesenchymal properties, including motility and invasiveness, by losing their cell-cell adhesion. Various signaling pathways, including TGF-β, Wnt/β-catenin, and Notch, have been implicated in regulating EMT in HCC.To inhibit EMT, targeted therapeutic approaches have been developed, and preclinical studies suggest that the inhibition of the TGF-β, Wnt/β-catenin, and Notch signaling pathways is promising. TGF-β receptor inhibitors, Wnt/β-catenin pathway inhibitors, and gamma-secretase inhibitors have shown efficacy in preclinical studies by inhibiting EMT and reducing tumor growth in HCC models. However, further clinical studies are necessary to determine their effectiveness in human patients.In addition to these approaches, further research is needed to identify other novel therapeutic targets and develop new treatment strategies for HCC. This review emphasizes the critical role of EMT in HCC progression and highlights the potential of targeting the TGF-β, Wnt/β-catenin, and Notch signaling pathways to inhibit EMT and reduce tumor growth in HCC. Future studies and clinical trials are necessary to validate these therapeutic strategies and develop effective treatments for HCC.
Collapse
Affiliation(s)
- Yelda Yüregir
- Molecular Biology and Genetics Department, İhsan Doğramacı Bilkent University, Ankara, Turkey
| | - Demet Kaçaroğlu
- Faculty of Medicine, Medical Biology Department, Lokman Hekim University, Ankara, Turkey
| | - Seher Yaylacı
- Faculty of Medicine, Medical Biology Department, Lokman Hekim University, Ankara, Turkey.
| |
Collapse
|
7
|
Guan W, Chen Y, Fan Y. miR-26a is a Key Therapeutic Target with Enormous Potential in the Diagnosis and Prognosis of Human Disease. Curr Med Chem 2024; 31:2550-2570. [PMID: 38204224 DOI: 10.2174/0109298673271808231116075056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 01/12/2024]
Abstract
MicroRNA-26a (miR-26a) belongs to small non-coding regulatory RNA molecules emerging as fundamental post-transcriptional regulators inhibiting gene expression that plays vital roles in various processes of human diseases such as depression, renal ischemia and reperfusion injury, liver injury and some refractory cancer. In this review, we expound on the results of studies about miR-26a with emphasis on its function in animal models or in vitro cell culture to simulate the most common human disease in the clinic. Furthermore, we also illustrate the underlying mechanisms of miR-26a in strengthening the antitumor activity of antineoplastic drugs. Importantly, dysregulation of miR-26a has been related to many chronic and malignant diseases, especially in neurological disorders in the brain such as depression and neurodegenerative diseases as well as cancers such as papillary thyroid carcinoma, hepatocellular carcinoma and so on. It follows that miR-26a has a strong possibility to be a potential therapeutic target for the treatment of neurological disorders and cancers. Although the research of miRNAs has made great progress in the last few decades, much is yet to be discovered, especially regarding their underlying mechanisms and roles in the complex diseases of humans. Consequently, miR-26a has been analyzed in chronic and malignant diseases, and we discuss the dysregulation of miR-26a and functional roles in the development and pathogenesis of these diseases, which is very helpful for understanding their mechanisms as new biomarkers for diagnosing and curing diseases in the near future.
Collapse
Affiliation(s)
- Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China
| | - Yan Chen
- Department of Neurology, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
| | - Yan Fan
- Department of Pharmacy, Zhangjiagang Second People's Hospital, Zhangjiagang, 215600, Jiangsu, China
| |
Collapse
|
8
|
Hu J, Liu WF, Zhang XY, Shi GM, Yang XR, Zhou KQ, Hu B, Chen FY, Zhou C, Lau WY, Fan J, Wang Z, Zhou J. Synthetic miR-26a mimics delivered by tumor exosomes repress hepatocellular carcinoma through downregulating lymphoid enhancer factor 1. Hepatol Int 2023; 17:1265-1278. [PMID: 37115456 DOI: 10.1007/s12072-023-10527-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/18/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND The dysregulation of exosomal microRNAs plays an important role in the progression of hepatocarcinogenesis. In this study, we investigated the therapeutic potential of synthetic exosomal miR-26a against HCC cells and explored the feasibility of tumor-derived exosomes as drug delivery vehicles. METHODS Proliferation and migration assays were performed to examine the effects of miR-26a on HCC in vitro. The direct target gene of miR-26a was identified through miRecords analysis and target validation. The transferring efficiency and anti-HCC effect of exosomes with different origin were studied and the optimal miR-26a delivery method was established and verified in vitro and in vivo. In addition, the relationships between prognosis of HCC patients and miR-26a expression in HCC serum and exosomes were retrospectively analyzed. RESULTS Here, we found that tumor cell-derived exosomes were taken in preferentially by HCC cells and promoted HCC progression through Wnt pathway by low-density lipoprotein receptor-related protein 6 (LRP6). HCC cells with vacuolar protein sorting-associated protein 35 knocked down were adopted to generate engineered LRP6-exosomes. The engineered HCC-derived exosomes loading miR-26a inhibited HCC progression in vitro and in vivo effectively. Overexpression of miR-26a impaired the growth and migration of HCC by targeting lymphoid enhancer factor 1 (LEF1). Moreover, low expression of exosomal miR-26a was an independent prognostic factor for recurrence and survival in HCC patients. CONCLUSIONS Our findings suggested the exosomal miR-26a could serve as a non-invasive prognostic marker for HCC patients. Genetically modified tumor-derived exosomes showed preferable transfection efficiency but reduced Wnt activity, which provides a novel therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Jie Hu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei-Feng Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiang-Yu Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guo-Ming Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xin-Rong Yang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Kai-Qian Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Bo Hu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fei-Yu Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Cheng Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wan-Yee Lau
- Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Sha Tin, Hong Kong, China
| | - Jia Fan
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Zheng Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Jian Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Multi-omic factors associated with future wheezing in infants. Pediatr Res 2023; 93:579-585. [PMID: 36167817 DOI: 10.1038/s41390-022-02318-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/23/2022] [Accepted: 09/13/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND The pathophysiology of wheezing is multifactorial, impacted by medical, demographic, environmental, and immunologic factors. We hypothesized that multi-omic analyses of host and microbial factors in saliva would enhance the ability to identify infants at risk for wheezing. METHODS This longitudinal cohort study included 161 term infants. Infants who developed wheezing (n = 27) within 24 months of delivery were identified using the International Study of Asthma and Allergies in Childhood Written Questionnaire and review of the medical record. Standardized surveys were used to assess infant traits and environmental exposures. Saliva was collected for multi-omic assessment of cytokines, microRNAs, mRNAs, and microbiome/virome RNAs. RESULTS Two infant factors (daycare attendance, family history of asthma) and three salivary "omic" features (miR-26a-5p, Elusimicrobia, Streptococcus phage phiARI0131-1) differed between the two groups (adjusted p < 0.05). miR-26a-5p levels were correlated with Elusimicrobia (R = -0.87, p = 3.7 × 10-31). A model employing the three omic features plus daycare attendance and family asthma history yielded the highest predictive accuracy for future wheezing episodes (AUC = 0.74, 95% CI: 0.703-0.772, 77% sensitivity, 62% specificity). CONCLUSIONS Host-microbiome interactions in saliva may yield pathophysiologic clues about the origins of wheezing and aid identification of infants at risk of future wheezing episodes. IMPACT Wheezing is multi-factorial, but the relative contributions of infant traits, environment, and underlying biology are poorly understood. This multi-omic study identifies three molecular factors, including salivary microRNAs, microbes, and viral phages associated with increased risk of infant wheezing. Measurement of these molecular factors enhanced predictive accuracy for future wheezing when combined with family asthma history and daycare attendance. Validation of this approach could be used to identify infants at risk for wheezing and guide personalized medical management.
Collapse
|
10
|
Lu Q, Lu X, Zhang Y, Huang W, Zhou H, Li T. Recent advances in ferroptosis and therapeutic strategies for glioblastoma. Front Mol Biosci 2023; 9:1068437. [PMID: 36710875 PMCID: PMC9880056 DOI: 10.3389/fmolb.2022.1068437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/02/2022] [Indexed: 01/15/2023] Open
Abstract
Ferroptosis is an emerging form of cell death characterized by the over-accumulation of iron-dependent lipid peroxidation. Ferroptosis directly or indirectly disturbs glutathione peroxidases cycle through diverse pathways, impacting the cellular antioxidant capacities, aggravating accumulation of reactive oxygen species in lipid, and it finally causes oxidative overload and cell death. Ferroptosis plays a significant role in the pathophysiological processes of many diseases. Glioblastoma is one of the most common primary malignant brain tumors in the central nervous system in adults. Although there are many treatment plans for it, such as surgical resection, radiotherapy, and chemotherapy, they are currently ineffective and the recurrent rate is almost up to 100%. The therapies abovementioned have a strong relationship with ferroptosis at the cellular and molecular level according to the results reported by numerous researchers. The regulation of ferroptosis can significantly determine the outcome of the cells of glioblastoma. Thus ferroptosis, as a regulated form of programed cell death, has the possibility for treating glioblastoma.
Collapse
Affiliation(s)
- Qixiong Lu
- The Affiliated Hospital of Kunming University of Science and Technology, Department of Neurosurgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Xiaoyang Lu
- Department of Neurosurgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yuansheng Zhang
- The Affiliated Hospital of Kunming University of Science and Technology, Department of Neurosurgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Wei Huang
- Department of Neurosurgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hu Zhou
- Department of Neurosurgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China,*Correspondence: Hu Zhou, ; Tao Li,
| | - Tao Li
- Department of Neurosurgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China,*Correspondence: Hu Zhou, ; Tao Li,
| |
Collapse
|
11
|
Wang D, Li R, Jiang J, Qian H, Xu W. Exosomal circRNAs: Novel biomarkers and therapeutic targets for gastrointestinal tumors. Biomed Pharmacother 2023; 157:114053. [PMID: 36462315 DOI: 10.1016/j.biopha.2022.114053] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Despite the high prevalence of gastrointestinal tumors, early diagnosis and treatment of these tumors is limited by the lack of effective and specific biomarkers and therapeutic targets. Exosomes carry active molecules to mediate cell-to-cell communication, especially in the tumor microenvironment, and are promising biomarkers and therapeutic targets for cancer. Circular RNAs (circRNAs) are stably enriched in exosomes and show a unique circular structure, high stability, conservation, and tissue specificity. Exosomal circRNAs play important roles in regulating cell proliferation, metastasis, angiogenesis, metabolism, and the immune microenvironment of gastrointestinal tumors and exhibit great potential as tumor biomarkers and anti-tumor targets or tools. This review briefly introduces the characteristics and functions of circRNAs and exosomes, and systematically describes the biological roles and mechanisms of exosomal circRNAs in gastrointestinal tumors. This article also summarizes the detection methodology of exosomal circRNAs and discusses their clinical significance as biomarkers and targets for gastrointestinal tumors.
Collapse
Affiliation(s)
- Dongli Wang
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Rong Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu 215600, China
| | - Hui Qian
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wenrong Xu
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
12
|
Fu L, Wang Z, Jiang F, Wei G, Sun L, Guo C, Wu J, Zhu J. High Expression of EIF4G2 Mediated by the TUG1/Hsa-miR-26a-5p Axis Is Associated with Poor Prognosis and Immune Infiltration of Gastric Cancer. JOURNAL OF ONCOLOGY 2022; 2022:9342283. [PMID: 36157241 PMCID: PMC9507702 DOI: 10.1155/2022/9342283] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/22/2022] [Indexed: 12/24/2022]
Abstract
Objective Eukaryotic translation initiation factor 4 gamma 2 (EIF4G2) is involved in the occurrence and development of various tumors. However, the effect of EIF4G2 in gastric cancer (GC) has not been fully explored. The purpose of this study was to explore the function and mechanism of EIF4G2 in GC. Methods The Tumor Immune Estimation Resource 2.0 database was used to analyze EIF4G2 expression in various cancers and the relationship between EIF4G2 expression and tumor-infiltrating immune cells. Gene Expression Profiling Interactive Analysis was utilized to assess the EIF4G2 expression level and its effect on survival in GC. UALCAN was conducted to analyze EIF4G2 expression in various subgroups of GC. The Kaplan-Meier plotter was employed for survival analysis. Receiver operator characteristic (ROC) curve analysis was applied to evaluate the diagnostic role of EIF4G2 in GC. LinkedOmics was used to identify the co-expressed genes and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. The Tumor-Immune System Interaction database was employed to analyze the correlation between EIF4G2 expression and tumor-infiltrating lymphocytes. The starBase web platform was used to predict the upstream microRNAs and long noncoding RNAs. Results EIF4G2 expression was upregulated in GC tissues compared to normal controls. High expression of EIF4G2 indicated poor prognosis in GC. ROC analysis revealed that EIF4G2 had good diagnostic ability to distinguish GC from normal tissues. Immune infiltration analysis indicated that EIF4G2 expression may be involved in the modulation of tumor immune infiltration in GC. Finally, we determined that the Taurine Upregulated 1 (TUG1)/hsa-miR-26a-5p/EIF4G2 axis was the most likely regulatory pathway involved in GC development. Conclusions EIF4G2 was upregulated in GC and elevated expression of EIF4G2 indicated unfavorable prognosis. Moreover, EIF4G2 expression may be involved in the regulation of tumor immune cell infiltration. The TUG1/hsa-miR-26a-5p axis is a likely upstream regulatory mechanism of EIF4G2 in GC. EIF4G2 may thus serve as a prognosis biomarker and present a new therapeutic target.
Collapse
Affiliation(s)
- Liu Fu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai 200060, China
| | - Zhe Wang
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Fengxiang Jiang
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai 200060, China
| | - Guohua Wei
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai 200060, China
| | - Longe Sun
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai 200060, China
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai 200060, China
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai 200060, China
| | - Jianhuan Zhu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai 200060, China
| |
Collapse
|
13
|
Xie T, Pei Y, Shan P, Xiao Q, Zhou F, Huang L, Wang S. Identification of miRNA–mRNA Pairs in the Alzheimer’s Disease Expression Profile and Explore the Effect of miR-26a-5p/PTGS2 on Amyloid-β Induced Neurotoxicity in Alzheimer’s Disease Cell Model. Front Aging Neurosci 2022; 14:909222. [PMID: 35783137 PMCID: PMC9249435 DOI: 10.3389/fnagi.2022.909222] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/23/2022] [Indexed: 12/17/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease and the most common type of dementia. MicroRNAs (miRNAs) have been extensively studied in many diseases, including AD. To identify the AD-specific differentially expressed miRNAs and mRNAs, we used bioinformatics analysis to study candidate miRNA–mRNA pairs involved in the pathogenesis of AD. These miRNA–mRNAs may serve as promising biomarkers for early diagnosis or targeted therapy of AD patients. In this study, based on the AD mRNA and miRNA expression profile data in Gene Expression Omnibus (GEO), through differential expression analysis, functional annotation and enrichment analysis, weighted gene co-expression network analysis, miRNA–mRNA regulatory network, protein–protein interaction network, receiver operator characteristic and Least absolute shrinkage and selection operator (LASSO) regression and other analysis, we screened the key miRNA–mRNA in the progress of AD: miR-26a-5p/PTGS2. Dual-luciferase and qPCR experiments confirmed that PTGS2 is a direct target gene of miR-26a-5p. The expression of miR-26a-5p in the peripheral blood of AD patients and AD model cells (SH-SY5Y cells treated with Aβ25–35) was up-regulated, and the expression of PTGS2 was down-regulated. Functional gain -loss experiments confirmed that PTGS2 protects AD model cells from damage by inhibiting proliferation and migration. However, the expression of miR-26a-5p promotes the proliferation of AD model cells. It is further found that PTGS2 is involved in the regulation of miR-26a-5p and can reverse the effect of miR-26a-5p on the proliferation of AD model cells. In addition, through network pharmacology, qPCR and CCK-8, we found that baicalein may affect the progression of AD by regulating the expression of PTGS2. Therefore, PTGS2 can be used as a target for AD research, and miR-26a-5p/PTGS2 can be used as an axis of action to study the pathogenesis of AD.
Collapse
Affiliation(s)
- Tao Xie
- Department of Neurology, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yongyan Pei
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
| | - Peijia Shan
- Department of Neurology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qianqian Xiao
- Department of Neurology, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Fei Zhou
- Department of Neurology, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Liuqing Huang
- Department of Neurology, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Shi Wang
- Department of Neurology, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
- *Correspondence: Shi Wang,
| |
Collapse
|
14
|
Chung YH, Cheng YT, Kao YH, Tsai WC, Huang GK, Chen YT, Shen YC, Tai MH, Chiang PH. MiR-26a-5p as a useful therapeutic target for upper tract urothelial carcinoma by regulating WNT5A/β-catenin signaling. Sci Rep 2022; 12:6955. [PMID: 35484165 PMCID: PMC9050734 DOI: 10.1038/s41598-022-08091-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 03/01/2022] [Indexed: 11/15/2022] Open
Abstract
The role of miRNAs in cancer and their possible function as therapeutic agents are interesting and needed further investigation. The miR-26a-5p had been demonstrated as a tumor suppressor in various cancers. However, the importance of miR-26a-5p regulation in upper tract urothelial carcinoma (UTUC) remains unclear. Here, we aimed to explore the miR-26a-5p expression in UTUC tissues and to identify its regulatory targets and signal network involved in UTUC tumorigenesis. The miR-26a-5p expression was validated by quantitative real-time polymerase chain reaction (qPCR) using renal pelvis tissue samples from 22 patients who were diagnosed with UTUC and 64 cases of renal pelvis tissue microarray using in situ hybridization staining. BFTC-909 UTUC cells were used to examine the effects of miR-26a-5p genetic delivery on proliferation, migration and expression of epithelial-to-mesenchymal transition (EMT) markers. MiR-26a-5p was significantly down-regulated in UTUC tumors compared to adjacent normal tissue and was decreased with histological grades. Moreover, restoration of miR-26a-5p showed inhibition effects on proliferation and migration of BFTC-909 cells. In addition, miR-26a-5p delivery regulated the EMT marker expression and inhibited WNT5A/β-catenin signaling and expression of downstream molecules including NF-κB and MMP-9 in BFTC-909 cells. This study demonstrated that miR-26a-5p restoration may reverse EMT process and regulate WNT5A/β-catenin signaling in UTUC cells. Further studies warranted to explore the potential roles in biomarkers for diagnostics and prognosis, as well as novel therapeutics targets for UTUC treatment.
Collapse
Affiliation(s)
- Yueh-Hua Chung
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan, ROC
| | - Yuan-Tso Cheng
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC
| | - Ying-Hsien Kao
- Department of Medical Research, E-Da Hospital, Kaohsiung, 82445, Taiwan, ROC
| | - Wan-Chi Tsai
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Gong-Kai Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC
| | - Yen-Ta Chen
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC
| | - Yuan-Chi Shen
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC
| | - Ming-Hong Tai
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan, ROC.
| | - Po-Hui Chiang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC.
| |
Collapse
|
15
|
Yildiz MT, Tutar L, Giritlioğlu NI, Bayram B, Tutar Y. MicroRNAs and Heat Shock Proteins in Breast Cancer Biology. Methods Mol Biol 2022; 2257:293-310. [PMID: 34432285 DOI: 10.1007/978-1-0716-1170-8_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Breast cancer has five major immune types; luminal A, luminal B, HER2, Basal-like, and normal-like. Cells produce a family of protein called heat shock proteins (Hsps) in response to exposure to thermal and other proteotoxic stresses play essential roles in cancer metabolism and this large family shows a diverse set of Hsp involvement in different breast cancer immune types. Recently, Hsp members categorized according to their immune type roles. Hsp family consists of several subtypes formed by molecular weight; Hsp70, Hsp90, Hsp100, Hsp40, Hsp60, and small molecule Hsps. Cancer cells employ Hsps as survival factors since most of these proteins prevent apoptosis. Several studies monitored Hsp roles in breast cancer cells and reported Hsp27 involvement in drug resistance, Hsp70 in tumor cell transformation-progression, and interaction with p53. Furthermore, the association of Hsp90 with steroid receptors and signaling proteins in patients with breast cancer directed research to focus on Hsp-based treatments. miRNAs are known to play key roles in all types of cancer that are upregulated or downregulated in cancer which respectively referred to as oncogenes (oncomirs) or tumor suppressors. Expression profiles of miRNAs may be used to classify, diagnose, and predict different cancer types. It is clear that miRNAs play regulatory roles in gene expression and this work reveals miRNA correlation to Hsp depending on specific breast cancer immune types. Deregulation of specific Hsp genes in breast cancer subtypes allows for identification of new targets for drug design and cancer treatment. Here, we performed miRNA network analysis by recruiting Hsp genes detected in breast cancer subtypes and reviewed some of the miRNAs related to aforementioned Hsp genes.
Collapse
Affiliation(s)
- Mehmet Taha Yildiz
- Division of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Lütfi Tutar
- Department of Molecular Biology and Genetics, Faculty of Art and Sciences, Kırşehir Ahi Evran University, Kırşehir, Turkey
| | - Nazlı Irmak Giritlioğlu
- Department of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Banu Bayram
- Department of Nutrition and Dietetics, Hamidiye Faculty of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Yusuf Tutar
- Division of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey. .,Division of Biochemistry, Department of Basic Pharmaceutical Sciences, Hamidiye Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey.
| |
Collapse
|
16
|
Zhang Q, Liu Y, Yuan Y, Yao F, Zhang H, Zhao C, Luo Y. miR-26a-5p protects against drug-induced liver injury via targeting bid. Toxicol Mech Methods 2021; 32:325-332. [PMID: 34749575 DOI: 10.1080/15376516.2021.2003919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUNDS miR-26a-5p is a short noncoding RNA that is abnormally expressed in drug-induced liver injury (DILI), but its pathophysiologic role in the mechanism of disease in DILI is still vague. METHODS The expression of miR-26a-5p, viability of hepatic stellate cells (HSCs) proliferation, and apoptosis were explored via real-time PCR, CCK-8 assay, Tunel fluorescence, and flow cytometry. The expression of Bid was detected via Western blot assays, real-time PCR, and immunofluorescence. The apoptosis-associated proteins were determined through Western blot. The interaction between miR-26a-5p and Bid was measured via Dual luciferase reporter assay. RESULTS miR-26a-5p expression was greatly decreased in HSCs and serum treated with azithromycin, simvastatin and diclofenac sodium, respectively. Hepatocyte viability was largely suppressed while hepatocyte apoptosis was markedly increased in DILI. Correspondingly, the apoptosis-associated proteins including Bid, caspase-8 and cytochrome C in HSCs were significantly upregulated when treated with either of these drugs. Moreover, miR-26a-5p interacted with Bid, and hepatocyte proliferation and apoptosis influenced by miR-26a-5p mimics were obviously reversed when co-treated with overexpressed Bid plasmids. CONCLUSIONS miR-26a-5p played a protective role against DILI via targeting Bid.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Geriatrics, the third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Liu
- Department of Geriatrics, the third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yujie Yuan
- Department of Neurology, The Gucheng County Hospital of Hebei Province, Hebei, China
| | - Feifei Yao
- Department of Geriatrics, the third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hongmei Zhang
- Department of Geriatrics, the third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Caiyan Zhao
- Department of Infectious Diseases, the third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanli Luo
- Department of Geriatrics, the third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
17
|
Yan G, Wang J, Fang Z, Yan S, Zhang Y. MiR-26a-5p Targets WNT5A to Protect Cardiomyocytes from Injury Due to Hypoxia/Reoxygenation Through the Wnt/β-catenin Signaling Pathway. Int Heart J 2021; 62:1145-1152. [PMID: 34544974 DOI: 10.1536/ihj.21-054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study aimed to investigate the effect and mechanism of miR-26a-5p on cardiomyocyte injury induced by hypoxia/reoxygenation (H/R).After construction of an H/R model in rat cardiomyocyte H9c2 cells, miR-26a-5p in the cells was interfered with (cells transfected with miR-26a-5p inhibitor) or overexpressed (cells transfected with a miR-26a-5p mimics). The viability and the apoptosis rate of cells in each group were detected using CCK-8 and flow cytometry; the relationship between miR-26a-5p and WNT5A was verified by a dual-luciferase reporter assay; the expression of miR-26a-5p, WNT5A, cleavedcaspase3 and Wnt/β-catenin signaling pathway-related proteins in each group was detected using qRT-PCR or Western blot; LDH release, SOD, and GSH-PX activities in each group were detected by kit.In the H/R group, the expression level of miR-26a-5p was significantly decreased, whereas the expression level of WNT5A was significantly increased. The activity of the Wnt/β-catenin signaling pathway was up-regulated; the level of LDH released was significantly increased; and activities of SOD and GSH-PX were significantly decreased. The aforementioned changes resulted in decreased cell activity and increased apoptosis rate. The overexpression of miR-26a-5p could reduce the expression level of WNT5A, the activity of the Wnt/β-catenin signaling pathway, and the apoptosis rate and restore the cell viability.These results suggest that miR-26a-5p can target WNT5A and thus, inhibit the Wnt/β-catenin signaling pathway activity, inhibiting H/R-induced cardiomyocyte injury and apoptosis.
Collapse
Affiliation(s)
- Guohui Yan
- Department of Ultrasound, Zhongshan Hospital Xiamen University.,Department of Medicine, Fujian Medical University
| | - Jiajia Wang
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University
| | - Zanxi Fang
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University
| | - Shuidi Yan
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University
| | - Yang Zhang
- Department of Medicine, Fujian Medical University.,Center of Clinical Laboratory, Zhongshan Hospital Xiamen University
| |
Collapse
|
18
|
Ye Q, Wang X, Yuan M, Cui S, Chen Y, Hu Z, Liu D, Han C, Li B, Chen D. miR-219-5p targets TBXT and inhibits breast cancer cell EMT and cell migration and invasion. Biosci Rep 2021; 41:BSR20210318. [PMID: 34339487 PMCID: PMC8360836 DOI: 10.1042/bsr20210318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/12/2021] [Accepted: 07/30/2021] [Indexed: 12/30/2022] Open
Abstract
miR-219-5p has been reported to act as either a tumor suppressor or a tumor promoter in different cancers by targeting different genes. In the present study, we demonstrated that miR-219-5p negatively regulated the expression of TBXT, a known epithelial-mesenchymal transition (EMT) inducer, by directly binding to TBXT 3'-untranslated region. As a result of its inhibition on TBXT expression, miR-219-5p suppressed EMT and cell migration and invasion in breast cancer cells. The re-introduction of TBXT in miR-219-5p overexpressing cells decreased the inhibitory effects of miR-219 on EMT and cell migration and invasion. Moreover, miR-219-5p decreased breast cancer stem cell (CSC) marker genes expression and reduced the mammosphere forming capability of cells. Overall, our study highlighted that TBXT is a novel target of miR-219-5p. By suppressing TBXT, miR-219-5p plays an important role in EMT and cell migration and invasion of breast cancer cells.
Collapse
Affiliation(s)
- Qin Ye
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Xing Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Mei Yuan
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Shuaishuai Cui
- School of Life Sciences, Shandong University of Technology, Zibo 225000, China
| | - Yuanyuan Chen
- School of Life Sciences, Shandong University of Technology, Zibo 225000, China
| | - Zhaodi Hu
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Dandan Liu
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Conghui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou 221009, China
| | - Bibo Li
- Department of Urology, Taizhou Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou 225300, China
| | - Dahu Chen
- School of Life Sciences, Shandong University of Technology, Zibo 225000, China
| |
Collapse
|
19
|
Yin L, Keeler GD, Zhang Y, Hoffman BE, Ling C, Qing K, Srivastava A. AAV3-miRNA vectors for growth suppression of human hepatocellular carcinoma cells in vitro and human liver tumors in a murine xenograft model in vivo. Gene Ther 2021; 28:422-434. [PMID: 32152434 PMCID: PMC7784898 DOI: 10.1038/s41434-020-0140-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/24/2022]
Abstract
We have previously reported that recombinant adeno-associated virus serotype 3 (AAV3) vectors transduce human liver tumors more efficiently in a mouse xenograft model following systemic administration. Others have utilized AAV8 vectors expressing miR-26a and miR-122 to achieve near total inhibition of growth of mouse liver tumors. Since AAV3 vectors transduce human hepatic cells more efficiently than AAV8 vectors, in the present studies, we wished to evaluate the efficacy of AAV3-miR-26a/122 vectors in suppressing the growth of human hepatocellular carcinoma (HCC) cells in vitro, and human liver tumors in a mouse model in vivo. To this end, a human HCC cell line, Huh7, was transduced with various multiplicities of infection (MOIs) of AAV3-miR-26a or scAAV3-miR-122 vectors, or both, which also co-expressed a Gaussia luciferase (GLuc) reporter gene. Only a modest level of dose-dependent growth inhibition of Huh7 cells (~12-13%) was observed at the highest MOI (1 × 105 vgs/cell) with each vector. When Huh7 cells were co-transduced with both vectors, the extent of growth inhibition was additive (~26%). However, AAV3-miR-26a and scAAV3-miR-122 vectors led to ~70% inhibition of growth of Huh-derived human liver tumors in a mouse xenograft model in vivo. Thus, the combined use of miR-26a and scAAV3-miR-122 delivered by AAV3 vectors offers a potentially useful approach to target human liver tumors.
Collapse
Affiliation(s)
- Ling Yin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Geoffrey D Keeler
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Yuanhui Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Brad E Hoffman
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Chen Ling
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA.
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA.
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL, USA.
| | - Keyun Qing
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Arun Srivastava
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA.
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA.
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
20
|
LINC00657/miR-26a-5p/CKS2 ceRNA network promotes the growth of esophageal cancer cells via the MDM2/p53/Bcl2/Bax pathway. Biosci Rep 2021; 40:224733. [PMID: 32426838 PMCID: PMC7268253 DOI: 10.1042/bsr20200525] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
LncRNA LINC00657 has oncogenic or anti-carcinoma roles in different cancers, and yet its detailed molecular mechanism in esophageal cancer (EC) remains unclear. In addition, competitive endogenous RNA (ceRNA) regulatory lncRNA–miRNA–mRNA networks are critical for tumorigenesis and progression. Hence, the present study explored the roles of LINC00657 in EC and identified its relevant ceRNA network. We first detected the expression of LINC00657 in EC. Then, we applied starBase and TargetScan websites to find miR-26a-5p binding to LINC00657 and obtain CKS2 as a target of miR-26a-5p. The roles of LINC00657, miR-26a-5p or CKS2 in the proliferation, migration, invasion, and apoptosis of EC cells were respectively assessed by CCK-8, wound healing assay, transwell invasion assay, and flow cytometry. The changes of the MDM2/p53/Bcl2/Bax pathway were measured via Western blot. The results revealed that LINC00657 showed an aberrant high expression in EC cells, which promoted the growth of EC cells. Additionally, LINC00657 functioned as a sponge of miR-26a-5p, and LINC00657 negatively mediated miR-26a-5p to regulate the growth of EC cells. Furthermore, CKS2 was observed as a direct target of miR-26a-5p, and CKS2 controlled the growth of EC cells via the MDM2/p53/Bcl2/Bax pathway. Moreover, there was a positive correlation between LINC00657 and CKS2. LINC00657 knockdown inhibited CKS2 expression to suppress the proliferation, migration, and invasion of EC cells and induced apoptosis via regulating the MDM2/p53/Bcl2/Bax pathway. Collectively, LINC00657/miR-26a-5p/CKS2 ceRNA network could promote the progression of EC, which is good for understanding the molecular mechanism of EC and offers novel biomarkers for EC diagnosis and therapy.
Collapse
|
21
|
Zhang Z, Liang L, Cao G. Critical role of miR-26a-5p/Wnt5a signaling in gambogic acid-induced inhibition of gastric cancer. J Biochem Mol Toxicol 2021; 35:e22721. [PMID: 33533530 DOI: 10.1002/jbt.22721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/06/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) represents the fifth most human malignant disease and the third-most common cause of cancer-related death. Gambogic acid (GA) is a natural compound with a polyprenylated xanthone structure and possesses remarkable antitumor activity in a variety of cancer cells. However, the mechanism underlying the inhibitory effect of GA in GC is far from being completely understood. The goal of the present study is to investigate whether potential microRNAs are involved in antitumor effect of GA toward GC and to elucidate the possible mechanisms. We identified that miR-26a-5p was significantly increased by GA in GC cell lines and xenograft tumor. Downregulation of miR-26a-5p not only prevented GA-induced inhibition on GC cell growth, but also suppressed GA-induced apoptosis of GC cells. Informatics assay predicted that Wnt5a was regulated by miR-26a-5p and GA-induced downregulation of Wnt5a was prevented by anti-miR-26a-5p. Reporter gene assay showed that miR-26a-5p could negatively regulate Wnt5a through direct binding with 3'-UTR messenger RNA of Wnt5a. Thus, upregulation of Wnt5a exhibited the same action tendency for GA-induced GC cell growth and apoptosis as observed by downregulation of miR-26a-5p. In conclusion, these results indicated that the inhibitory effect of GA on GC was mediated by the upregulation of miR-26a-5p and downregulation of Wnt5a. Our study provided new clues for the potential therapeutic effect of GA against GC and highlighted the importance of miR-26a-5p/Wnt5a pathway in the regulation of GC development.
Collapse
Affiliation(s)
- Zhixin Zhang
- Department of Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Surgery, Shanxi Provincial Traditional Chinese Medicine Institute, Taiyuan, China
| | - Lili Liang
- Department of Dermatology, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Gang Cao
- Department of Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
22
|
Lee HY, Son SW, Moeng S, Choi SY, Park JK. The Role of Noncoding RNAs in the Regulation of Anoikis and Anchorage-Independent Growth in Cancer. Int J Mol Sci 2021; 22:ijms22020627. [PMID: 33435156 PMCID: PMC7827914 DOI: 10.3390/ijms22020627] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is a global health concern, and the prognosis of patients with cancer is associated with metastasis. Multistep processes are involved in cancer metastasis. Accumulating evidence has shown that cancer cells acquire the capacity of anoikis resistance and anchorage-independent cell growth, which are critical prerequisite features of metastatic cancer cells. Multiple cellular factors and events, such as apoptosis, survival factors, cell cycle, EMT, stemness, autophagy, and integrins influence the anoikis resistance and anchorage-independent cell growth in cancer. Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are dysregulated in cancer. They regulate cellular signaling pathways and events, eventually contributing to cancer aggressiveness. This review presents the role of miRNAs and lncRNAs in modulating anoikis resistance and anchorage-independent cell growth. We also discuss the feasibility of ncRNA-based therapy and the natural features of ncRNAs that need to be contemplated for more beneficial therapeutic strategies against cancer.
Collapse
|
23
|
Cheng C, Guo L, Ma Y, Wang Z, Fan X, Shan Z. Up-Regulation of miR-26a-5p Inhibits E2F7 to Regulate the Progression of Renal Carcinoma Cells. Cancer Manag Res 2020; 12:11723-11733. [PMID: 33235501 PMCID: PMC7680095 DOI: 10.2147/cmar.s271710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022] Open
Abstract
Background Metastasis is the main cause of renal cell carcinoma (RCC) tumor death, and effective inhibition of RCC metastasis is an essential means to meliorate the prognosis of RCC patients. MicroRNAs (miRs) have been proved to be stable and important biomarkers for several malignancies. This study is therefore set out to explore the metastasis-related miR and its mechanism in RCC. Methods The expression of miR- 26a -5p in RCC was analyzed using the expression profile in the Cancer Genome Atlas (TCGA). MiR-26a-5p and E2F transcription factor 7 (E2F7) in RCC patients were detected by qRT-PCR. Cell Counting Kit-8 (CCK-8) was adopted to assess cell proliferation, Transwell was utilized to evaluate migration and invasion, and flow cytometry (FC) was used to determine apoptosis. Mouse cell-derived and patient-derived xenotransplantation models were established to evaluate the effect of miR-26a-5p on tumor growth and metastasis in vivo. The molecular mechanism of miR-26a-5p was analyzed by dual-luciferase reporter (DLR) gene analysis, qRT-PCR, and Western blot (WB) both in vivo and in vitro. Results MiR-26a-5p was reduced in renal carcinoma cells and may serve as a biomarker for renal cancer metastasis and prognosis. MiR-26a-5p up-regulation inhibited migration and invasion in renal cell lines and tumor metastasis in vivo. Bioinformatics target prediction and RNA-seq results showed that E2F7 was among the targets of miR-26a-5p and was significantly inhibited by miR-26a-5p in vivo and in vitro. Conclusion MiR-26a-5p presents low expression in RCC and promotes RCC cell apoptosis and prevents cells from proliferating and invading by targeting E2F7, which is a promising therapeutic target for RCC.
Collapse
Affiliation(s)
- Chuanyu Cheng
- Department of Urology, People's Hospital of Zhengzhou, People's Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450014, People's Republic of China
| | - Liang Guo
- Department of Urology, People's Hospital of Zhengzhou, People's Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450014, People's Republic of China
| | - Yaohui Ma
- Department of Urology, People's Hospital of Zhengzhou, People's Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450014, People's Republic of China
| | - Zhe Wang
- Department of Urology, People's Hospital of Zhengzhou, People's Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450014, People's Republic of China
| | - Xinpeng Fan
- Department of Urology, People's Hospital of Zhengzhou, People's Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450014, People's Republic of China
| | - Zhongjie Shan
- Department of Urology, People's Hospital of Zhengzhou, People's Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450014, People's Republic of China
| |
Collapse
|
24
|
LncRNA KCNQ1OT1 knockdown inhibits viability, migration and epithelial-mesenchymal transition in human lens epithelial cells via miR-26a-5p/ITGAV/TGF-beta/Smad3 axis. Exp Eye Res 2020; 200:108251. [PMID: 32950535 DOI: 10.1016/j.exer.2020.108251] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Long noncoding RNA potassium voltage-gated channel subfamily Q member 1 opposite strand/antisense transcript 1 (KCNQ1OT1) takes part in diabetic cataract progression. This research aims to analyze the function and mechanism of KCNQ1OT1 on viability, migration and epithelial-mesenchymal transition (EMT) in lens epithelial cells. METHODS 20 diabetic cataract posterior lens capsule tissues and normal samples were collected. Lens epithelial cells (SRA01/04) were stimulated via high glucose (HG). The levels of KCNQ1OT1, miR-26a-5p, integrin αV (ITGAV), TGF-β, Smad3 and phosphorylated (p)-Smad3 were measured via quantitative real-time polymerase chain reaction or Western blot. Cell viability, migration and EMT were analyzed via MTT, wound healing, transwell and Western blot assays. The target relationship between miR-26a-5p and KCNQ1OT1 or ITGAV was determined via luciferase reporter assay. RESULTS KCNQ1OT1 was up-regulated and miR-26a-5p level was reduced in diabetic cataract tissues and HG-treated SRA01/04 cells. Silence of KCNQ1OT1 or miR-26a-5p up-regulation repressed cell viability, migration and EMT in SRA01/04 cells stimulated via HG. KCNQ1OT1 could target miR-26a-5p and controlled cell viability, migration and EMT via regulating miR-26a-5p. ITGAV was targeted via miR-26a-5p and positively regulated via KCNQ1OT1. ITGAV overexpression promoted cell viability, migration and EMT in HG-treated SRA01/04 cells, which were mitigated by KCNQ1OT1 silence. KCNQ1OT1 knockdown mitigated HG-induced the activation of TGF-β/Smad3 signaling by regulating miR-26a-5p. CONCLUSION KCNQ1OT1 knockdown represses cell viability, migration and EMT through miR-26a-5p/ITGAV/TGF-β/Smad3 axis in SRA01/04 cells under HG condition, providing a new target for the treatment of diabetic cataract.
Collapse
|
25
|
Wang Z, Liu T, Xue W, Fang Y, Chen X, Xu L, Zhang L, Guan K, Pan J, Zheng L, Qin G, Wang T. ARNTL2 promotes pancreatic ductal adenocarcinoma progression through TGF/BETA pathway and is regulated by miR-26a-5p. Cell Death Dis 2020; 11:692. [PMID: 32826856 PMCID: PMC7443143 DOI: 10.1038/s41419-020-02839-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies and the therapeutic outcomes remain undesirable. Increasing evidence shows that aryl hydrocarbon receptor nuclear translocator like 2 (ARNTL2) plays crucial roles in tumorigenesis of multiple tumors. However, the expression status and functions of ARNTL2 in PDAC remain elusive. Here we showed that ARNTL2 expression was markedly upregulated in PDAC tissues and cell lines. elevated expression of ARNTL2 was positively related to unfavorable prognosis. Knockdown of ARNTL2 could suppress motility and invasive ability of PDAC cells in vitro, as well as tumor development in vivo. In addition, microRNA-26a-5p (miR-26a-5p) was identified as the crucial specific arbitrator for ARNTL2 expression and the expression of miR-26a-5p was inversely correlated with ARNTL2 expression in PDAC tissues. Functionally, elevated expression of miR-26a-5p was found to inhibit the proliferation, migration, and invasion of PDAC cells in vitro, while ARNTL2 increased expression could partially abolish the suppressive effect of miR-26a-5p. Mechanism study indicated that elevated expression of miR-26a-5p suppressed TGF/BETA signaling pathway by targeting ARNTL2 in PDAC cells. In conclusion, our data suggested that ARNTL2 acted as an oncogene to regulate PDAC growth. MiR-26a-5p/ARNTL2 axis may be a novel therapeutic candidate target in PDAC treatment.
Collapse
Affiliation(s)
- Zhifang Wang
- Endocrinology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Tingting Liu
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wenhua Xue
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yuanyuan Fang
- Endocrinology Department, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Xiaolong Chen
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lijun Xu
- Endocrinology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lixia Zhang
- Endocrinology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Kelei Guan
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Juntao Pan
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lili Zheng
- Endocrinology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Guijun Qin
- Endocrinology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Tingting Wang
- General Geriatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
26
|
Yoshida K, Yokoi A, Kagawa T, Oda S, Hattori S, Tamauchi S, Ikeda Y, Yoshikawa N, Nishino K, Utsumi F, Niimi K, Suzuki S, Shibata K, Kajiyama H, Yokoi T, Kikkawa F. Unique miRNA profiling of squamous cell carcinoma arising from ovarian mature teratoma: comprehensive miRNA sequence analysis of its molecular background. Carcinogenesis 2020; 40:1435-1444. [PMID: 31353396 DOI: 10.1093/carcin/bgz135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/23/2019] [Accepted: 07/27/2019] [Indexed: 12/18/2022] Open
Abstract
Owing to its rarity, the carcinogenesis and molecular biological characteristics of squamous cell carcinoma arising from mature teratoma remain unclear. This study aims to elucidate the molecular background of malignant transformation from the aspects of microRNA (miRNA) profiling. We examined 7 patients with squamous cell carcinoma and 20 patients with mature teratoma and extracted their total RNA from formalin-fixed paraffin-embedded tissues. Then we prepared small RNA libraries and performed comprehensive miRNA sequencing. Heatmap and principal component analysis revealed markedly different miRNA profiling in cancer, normal ovarian and mature teratoma tissues. Then we narrowed down cancer-related miRNAs, comparing paired-cancer and normal ovaries. Comparisons of cancer and mature teratoma identified two markedly upregulated miRNAs (miR-151a-3p and miR-378a-3p) and two markedly downregulated miRNAs (miR-26a-5p and miR-99a-5p). In addition, these findings were validated in fresh cancer tissues of patient-derived xenograft (PDX) models. Moreover, several miRNAs, including miR-151a-3p and miR-378a-3p, were elevated in the murine plasma when tumor tissues were enlarged although miR-26a-5p and miR-99a-5p were not elucidated in the murine plasma. Finally, we performed target prediction and functional annotation analysis in silico and indicated that targets genes of these miRNAs markedly correlated with cancer-related pathways, including 'pathway in cancer' and 'cell cycle'. In conclusion, this is the first study on miRNA sequencing for squamous cell carcinoma arising from mature teratoma. The study identified four cancer-related miRNAs that were considered to be related to the feature of malignant transformation. Moreover, miRNAs circulating in the murine plasma of the PDX model could be novel diagnostic biomarkers.
Collapse
Affiliation(s)
- Kosuke Yoshida
- Department of Obstetrics and Gynecology, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Takumi Kagawa
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shingo Oda
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satomi Hattori
- Department of Obstetrics and Gynecology, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Tamauchi
- Department of Obstetrics and Gynecology, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiki Ikeda
- Department of Obstetrics and Gynecology, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuhisa Yoshikawa
- Department of Obstetrics and Gynecology, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kimihiro Nishino
- Department of Obstetrics and Gynecology, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumi Utsumi
- Department of Obstetrics and Gynecology, Fujita Health University Bantane Hospital, Nagoya, Japan
| | - Kaoru Niimi
- Department of Obstetrics and Gynecology, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shiro Suzuki
- Department of Obstetrics and Gynecology, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kiyosumi Shibata
- Department of Obstetrics and Gynecology, Fujita Health University Bantane Hospital, Nagoya, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
27
|
Qin X, Song Y. Bioinformatics Analysis Identifies the Estrogen Receptor 1 (ESR1) Gene and hsa-miR-26a-5p as Potential Prognostic Biomarkers in Patients with Intrahepatic Cholangiocarcinoma. Med Sci Monit 2020; 26:e921815. [PMID: 32435051 PMCID: PMC7257878 DOI: 10.12659/msm.921815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Intrahepatic cholangiocarcinoma arises from the epithelial cells of the bile ducts and is associated with poor prognosis. This study aimed to use bioinformatics analysis to identify molecular biomarkers of intrahepatic cholangiocarcinoma and their potential mechanisms. Material/Methods MicroRNA (miRNA) and mRNA microarrays from GSE53870 and GSE32879 were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed miRNAs (DEMs) associated with prognosis were identified using limma software and Kaplan-Meier survival analysis. Predictive target genes of the DEMs were identified using miRWalk, miRTarBase, miRDB, and TargetScan databases of miRNA-binding sites and targets. Target genes underwent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Hub genes were analyzed by constructing the protein-protein interaction (PPI) network using Cytoscape. DEMs validated the hub genes, followed by construction of the miRNA-gene regulatory network. Results Twenty-five DEMs were identified. Fifteen DEMs were upregulated, and ten were down-regulated. Kaplan-Meier survival analysis identified seven upregulated DEMs and nine down-regulated DEMs that were associated with the overall survival (OS), and 130 target genes were selected. GO analysis showed that target genes were mainly enriched for metabolism and development processes. KEGG analysis showed that target genes were mainly enriched for cancer processes and some signaling pathways. Fourteen hub genes identified from the PPI network were associated with the regulation of cell proliferation. The overlap between hub genes and DEMs identified the estrogen receptor 1 (ESR1) gene and hsa-miR-26a-5p. Conclusions Bioinformatics analysis identified ESR1 and hsa-miR-26a-5p as potential prognostic biomarkers for intrahepatic cholangiocarcinoma.
Collapse
Affiliation(s)
- Xianzheng Qin
- Queen Mary School of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Yuning Song
- Queen Mary School of Nanchang University, Nanchang, Jiangxi, China (mainland)
| |
Collapse
|
28
|
Zhang XX, Chen H, Li HY, Chen R, He L, Yang JL, Xiao LL, Chen JL. Long non-coding RNA small nucleolar RNA host gene 6 aggravates pancreatic cancer through upregulation of far upstream element binding protein 1 by sponging microRNA-26a-5p. Chin Med J (Engl) 2020; 133:1211-1220. [PMID: 32433053 PMCID: PMC7249703 DOI: 10.1097/cm9.0000000000000758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is a highly deadly malignancy with few effective therapies. We aimed to unmask the role that long non-coding RNA small nucleolar RNA host gene 6 (SNHG6) plays in PC cells by targeting far upstream element binding protein 1 (FUBP1) via microRNA-26a-5p (miR-26a-5p). METHODS SNHG6 expression was predicted by bioinformatics, followed by verification via reverse transcription quantitative polymerase chain reaction. Then, the interactions among SNHG6, miR-26a-5p, and FUBP1 were detected through online software analysis, dual luciferase reporter assay and RNA pull-down. After that, cells were treated with different small interfering RNAs and/or mimic to determine the interactions among SNHG6, miR-26a-5p, and FUBP1 and their roles in PC cells. Finally, the role of SNHG6 in tumor growth in vivo was evaluated by measuring the growth and weight of transplanted tumors in nude mice. A t-test, one-way and two-way analysis of variance were used for data analysis. RESULTS Compared with that in normal tissues, SNHG6 was highly expressed in PC tissues (1.00 ± 0.05 vs. 1.56 ± 0.06, t = 16.03, P < 0.001). Compared with that in human pancreatic duct epithelial cells (HPDE6-C7), SNHG6 showed the highest expression in PANC-1 cells (1.00 ± 0.06 vs. 3.87 ± 0.13, t = 34.72, P < 0.001) and the lowest expression in human pancreatic cancer cells (MIAPaCa-2) (1.00 ± 0.06 vs. 1.41 ± 0.07, t = 7.70, P = 0.0015). Compared with the levels in the si-negative control group, SNHG6 (0.97 ± 0.05 vs. 0.21 ± 0.06, t = 16.85, P < 0.001), N-cadherin (0.74 ± 0.05 vs. 0.41 ± 0.04, t = 8.93, P < 0.001), Vimentin (0.55 ± 0.04 vs. 0.25 ± 0.03, t = 10.39, P < 0.001), and β-catenin (0.62 ± 0.05 vs. 0.32 ± 0.03, t = 8.91, P < 0.001) were decreased, while E-cadherin (0.65 ± 0.06 vs. 1.36 ± 0.07, t = 13.34, P < 0.001) was increased after SNHG6 knockdown or miR-26a-5p overexpression, accompanied by inhibited cell proliferation, migration, and invasion. SNHG6 overexpression exerted the opposite effects. SNHG6 upregulated FUBP1 expression by sponging miR-26a-5p. Silencing SNHG6 blocked the growth of PC in vivo. CONCLUSION Silencing SNHG6 might ameliorate PC through inhibition of FUBP1 by sponging miR-26a-5p, thus providing further supporting evidence for its use in PC treatment.
Collapse
Affiliation(s)
- Xing-Xing Zhang
- Department of Gastroenterology, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai 201499, China
| | - Hua Chen
- Department of Gastroenterology, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai 201499, China
| | - Hui-Ying Li
- Department of Gastroenterology, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai 201499, China
| | - Rui Chen
- Department of Gastroenterology, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai 201499, China
| | - Lei He
- Department of Gastroenterology, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai 201499, China
| | - Juan-Li Yang
- Department of Gastroenterology, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai 201499, China
| | - Lin-Lin Xiao
- Department of Laboratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai 201499, China
| | - Jin-Lian Chen
- Department of Gastroenterology, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai 201499, China
| |
Collapse
|
29
|
Zhu WJ, Yan Y, Zhang JW, Tang YD, Han B. Effect and Mechanism of miR-26a-5p on Proliferation and Apoptosis of Hepatocellular Carcinoma Cells. Cancer Manag Res 2020; 12:3013-3022. [PMID: 32431544 PMCID: PMC7200261 DOI: 10.2147/cmar.s237752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Aim This study aimed to investigate the effect and mechanism of miR-26a-5p on proliferation and apoptosis of hepatocellular carcinoma (HCC) cells. Methods RT-PCR was used to analyze the expression of miR-26a-5p in HCC cells and its targeted gene HMGA2 mRNA determined by biological information prediction. The rate of proliferation, invasion, apoptosis, and expression levels of related proteins of HCC cells overexpressing miR-26a-5p or those after knocking down HMGA2 expression were detected by MTT, invasion and apoptosis rate tests. Moreover, the apoptosis-promoting protein bax was upregulated and the anti-apoptosis-related protein Bcl-2 was downregulated. Results RT-qPCR results showed that the level of miR-26a-5p was downregulated in HCC tissues and cells, and the expression of HMGA2 was upregulated; besides, the expression of miR-26a-5p and HMGA2 was negatively correlated; miR-26a-5p was correlated with tumor diameter, differentiation degree, TNM staging and lymph node metastasis. Cell tests confirmed that miR-26a-5p functioned in tumor suppression, including inhibiting cell proliferation and invasion in two hepatocellular carcinoma cell lines and promoting apoptosis. Bioinformatics prediction and subsequent experiments proved that HMGA2 was the direct target of miR-26a-5p; moreover, after knocking down HMGA2 expression in HCC cells, cell proliferation and invasion ability were significantly inhibited, and apoptosis rate increased significantly. Conclusion miR-26a-5p can inhibit the proliferation and invasion of HCC cells and promote their apoptosis by directly targeting HMGA2. Abnormal decrease of miR-26a-5p and increase of its target HMGA2 are important factors that may participate in the occurrence and development of HCC. miR-26a-5p may be a new potential target for its treatment.
Collapse
Affiliation(s)
- Wen-Jing Zhu
- Abdominal Ultrasonic Department, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Ying Yan
- Oncology Department, The First Hospital of Harbin, Harbin, Heilongjiang Province, People's Republic of China
| | - Jiu-Wei Zhang
- Abdominal Ultrasonic Department, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Yan-Dong Tang
- Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang Province, People's Republic of China
| | - Bo Han
- Oncology Department, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| |
Collapse
|
30
|
Yuan YL, Yu H, Mu SM, Dong YD, Li DY. MiR-26a-5p Inhibits Cell Proliferation and Enhances Doxorubicin Sensitivity in HCC Cells via Targeting AURKA. Technol Cancer Res Treat 2020; 18:1533033819851833. [PMID: 31570091 PMCID: PMC6769208 DOI: 10.1177/1533033819851833] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Objective: To investigate the role of miR-26a-5p in cell proliferation and doxorubicin sensitivity in hepatocellular carcinoma. Methods: We evaluated miR-26a-5p expression in hepatocellular carcinoma tissues and cell lines by reverse transcription polymerase chain reaction. Cell Counting Kit-8 was used to examine cell proliferation. Relationship between miR-26a-5p and aurora kinase A was evaluated by luciferase report system. Western blot was used to detect expression of aurora kinase A. Results: In this study, we observed miR-26a-5p was downregulated in hepatocellular carcinoma tissues and cell lines. Gain-of-function experiments showed that proliferation rate of hepatocellular carcinoma cells decreased under condition of miR-26a-5p mimics. We found miR-26a-5p mimics could enhance doxorubicin sensitivity of hepatocellular carcinoma cells. Further study showed that aurora kinase A was target gene of miR-26a-5p. Suppression of aurora kinase A could lead to lower cell proliferation and higher doxorubicin sensitivity of hepatocellular carcinoma cells. Conclusion: Our study found that miR-26a-5p could inhibit cell proliferation and enhance doxorubicin sensitivity in hepatocellular carcinoma cells by targeting aurora kinase A.
Collapse
Affiliation(s)
- Yan Li Yuan
- Zhengzhou Children's Hospital, Henan Children's Hospital, Children's Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - HaiBo Yu
- Department of Hepatobiliary Pancreatic Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, P.R. China
| | - Sen-Mao Mu
- Department of Hepatobiliary Pancreatic Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, P.R. China
| | - Ya Dong Dong
- Department of Hepatobiliary Pancreatic Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, P.R. China
| | - De Yu Li
- Department of Hepatobiliary Pancreatic Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, P.R. China
| |
Collapse
|
31
|
Xing X, Guo S, Zhang G, Liu Y, Bi S, Wang X, Lu Q. miR-26a-5p protects against myocardial ischemia/reperfusion injury by regulating the PTEN/PI3K/AKT signaling pathway. ACTA ACUST UNITED AC 2020; 53:e9106. [PMID: 31994603 PMCID: PMC6984371 DOI: 10.1590/1414-431x20199106] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/10/2019] [Indexed: 01/08/2023]
Abstract
Reperfusion strategies in acute myocardial infarction (AMI) can cause a series of additional clinical damage, defined as myocardial ischemia/reperfusion (I/R) injury, and thus there is a need for effective therapeutic methods to attenuate I/R injury. miR-26a-5p has been proven to be an essential regulator for biological processes in different cell types. Nevertheless, the role of miR-26a-5p in myocardial I/R injury has not yet been reported. We established an I/R injury model in vitro and in vivo. In vitro, we used cardiomyocytes to simulate I/R injury using hypoxia/reoxygenation (H/R) assay. In vivo, we used C57BL/6 mice to construct I/R injury model. The infarct area was examined by TTC staining. The level of miR-26a-5p and PTEN was determined by bioinformatics methods, qRT-PCR, and western blot. In addition, the viability and apoptosis of cardiomyocytes were separately detected by MTT and flow cytometry. The targeting relationship between miR-26a-5p and PTEN was analyzed by the TargetScan website and luciferase reporter assay. I/R and H/R treatment induced myocardial tissue injury and cardiomyocyte apoptosis, respectively. The results showed that miR-26a-5p was down-regulated in myocardial I/R injury. PTEN was found to be a direct target of miR-26a-5p. Furthermore, miR-26a-5p effectively improved viability and inhibited apoptosis in cardiomyocytes upon I/R injury by inhibiting PTEN expression to activate the PI3K/AKT signaling pathway. miR-26a-5p could protect cardiomyocytes against I/R injury by regulating the PTEN/PI3K/AKT pathway, which offers a potential approach for myocardial I/R injury treatment.
Collapse
Affiliation(s)
- Xiaowei Xing
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Shuang Guo
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Guanghao Zhang
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Yusheng Liu
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Shaojie Bi
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Xin Wang
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Qinghua Lu
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
32
|
Linck-Paulus L, Hellerbrand C, Bosserhoff AK, Dietrich P. Dissimilar Appearances Are Deceptive-Common microRNAs and Therapeutic Strategies in Liver Cancer and Melanoma. Cells 2020; 9:E114. [PMID: 31906510 PMCID: PMC7017070 DOI: 10.3390/cells9010114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
: In this review, we summarize the current knowledge on miRNAs as therapeutic targets in two cancer types that were frequently described to be driven by miRNAs-melanoma and hepatocellular carcinoma (HCC). By focusing on common microRNAs and associated pathways in these-at first sight-dissimilar cancer types, we aim at revealing similar molecular mechanisms that are evolved in microRNA-biology to drive cancer progression. Thereby, we also want to outlay potential novel therapeutic strategies. After providing a brief introduction to general miRNA biology and basic information about HCC and melanoma, this review depicts prominent examples of potent oncomiRs and tumor-suppressor miRNAs, which have been proven to drive diverse cancer types including melanoma and HCC. To develop and apply miRNA-based therapeutics for cancer treatment in the future, it is essential to understand how miRNA dysregulation evolves during malignant transformation. Therefore, we highlight important aspects such as genetic alterations, miRNA editing and transcriptional regulation based on concrete examples. Furthermore, we expand our illustration by focusing on miRNA-associated proteins as well as other regulators of miRNAs which could also provide therapeutic targets. Finally, design and delivery strategies of miRNA-associated therapeutic agents as well as potential drawbacks are discussed to address the question of how miRNAs might contribute to cancer therapy in the future.
Collapse
Affiliation(s)
- Lisa Linck-Paulus
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
| | - Claus Hellerbrand
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Anja K. Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Peter Dietrich
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
33
|
Liu Y, Wang L, Xie F, Wang X, Hou Y, Wang X, Liu J. Overexpression of miR-26a-5p Suppresses Tau Phosphorylation and Aβ Accumulation in the Alzheimer's Disease Mice by Targeting DYRK1A. Curr Neurovasc Res 2020; 17:241-248. [PMID: 32286945 DOI: 10.2174/1567202617666200414142637] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVE It is reported that miR-26a-5p could regulate neuronal development, but its underlying mechanisms in Alzheimer's disease (AD) progression is unclear. METHODS APP (swe)/PS1 (ΔE9) transgenic mice served as AD mice. Morris water maze test was used to measure the spatial learning and memory ability of mice. The expressions of miR-26a-5p, DYRK1A, phosphorylated-Tau, Aβ40, and Aβ42 were detected. The relationship between miR- 26a-5p and DYRK1A was explored using dual luciferase reporter assay. The effects of miR-26a- 5p on AD mice was determined. RESULTS AD mice walked a lot of wrong ways to find the platform area and the latency time to reach the platform was longer. There was low expression of MiR-26a-5p in AD mice. Overexpression of miR-26a-5p inhibited Tau phosphorylation and Aβ accumulation. MiR-26a-5p negatively regulated DYRK1A via targeting its 3'UTR. In vivo, increased miR-26a-5p down-regulated Aβ40, Aβ42, p-APP and p-Tau levels in AD mice through decreasing DYRK1A. Meanwhile, the swimming path and the latency time, to reach the platform, was shorten after enhancing miR-26a-5p expression. CONCLUSION Overexpression of miR-26a-5p could repress Tau phosphorylation and Aβ accumulation via down-regulating DYRK1A level in AD mice.
Collapse
Affiliation(s)
- Yanni Liu
- Department of Neurology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712000, China
| | - Lin Wang
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an City, Shaanxi Province, 710077, China
| | - Fuheng Xie
- Department of Neurology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712000, China
| | - Xiao Wang
- Department of Neurology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712000, China
| | - Yuanyuan Hou
- Department of Neurology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712000, China
| | - Xiaomeng Wang
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an City, Shaanxi Province, 710077, China
| | - Juan Liu
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an City, Shaanxi Province, 710077, China
| |
Collapse
|
34
|
Fan X, Jin S, Li Y, Khadaroo PA, Dai Y, He L, Zhou D, Lin H. Genetic And Epigenetic Regulation Of E-Cadherin Signaling In Human Hepatocellular Carcinoma. Cancer Manag Res 2019; 11:8947-8963. [PMID: 31802937 PMCID: PMC6801489 DOI: 10.2147/cmar.s225606] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/27/2019] [Indexed: 12/24/2022] Open
Abstract
E-cadherin is well known as a growth and invasion suppressor and belongs to the large cadherin family. Loss of E-cadherin is widely known as the hallmark of epithelial-to-mesenchymal transition (EMT) with the involvement of transcription factors such as Snail, Slug, Twist and Zeb1/2. Tumor cells undergoing EMT could migrate to distant sites and become metastases. Recently, numerous studies have revealed how the expression of E-cadherin is regulated by different kinds of genetic and epigenetic alteration, which are implicated in several crucial transcription factors and pathways. E-cadherin signaling plays an important role in hepatocellular carcinoma (HCC) initiation and progression considering the highly mutated frequency of CTNNB1 (27%). Combining the data from The Cancer Genome Atlas (TCGA) database and previous studies, we have summarized the roles of gene mutations, chromosome instability, DNA methylation, histone modifications and non-coding RNA in E-cadherin in HCC. In this review, we discuss the current understanding of the relationship between these modifications and HCC. Perspectives on E-cadherin-related research in HCC are provided.
Collapse
Affiliation(s)
- Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Shengxi Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Parikshit Asutosh Khadaroo
- School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Yili Dai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Lifeng He
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Daizhan Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
35
|
Wei R, Zhang L, Hu W, Wu J, Zhang W. Long non-coding RNA AK038897 aggravates cerebral ischemia/reperfusion injury via acting as a ceRNA for miR-26a-5p to target DAPK1. Exp Neurol 2019; 314:100-110. [PMID: 30703362 DOI: 10.1016/j.expneurol.2019.01.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/18/2018] [Accepted: 01/12/2019] [Indexed: 12/31/2022]
|
36
|
Shan K, Wang Y, Hua H, Qin S, Yang A, Shao J. Ginsenoside Rg3 Combined with Oxaliplatin Inhibits the Proliferation and Promotes Apoptosis of Hepatocellular Carcinoma Cells via Downregulating PCNA and Cyclin D1. Biol Pharm Bull 2019; 42:900-905. [PMID: 30930425 DOI: 10.1248/bpb.b18-00852] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study aims to investigate the effects of ginsenoside Rg3 combined with oxaliplatin on the proliferation and apoptosis of hepatocellular carcinoma cells and the related mechanism. In this study, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was applied to examine the proliferation rate of hepatocellular carcinoma cell SMMC-7721 with different treatment. Flow cytometry was performed to examine apoptosis rate of hepatocellular carcinoma cells with different treatment. Immunofluorescence and Western blot methods were used to evaluate the expressions of proliferating cell nuclear antigen (PCNA) and cyclin D1 in different groups. We found that ginsenoside Rg3, oxaliplatin or ginsenoside Rg3 + oxaliplatin significantly suppressed the proliferation and promoted the apoptosis of SMMC-7721. Meanwhile, ginsenoside Rg3, oxaliplatin or ginsenoside Rg3 + oxaliplatin also significantly inhibited the expressions of PCNA and cyclin D1. Moreover, compared with ginsenoside Rg3 group and oxaliplatin group, the effect of ginsenoside Rg3 + oxaliplatin was more remarkable. Taken together, cells treated with oxaliplatin+ ginsenoside enhanced the anti-tumor effect and may inhibit the proliferation and promoted apoptosis of hepatocellular carcinoma via regulating the expression of PCNA and cyclin D1.
Collapse
Affiliation(s)
- Kuizhong Shan
- Nanjing University of Chinese Medicine.,Department of Oncology, Kunshan Second People's Hospital
| | | | - Haiqing Hua
- Department of Oncology, Bayi Hospital Affiliated to Nanjing University of Chinese Medicine
| | - Shukui Qin
- Department of Oncology, Bayi Hospital Affiliated to Nanjing University of Chinese Medicine
| | - Aizhen Yang
- Central Laboratory, Bayi Hospital Affiliated to Nanjing University of Chinese Medicine
| | - Jie Shao
- Department of Oncology, Jiangsu Province Hospital of TCM, the Affiliated Hospital of Nanjing University of Chinese Medicine
| |
Collapse
|
37
|
Zhang X, Wang S, Wang H, Cao J, Huang X, Chen Z, Xu P, Sun G, Xu J, Lv J, Xu Z. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol Cancer 2019; 18:20. [PMID: 30717751 PMCID: PMC6360801 DOI: 10.1186/s12943-018-0935-5] [Citation(s) in RCA: 581] [Impact Index Per Article: 96.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND CircRNA has emerged as a new non-coding RNA that plays crucial roles in tumour initiation and development. 'MiRNA sponge' is the most reported role played by circRNAs in many tumours. The AKT/mTOR axis is a classic signalling pathway in cancers that sustains energy homeostasis through energy production activities, such as the Warburg effect, and blocks catabolic activities, such as autophagy. Additionally, the AKT/mTOR axis exerts a positive effect on EMT, which promotes tumour metastasis. METHODS We detected higher circNRIP1 expression in gastric cancer by performing RNA-seq analysis. We verified the tumour promotor role of circNRIP1 in gastric cancer cells through a series of biological function assays. We then used a pull-down assay and dual-luciferase reporter assay to identify the downstream miR-149-5p of circNRIP1. Western blot analysis and immunofluorescence assays were performed to demonstrate that the circNRIP1-miR-149-5p-AKT1/mTOR axis is responsible for the altered metabolism in GC cells and promotes GC development. We then adopted a co-culture system to trace circNRIP1 transmission via exosomal communication and RIP experiments to determine that quaking regulates circNRIP1 expression. Finally, we confirmed the tumour suppressor role of microRNA-133a-3p in vivo in PDX mouse models. RESULTS We discovered that knockdown of circNRIP1 successfully blocked proliferation, migration, invasion and the expression level of AKT1 in GC cells. MiR-149-5p inhibition phenocopied the overexpression of circNRIP1 in GC cells, and overexpression of miR-149-5p blocked the malignant behaviours of circNRIP1. Moreover, it was proven that circNRIP1 can be transmitted by exosomal communication between GC cells, and exosomal circNRIP1 promoted tumour metastasis in vivo. We also demonstrated that quaking can promote circNRIP1 transcription. In the final step, the tumour promotor role of circNRIP1 was verified in PDX models. CONCLUSIONS We proved that circNRIP1 sponges miR-149-5p to affect the expression level of AKT1 and eventually acts as a tumour promotor in GC.
Collapse
Affiliation(s)
- Xing Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Sen Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Haixiao Wang
- Department of General Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu, China
| | - Jiacheng Cao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Xiaoxu Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Zheng Chen
- Department of Surgical Oncology, University of Miami, Miami, USA
| | - Penghui Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Guangli Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Jianghao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Jialun Lv
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, Jiangsu Province, China.
- Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
38
|
Gao J, Zeng K, Liu Y, Gao L, Liu L. LncRNA SNHG5 promotes growth and invasion in melanoma by regulating the miR-26a-5p/TRPC3 pathway. Onco Targets Ther 2018; 12:169-179. [PMID: 30636880 PMCID: PMC6309782 DOI: 10.2147/ott.s184078] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Melanoma has been reported as the most common malignancy in skin cancer. The small nucleolar RNA host gene 5 (SNHG5), an lncRNA, has been proven as a vital regulator in several types of carcinoma. This study was designed to investigate the detailed roles and possible mechanisms of SNHG5 in melanoma progression. METHODS Quantitative real-time PCR (qRT-PCR) analysis was conducted to detect the expression levels of SNHG5, miR-26a-5p and transient receptor potential, canonical 3 (TRPC3) mRNA in melanoma tissues and cells. CCK-8 assay was used to measure the cell viability. Flow cytometry assays were performed to determine the cell cycle distribution and apoptosis. The invasive ability was assessed by a 24-well Transwell insert. Western blot analysis was employed to evaluate the protein expression of TRPC3. Dual luciferase reporter assay, RNA immunoprecipitation (RIP) assay, and RNA pull-down assay were applied to identify the interactions among SNHG5, miR-26a-5p and TRPC3. RESULTS The results showed that SNHG5 expression was increased in melanoma tumor tissues and cell lines. Higher SNHG5 expression was correlated with advanced pathogenic status. Moreover, SNHG5 could serve as a molecular sponge of miR-26a-5p. SNHG5 downregulation repressed proliferation, promoted apoptosis, and decreased invasion in melanoma cells, while these effects were greatly counteracted by miR-26a-5p inhibitor. Furthermore, miR-26a-5p directly targeted TRPC3 to suppress its expression, and this effect was aggravated following SNHG5 downregulation. Also, TRPC3 depletion exerted similar tumor-suppressive functions as SNHG5 knockdown. CONCLUSION SNHG5 promoted melanoma development by inhibiting miR-26a-5p and facilitating TRPC3 expression, highlighting the potential of SNHG5 as a novel target therapy for melanoma.
Collapse
Affiliation(s)
- Jun Gao
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China,
- Department of Dermatology, Liuzhou Worker's Hospital, Liuzhou, China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China,
| | - Yi Liu
- Department of Hand and Foot Surgery, Liuzhou Worker's Hospital, Liuzhou, China
| | - Lin Gao
- Department of Clinical Medical Research Center, The 2nd Clinical Medicine College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China
| | - Lishi Liu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China,
| |
Collapse
|
39
|
Yang Y, Xi L, Ma Y, Zhu X, Chen R, Luan L, Yan J, An R. The lncRNA small nucleolar RNA host gene 5 regulates trophoblast cell proliferation, invasion, and migration via modulating miR-26a-5p/N-cadherin axis. J Cell Biochem 2018; 120:3173-3184. [PMID: 30242892 DOI: 10.1002/jcb.27583] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/08/2018] [Indexed: 12/29/2022]
Abstract
Pre-eclampsia (PE) is a pregnancy-specific disease characterized by the occurrence of hypertension and proteinuria after two weeks of gestation. Long noncoding RNAs (lncRNAs) are emerging as key regulators in PE development. This study aims to investigate the role of lncRNA, small nucleolar RNA host gene 5 (SNHG5), in the pathogenesis of PE. The expression of SNHG5 was significantly downregulated in placental tissues from patients with severe PE compared normal controls. Overexpression of SNHG5 promoted trophoblast (HTR-8/SVneo) cell proliferation, invasion, and migration, and flow cytometry results showed that SNHG5 overexpression inhibited apoptosis and caused a decrease of cell population at the G 0 /G 1 phase and an increase of cell population at the S phase, while knockdown of SNHG5 had the opposite effects. The interaction between SNHG5 and miR-26a-5p was predicted by bioinformatics analysis and confirmed by luciferase reporter assay and RNA immunoprecipitation, and miR-26a-5p was negatively regulated by SNHG5; miR-26a-5p expression was upregulated in PE placental tissues and was inversely correlated with SNHG5 expression. Furthermore, miR-26a-5p was predicted to target the 3' untranslated region of N-cadherin, which was confirmed by luciferase reporter assay, and miR-26a-5p overexpression suppressed N-cadherin expression in HTR-8/SVneo cells. N-cadherin mRNA expression was downregulated in PE placental tissues and was positively correlated with SNHG5 expression. Both overexpression of miR-26a-5p and knockdown of N-cadherin suppressed HTR-8/SVneo cell invasion and migration, and also attenuated the effects of SNHG5 on the cellular functions of HTR-8/SVneo cells. In conclusion, our study suggested that SNHG5 promotes trophoblast cell proliferation, invasion, and migration at least partly via regulating the miR-26a-5p/N-cadherin axis.
Collapse
Affiliation(s)
- Yang Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Lan Xi
- Department of Obstetrics, Baoji Maternal and Children Health Hospital, Baoji, China
| | - Yuan Ma
- Department of Gynecology and Obstetrics, Tangdu Hospital, Medical University of the Air Force, Xi'an, China
| | - Xiaoming Zhu
- Department of Gynecology and Obstetrics, Tangdu Hospital, Medical University of the Air Force, Xi'an, China
| | - Rui Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Lixia Luan
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Jiajia Yan
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Ruifang An
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
40
|
Guo T, Wang H, Liu P, Xiao Y, Wu P, Wang Y, Chen B, Zhao Q, Liu Z, Liu Q. SNHG6 Acts as a Genome-Wide Hypomethylation Trigger via Coupling of miR-1297–Mediated S-Adenosylmethionine–Dependent Positive Feedback Loops. Cancer Res 2018; 78:3849-3864. [PMID: 29844127 DOI: 10.1158/0008-5472.can-17-3833] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/10/2018] [Accepted: 05/16/2018] [Indexed: 11/16/2022]
Affiliation(s)
- Tao Guo
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Hongling Wang
- Department of Gastroenterology, Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Pengpeng Liu
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Yushao Xiao
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Ping Wu
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Yitao Wang
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Baiyang Chen
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Qiu Zhao
- Department of Gastroenterology, Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Zhisu Liu
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China.
| | - Quanyan Liu
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China.
| |
Collapse
|
41
|
Song Q, Liu B, Li X, Zhang Q, Cao L, Xu M, Meng Z, Wu X, Xu K. MiR-26a-5p potentiates metastasis of human lung cancer cells by regulating ITGβ8- JAK2/STAT3 axis. Biochem Biophys Res Commun 2018; 501:494-500. [PMID: 29746867 DOI: 10.1016/j.bbrc.2018.05.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 12/15/2022]
Abstract
Most lung cancer patients die of metastasis. Recent studies have indicated that dysregulated microRNAs (miRNAs) are involved not only in tumorigenesis, but also in metastasis. In the present study, we found that over-expression of miR-26a-5p potentiated the migration and invasion of lung cancer cells evidenced by wound healing assay and transwell assay, and metastasis-related genes MMP-9 and CD44 were up-regulated. We identified integrin-beta8 (ITGβ8) as a novel target of miR-26a, and ITGβ8 expression was negatively correlated with miR-26a-5p expression in lung cancer specimens. Mechanism study showed that miR-26a-5p enhanced lung cancer cell metastasis via activation of Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway, and ITGβ8 mediated the activation of JAK2/STAT3 pathway by miR-26a-5p. By using in vivo imaging technology, we found that miR-26a-5p enhanced both tumor growth and metastasis in vivo; and activated JAK2/STAT3 pathway. Taken together, our results demonstrated that miR-26a-5p potentiated lung cancer cell metastasis via JAK2/STAT3 pathway by targeting ITGβ8. This finding provides insights into the mechanism underlying miRNAs regulation on lung cancer metastasis; and suggests miR-26a-5p as a therapeutic target for lung cancer treatment.
Collapse
Affiliation(s)
- Qianqian Song
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Boning Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xueqin Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Qicheng Zhang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Limin Cao
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Meilin Xu
- Department of Pathology, Tianjin Chest Hospital, Tianjin, 300051, PR China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiang Wu
- Core Facility Center, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ke Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
42
|
The Circular RNA hsa_circ_0001445 Regulates the Proliferation and Migration of Hepatocellular Carcinoma and May Serve as a Diagnostic Biomarker. DISEASE MARKERS 2018; 2018:3073467. [PMID: 29785229 PMCID: PMC5896272 DOI: 10.1155/2018/3073467] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/26/2017] [Indexed: 12/30/2022]
Abstract
Circular RNAs (circRNA), a class of noncoding RNAs, have been found to be involved in various diseases. Here, the expression levels of the circRNA hsa_circ_0001445 in 73 pairs of hepatocellular carcinoma (HCC) and adjacent nontumor tissues were investigated by quantitative real-time polymerase chain reaction (qRT-PCR). Our data demonstrate that the hsa_circ_0001445 levels were significantly decreased in HCC tissues (P < 0.001) and markedly associated with the number of tumor foci (P = 0.014). Furthermore, in vitro approaches showed that overexpression of hsa_circ_0001445 promoted apoptosis and inhibited proliferation, migration, and invasion of HCC-derived cells, suggesting that hsa_circ_0001445 might be involved in the development of HCC. In addition, we found that the plasma hsa_circ_0001445 transcription levels in HCC patients were lower than those in cirrhosis (P < 0.001) and hepatitis B (P < 0.001) patients as well as in healthy controls (P < 0.001). In fact, receiver operating characteristic curve analysis indicated that plasma hsa_circ_0001445 could be a fairly accurate marker to distinguish HCC cases from healthy controls as well as patients with cirrhosis or hepatitis B.
Collapse
|
43
|
Fu H, Zhang J, Pan T, Ai S, Tang L, Wang F. miR‑378a enhances the sensitivity of liver cancer to sorafenib by targeting VEGFR, PDGFRβ and c‑Raf. Mol Med Rep 2018; 17:4581-4588. [PMID: 29328399 DOI: 10.3892/mmr.2018.8390] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 09/12/2017] [Indexed: 11/05/2022] Open
Abstract
Liver cancer is a globally prevalent cancer with poor prognosis. The present study investigated the link between microRNA-378a (miR‑378a) expression and the sensitivity of hepatocellular carcinoma (HCC) and hepatoblastoma (HB) cancers to sorafenib therapy. miR‑378a expression was determined in liver tissue samples from healthy candidates and patients with liver cancer using the reverse transcription‑quantitative polymerase chain reaction. The antitumor effects of miR‑378a alone and in combination with sorafenib were investigated in the HB cell line HepG2 and the HCC cell line SMMC‑7721 with methyl thiazoyl tetrazolium, colony formation, flow cytometry and Transwell migration assays. The underlying mechanisms were investigated using western blot analysis. miR‑378a expression was decreased in tissue samples from patients with liver cancer. HCC and HB cell line proliferation and invasion ability was inhibited by miR‑378a. The combination of miR‑378a and sorafenib provided the greatest inhibition. Western blot indicated that mitogen activated protein kinase signaling pathway proteins, vascular endothelial growth factor receptor, platelet derived growth factor receptor β, Raf‑1 proto‑oncogene, serine/threonine kinase and matrix metallopeptidase 2 were regulated by miR‑378a alone and to a greater extent when combined with sorafenib. Results suggest that miR‑378a can inhibit liver cancer cell growth and enhance the sensitivity of liver cancer cells to sorafenib‑based chemotherapies.
Collapse
Affiliation(s)
- Hongxia Fu
- Department of Clinical Laboratory, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jicai Zhang
- Department of Clinical Laboratory, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Tongshan Pan
- Department of Pediatrics, Danjiangkou First Hospital, Danjiangkou, Hubei 442700, P.R. China
| | - Shuying Ai
- Department of Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Li Tang
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Fengqin Wang
- Department of Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
44
|
Klymenko Y, Kim O, Stack MS. Complex Determinants of Epithelial: Mesenchymal Phenotypic Plasticity in Ovarian Cancer. Cancers (Basel) 2017; 9:cancers9080104. [PMID: 28792442 PMCID: PMC5575607 DOI: 10.3390/cancers9080104] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/02/2017] [Accepted: 08/06/2017] [Indexed: 02/07/2023] Open
Abstract
Unlike most epithelial malignancies which metastasize hematogenously, metastasis of epithelial ovarian cancer (EOC) occurs primarily via transcoelomic dissemination, characterized by exfoliation of cells from the primary tumor, avoidance of detachment-induced cell death (anoikis), movement throughout the peritoneal cavity as individual cells and multi-cellular aggregates (MCAs), adhesion to and disruption of the mesothelial lining of the peritoneum, and submesothelial matrix anchoring and proliferation to generate widely disseminated metastases. This exceptional microenvironment is highly permissive for phenotypic plasticity, enabling mesenchymal-to-epithelial (MET) and epithelial-to-mesenchymal (EMT) transitions. In this review, we summarize current knowledge on EOC heterogeneity in an EMT context, outline major regulators of EMT in ovarian cancer, address controversies in EMT and EOC chemoresistance, and highlight computational modeling approaches toward understanding EMT/MET in EOC.
Collapse
Affiliation(s)
- Yuliya Klymenko
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA.
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA.
| | - Oleg Kim
- Department of Applied and Computational Mathematics and Statistics, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA.
- Department of Mathematics, University of California Riverside, Riverside, CA 92521, USA.
| | - M Sharon Stack
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA.
| |
Collapse
|