1
|
Piergentili R, Marinelli E, Cucinella G, Lopez A, Napoletano G, Gullo G, Zaami S. miR-125 in Breast Cancer Etiopathogenesis: An Emerging Role as a Biomarker in Differential Diagnosis, Regenerative Medicine, and the Challenges of Personalized Medicine. Noncoding RNA 2024; 10:16. [PMID: 38525735 PMCID: PMC10961778 DOI: 10.3390/ncrna10020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/10/2024] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
Breast Cancer (BC) is one of the most common cancer types worldwide, and it is characterized by a complex etiopathogenesis, resulting in an equally complex classification of subtypes. MicroRNA (miRNA or miR) are small non-coding RNA molecules that have an essential role in gene expression and are significantly linked to tumor development and angiogenesis in different types of cancer. Recently, complex interactions among coding and non-coding RNA have been elucidated, further shedding light on the complexity of the roles these molecules fulfill in cancer formation. In this context, knowledge about the role of miR in BC has significantly improved, highlighting the deregulation of these molecules as additional factors influencing BC occurrence, development and classification. A considerable number of papers has been published over the past few years regarding the role of miR-125 in human pathology in general and in several types of cancer formation in particular. Interestingly, miR-125 family members have been recently linked to BC formation as well, and complex interactions (competing endogenous RNA networks, or ceRNET) between this molecule and target mRNA have been described. In this review, we summarize the state-of-the-art about research on this topic.
Collapse
Affiliation(s)
- Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy;
| | - Enrico Marinelli
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy;
| | - Gaspare Cucinella
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy; (G.C.); (A.L.); (G.G.)
| | - Alessandra Lopez
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy; (G.C.); (A.L.); (G.G.)
| | - Gabriele Napoletano
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Forensic Medicine, “Sapienza” University of Rome, 00161 Rome, Italy;
| | - Giuseppe Gullo
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy; (G.C.); (A.L.); (G.G.)
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Forensic Medicine, “Sapienza” University of Rome, 00161 Rome, Italy;
| |
Collapse
|
2
|
Gu X, Wei F, Tong J, Liu Y, Chen S, Zheng L, Xing Y. MiR-9 promotes G-MDSC recruitment and tumor proliferation by targeting SOCS3 in breast cancer. FASEB J 2024; 38:e23388. [PMID: 38145323 DOI: 10.1096/fj.202301764rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/17/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of cells that differentiate from myeloid cells, proliferate in cancer and inflammatory reactions, and mainly exert immunosuppressive functions. Nonetheless, the precise mechanisms that dictate both the accumulation and function of MDSCs remain only partially elucidated. In the course of our investigation, we observed a positive correlation between the content of MDSCs especially G-MDSCs and miR-9 level in the tumor tissues derived from miR-9 knockout MMTV-PyMT mice and 4T1 tumor-bearing mice with miR-9 overexpression. Combined with RNA-seq analysis, we identified SOCS2 and SOCS3 as direct targets of miR-9. Additionally, our research unveiled the pivotal role of the CCL5/CCR5 axis in orchestrating the chemotactic recruitment of G-MDSCs within the tumor microenvironment, a process that is enhanced by miR-9. These findings provide fresh insights into the molecular mechanisms governing the accumulation of MDSCs within the framework of breast cancer development.
Collapse
Affiliation(s)
- Xinyue Gu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Fang Wei
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jinzhe Tong
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yichen Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Simiao Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Dziechciowska I, Dąbrowska M, Mizielska A, Pyra N, Lisiak N, Kopczyński P, Jankowska-Wajda M, Rubiś B. miRNA Expression Profiling in Human Breast Cancer Diagnostics and Therapy. Curr Issues Mol Biol 2023; 45:9500-9525. [PMID: 38132441 PMCID: PMC10742292 DOI: 10.3390/cimb45120595] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Breast cancer is one of the most commonly diagnosed cancer types worldwide. Regarding molecular characteristics and classification, it is a heterogeneous disease, which makes it more challenging to diagnose. As is commonly known, early detection plays a pivotal role in decreasing mortality and providing a better prognosis for all patients. Different treatment strategies can be adjusted based on tumor progression and molecular characteristics, including personalized therapies. However, dealing with resistance to drugs and recurrence is a challenge. The therapeutic options are limited and can still lead to poor clinical outcomes. This review aims to shed light on the current perspective on the role of miRNAs in breast cancer diagnostics, characteristics, and prognosis. We discuss the potential role of selected non-coding RNAs most commonly associated with breast cancer. These include miR-21, miR-106a, miR-155, miR-141, let-7c, miR-335, miR-126, miR-199a, miR-101, and miR-9, which are perceived as potential biomarkers in breast cancer prognosis, diagnostics, and treatment response monitoring. As miRNAs differ in expression levels in different types of cancer, they may provide novel cancer therapy strategies. However, some limitations regarding dynamic alterations, tissue-specific profiles, and detection methods must also be raised.
Collapse
Affiliation(s)
- Iga Dziechciowska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Małgorzata Dąbrowska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Anna Mizielska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Natalia Pyra
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Przemysław Kopczyński
- Centre for Orthodontic Mini-Implants, Department and Clinic of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, Bukowska 70 Str., 60-812 Poznan, Poland
| | - Magdalena Jankowska-Wajda
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8 Str., 61-614 Poznan, Poland;
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| |
Collapse
|
4
|
Taghehchian N, Lotfi M, Zangouei AS, Akhlaghipour I, Moghbeli M. MicroRNAs as the critical regulators of Forkhead box protein family during gynecological and breast tumor progression and metastasis. Eur J Med Res 2023; 28:330. [PMID: 37689738 PMCID: PMC10492305 DOI: 10.1186/s40001-023-01329-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023] Open
Abstract
Gynecological and breast tumors are one of the main causes of cancer-related mortalities among women. Despite recent advances in diagnostic and therapeutic methods, tumor relapse is observed in a high percentage of these patients due to the treatment failure. Late diagnosis in advanced tumor stages is one of the main reasons for the treatment failure and recurrence in these tumors. Therefore, it is necessary to assess the molecular mechanisms involved in progression of these tumors to introduce the efficient early diagnostic markers. Fokhead Box (FOX) is a family of transcription factors with a key role in regulation of a wide variety of cellular mechanisms. Deregulation of FOX proteins has been observed in different cancers. MicroRNAs (miRNAs) as a group of non-coding RNAs have important roles in post-transcriptional regulation of the genes involved in cellular mechanisms. They are also the non-invasive diagnostic markers due to their high stability in body fluids. Considering the importance of FOX proteins in the progression of breast and gynecological tumors, we investigated the role of miRNAs in regulation of the FOX proteins in these tumors. MicroRNAs were mainly involved in progression of these tumors through FOXM, FOXP, and FOXO. The present review paves the way to suggest a non-invasive diagnostic panel marker based on the miRNAs/FOX axis in breast and gynecological cancers.
Collapse
Affiliation(s)
- Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Rani M, Kumari R, Singh SP, Devi A, Bansal P, Siddiqi A, Alsahli MA, Almatroodi SA, Rahmani AH, Rizvi MMA. MicroRNAs as master regulators of FOXO transcription factors in cancer management. Life Sci 2023; 321:121535. [PMID: 36906255 DOI: 10.1016/j.lfs.2023.121535] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023]
Abstract
MicroRNAs are critical regulators of the plethora of genes, including FOXO "forkhead" dependent transcription factors, which are bonafide tumour suppressors. The FOXO family members modulate a hub of cellular processes like apoptosis, cell cycle arrest, differentiation, ROS detoxification, and longevity. Aberrant expression of FOXOs in human cancers has been observed due to their down-regulation by diverse microRNAs, which are predominantly involved in tumour initiation, chemo-resistance and tumour progression. Chemo-resistance is a major obstacle in cancer treatment. Over 90% of casualties in cancer patients are reportedly associated with chemo-resistance. Here, we have primarily discussed the structure, functions of FOXO and also their post-translational modifications which influence the activities of these FOXO family members. Further, we have addressed the role of microRNAs in carcinogenesis by regulating the FOXOs at post-transcriptional level. Therefore, microRNAs-FOXO axis can be exploited as a novel cancer therapy. The administration of microRNA-based cancer therapy is likely to be beneficial to curb chemo-resistance in cancers.
Collapse
Affiliation(s)
- Madhu Rani
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Rashmi Kumari
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shashi Prakash Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; Centre for Pharmacology and Therapeutics, Rosewell Park Comprehensive Care Centre, 665 Elm Street, Buffalo, NY, USA 14203
| | - Annu Devi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Preeti Bansal
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Aisha Siddiqi
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Buraydah 51452, Saudi Arabia
| | - Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Buraydah 51452, Saudi Arabia
| | - M Moshahid Alam Rizvi
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
6
|
Castillo-Sanchez R, Churruca-Schuind A, Martinez-Ival M, Salazar EP. Cancer-associated Fibroblasts Communicate with Breast Tumor Cells Through Extracellular Vesicles in Tumor Development. Technol Cancer Res Treat 2022; 21:15330338221131647. [PMID: 36222020 PMCID: PMC9558853 DOI: 10.1177/15330338221131647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Breast cancer is the leading cause of cancer death among women worldwide. In solid tumors, the microenvironment plays a critical role in tumor development, and it has been described a communication between the different cell types that conform the stroma, including fibroblasts, pericytes, adipocytes, immune cells and cancer-associated fibroblasts. Intercellular communication is bidirectional, complex, multifactorial and is mediated by the secretion of molecules and extracellular vesicles. The extracellular vesicles are vesicles limited by two membranes that are secreted by normal and cancer cells into the extracellular space. Extracellular vesicle cargo is complex and includes proteins, miRNAs, DNA and lipids, and their composition is specific to their parent cells. Extracellular vesicles are taken up for neighboring or distant cells. Particularly, extracellular vesicles from breast cancer cells are taken up for fibroblasts and it induces the activation of fibroblasts into cancer-associated fibroblasts. Interestingly, cancer associated fibroblasts release extracellular vesicles that are taken up for breast cancer cells and promote migration, invasion, proliferation, epithelial-mesenchymal transition, changes in metabolism, chemoresistance, evasion of immune system and remodeling of extracellular matrix. In addition, the enrichment of specific cargos in extracellular vesicles of breast cancer patients has been suggested to be used as biomarkers of the disease. Here we review the current literature about the intercommunication between tumor cells and cancer associated fibroblasts through extracellular vesicles in breast cancer.
Collapse
Affiliation(s)
| | | | | | - Eduardo Perez Salazar
- Eduardo Perez Salazar, PhD, Departamento de
Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, Mexico City 07360, Mexico.
| |
Collapse
|
7
|
Difference in miRNA Expression in Functioning and Silent Corticotroph Pituitary Adenomas Indicates the Role of miRNA in the Regulation of Corticosteroid Receptors. Int J Mol Sci 2022; 23:ijms23052867. [PMID: 35270010 PMCID: PMC8911444 DOI: 10.3390/ijms23052867] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
Corticotroph pituitary adenomas commonly cause Cushing’s disease (CD), but some of them are clinically silent. The reason why they do not cause endocrinological symptoms remains unclear. We used data from small RNA sequencing in adenomas causing CD (n = 28) and silent ones (n = 20) to explore the role of miRNA in hormone secretion and clinical status of the tumors. By comparing miRNA profiles, we identified 19 miRNAs differentially expressed in clinically functioning and silent corticotroph adenomas. The analysis of their putative target genes indicates a role of miRNAs in regulation of the corticosteroid receptors expression. Adenomas causing CD have higher expression of hsa-miR-124-3p and hsa-miR-135-5p and lower expression of their target genes NR3C1 and NR3C2. The role of hsa-miR-124-3p in the regulation of NR3C1 was further validated in vitro using AtT-20/D16v-F2 cells. The cells transfected with miR-124-3p mimics showed lower levels of glucocorticoid receptor expression than control cells while the interaction between miR-124-3p and NR3C1 3′ UTR was confirmed using luciferase reporter assay. The results indicate a relatively small difference in miRNA expression between clinically functioning and silent corticotroph pituitary adenomas. High expression of hsa-miR-124-3p in adenomas causing CD plays a role in the regulation of glucocorticoid receptor level and probably in reducing the effect of negative feedback mediated by corticosteroids.
Collapse
|
8
|
Zhao WX, Tang YL, Wang WH, Bao MW. Up-regulation of circ_0000353 impedes the proliferation and metastasis of non-small cell lung cancer cells via adsorbing miR-411-5p and increasing forkhead box O1. Cancer Biomark 2021; 29:25-37. [PMID: 32568175 DOI: 10.3233/cbm-190812] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the most common malignant tumor worldwide. This work focuses on investigating the role of circ_0000353 in NSCLC and its potential mechanism of action. METHODS The expression levels of circ_0000353 and miR-411-5p in NSCLC and their matched normal lung tissues were detected by real-time PCR (RT-PCR). The correlation between the circ_0000353 expression and the clinicopathological parameters of NSCLC patients was also analyzed. CCK-8, BrdU and colony formation assays were adopted to detect the role of circ_0000353 in the proliferation of NSCLC cells. The metastasis of NSCLC cells was measured by Transwell assay. The dual-luciferase reporter gene assay was used to confirm the targeting relationship between circ_0000353 and miR-411-5p. The expression level of FOXO1 was detected by western blot. RESULTS Circ_0000353 was significantly down-regulated in NSCLC tissues and cell lines, and the decreased expression was significantly linked to the increased clinical stage, larger tumor volume, and metastasis. The circ_0000353 over-expression restrained the proliferation, migration, and invasion of NSCLC cells in vitro. Additionally, up-regulation of miR-411-5p was observed in NSCLC tissues and cell lines, and luciferase assay and RT-PCR assay showed that circ_0000353 over-expression could target miR-411-5p and suppress its expression. Further studies confirmed that circ_0000353 and miR-411-5p modulated the FOXO1 expression. CONCLUSION Circ_0000353 repressed the proliferation, migration, and invasion of NSCLC cells via inhibition of miR-411-5p and up-regulation of FOXO1.
Collapse
Affiliation(s)
- Wei-Xin Zhao
- Department of Radiation Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Thoracic Oncology Fudan University, Shanghai, China.,Department of Radiation Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yan-Lei Tang
- Department of Chest Surgery, Minhang Hospital, Fudan University, Shanghai, China.,Department of Radiation Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Wei-Hua Wang
- Department of Chest Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Min-Wei Bao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
9
|
Ramanto KN, Widianto KJ, Wibowo SSH, Agustriawan D. The regulation of microRNA in each of cancer stage from two different ethnicities as potential biomarker for breast cancer. Comput Biol Chem 2021; 93:107497. [PMID: 34029828 DOI: 10.1016/j.compbiolchem.2021.107497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/21/2021] [Indexed: 11/29/2022]
Abstract
miRNA has recently emerged as a potential biomarker for breast cancer. Even though many studies have identified ethnic variation affecting miRNA regulation, the effect of cancer stage within specific ethnicities on miRNA epigenetic remains unclear. The present study is designed to investigate miRNA regulation from two distinct ethnicities in specific cancer stages (non-Hispanic white and non-Hispanic black) using the TCGA dataset. Differentially expressed miRNAs were calculated by using the edgeR package. miRNAs with the highest or lowest log fold Change from each cancer stage were selected as a potential biomarker. miRNA-gene interaction was analyzed by using spearman correlation analysis, CLUEGO, and DIANA-mirpath. The association of biomarker candidates with diagnostic and prognostic performance was assessed using ROC and Kaplan-Meier survival analysis. miRNA-gene interaction analysis revealed the involvement of selected miRNAs in cancer progression. From eleven selected aberrant miRNAs, four of the miRNAs (hsa-mir-495, hsa-mir-592, hsa-mir-6501, and hsa-mir-937) are significantly detrimental to breast cancer diagnosis and prognosis. Hence, our result provides valuable information to explore miRNA's role in each cancer stage between non-Hispanic white and non-Hispanic black.
Collapse
Affiliation(s)
- Kevin Nathanael Ramanto
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | - Kresnodityo Jatiputro Widianto
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | - Stefanus Satrio Hadi Wibowo
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | - David Agustriawan
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, Indonesia.
| |
Collapse
|
10
|
Regulation of bone metastasis and metastasis suppressors by non-coding RNAs in breast cancer. Biochimie 2021; 187:14-24. [PMID: 34019953 DOI: 10.1016/j.biochi.2021.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/27/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Breast cancer (BC) is a critical health care issue that substantially affects women worldwide. Though surgery and chemotherapy can effectively control tumor growth, metastasis remains a primary concern. Metastatic BC cells predominantly colonize in bone, owing to their rigid osseous nutrient-rich nature. There are recently increasing studies investigating the context-dependent roles of non-coding RNAs (ncRNAs) in metastasis regulation. ncRNAs, including microRNAs, long non-coding RNAs, circular RNAs, and small interference RNAs, control the BC metastasis via altered mechanisms. Additionally, these ncRNAs have been reported in regulating a unique class of genes known as Metastatic suppressors. Metastasis suppressors like BRMS1, NM23, LIFR, and KAI1, etc., have been extensively studied for their role in inducing apoptosis, inhibiting metastasis, and maintaining homeostasis. In this review, we have emphasized the direct regulation of ncRNAs for effectively controlling the distant spread of BC. Furthermore, we have highlighted the ncRNA-mediated modulation of the metastatic suppressors, thereby delineating their indirect influence over metastasis.
Collapse
|
11
|
MicroRNA-552 Accelerates the Progression of Gastric Cancer by Targeting FOXO1 and Regulating PI3K/AKT Pathway. JOURNAL OF ONCOLOGY 2021; 2021:9966744. [PMID: 34035814 PMCID: PMC8116146 DOI: 10.1155/2021/9966744] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
The specific function of microRNA-552 (miR-552) has been investigated in several malignancies, except gastric cancer (GC). Therefore, this study was performed to determine the role of miR-552 in GC.GC tissues and adjacent non-tumor tissues were collected to determine the expressions of miR-552. Quantitative real-time polymerase chain reaction assays (RT-qPCR) and Western blot analysis were carried out to measure expression levels. The regulatory mechanism of miR-552 was explored by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) MTT Assay, and Transwell assays. The binding site between miR-552 and FOXO1 was verified by dual-luciferase reporter assays. Upregulation of miR-552 expression was detected and associated with worse clinical outcomes in GC. Furthermore, high miR-552 expression predicted poor prognosis in GC patients. Functionally, upregulation of miR-552 promoted cell viability, metastasis, epithelial-mesenchymal transition (EMT), and phosphatidylinositol 3-kinase and protein kinase B (PI3K/AKT) pathway in GC. In addition, miR-552 was confirmed to target forkhead box O1 (FOXO1) directly and inversely regulate its expression in GC. Upregulation of FOXO1 reversed the carcinogenesis of miR-552 in GC. In conclusion, miR-552 serves as a tumor promoter in GC through targeting FOXO1 and regulating EMT and PI3K/AKT pathway.
Collapse
|
12
|
Guan X, Shi A, Zou Y, Sun M, Zhan Y, Dong Y, Fan Z. EZH2-Mediated microRNA-375 Upregulation Promotes Progression of Breast Cancer via the Inhibition of FOXO1 and the p53 Signaling Pathway. Front Genet 2021; 12:633756. [PMID: 33854524 PMCID: PMC8041054 DOI: 10.3389/fgene.2021.633756] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BC) is the most common gynecologic tumor worldwide where aberrant expression of microRNAs (miRNAs) is frequently involved. Here, we evaluated the function of miR-375 on BC development and the molecules implicated. Differentially expressed genes between tumor and paired normal tissues from BC patients were screened out by microarray analyses. miR-375 was abundantly expressed in BC tissues and cells, and it was correlated with the poor prognosis of patients. Downregulation of miR-375 was introduced into BC cell lines MCF-7 and HCC1954, after which the viability, colony formation, migration, and invasion were suppressed, while the apoptosis of cells was increased, and the xenograft tumors in nude mice were reduced as well. EZH2 increased methylation and phosphorylation of signal transducer and activator of transcription 3 (STAT3) and increased transcription activity of miR-375, while miR-375 directly targeted FOXO1. Either overexpression of EZH2 or downregulation of FOXO1 blocked the functions of anti-miR-375 in cells and animals. FOXO1 was found as an activator of the p53 signaling pathway. This study showed that miR-375 is an important oncogene in BC. EZH2 is an upstream regulator of miR-375 through mediating the methylation of STAT3, while FOXO1 is a downstream target mRNA of miR-375 that activates the p53 signaling pathway to suppress BC development.
Collapse
Affiliation(s)
- Xin Guan
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Aiping Shi
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yabin Zou
- Department of Pathology, The First Hospital of Jilin University, Changchun, China
| | - Meiyang Sun
- The Second Department of Breast Surgery, Jilin Cancer Hospital, Changchun, China
| | - Yue Zhan
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yi Dong
- The Second Department of Breast Surgery, Jilin Cancer Hospital, Changchun, China
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Zhang Q, Yuan J, Liu Y, Liu X, Lv T, Zhou K, Song Y. KIAA0101 knockdown inhibits cell proliferation and induces cell cycle arrest and cell apoptosis in chronic lymphocytic leukemia cells. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:487. [PMID: 33850884 PMCID: PMC8039647 DOI: 10.21037/atm-21-626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Chronic lymphocytic leukemia (CLL) is a heterogeneous disease with intense cytogenetic aberrations. Importantly, our recent report indicated that thyroid hormone receptor interactor 13 (TRIP13) is a potential new therapeutic target in CLL. In this study, we predicted 20 TRIP13-related genes and found that KIAA0101 is a novel gene that regulates cell proliferation and the cell cycle of CLL cells. Methods CD19+ B cells were isolated from the peripheral blood of 26 CLL patients and 6 healthy donors through magnetic cell sorting. Cell proliferation was assessed by the CCK-8 assay. The mRNA and protein levels of genes were examined through RT-qPCR and western blot assays, respectively. Cell cycle and cell apoptosis were measured through Annexin V-based flow cytometry and the caspase 3/7 activity assay. Potential targets of KIAA0101 were identified through microarray analysis. 20 TRIP13 related genes was predicted by Ingenuity Pathway Analysis (IPA). KIAA0101-regulated functions and molecular pathways were predicted through IPA. Results KIAA0101 knockdown had the strongest inhibitory effect on CLL cell proliferation among the 20 TRIP13-related genes. KIAA0101 was highly expressed in CD19+ B cells of CLL patients. KIAA0101 knockdown induced cell cycle arrest and cell apoptosis, and inhibited FOXO1, MYD88, and TLR4 expression in CLL cells. Conclusions Taken together, we demonstrated that KIAA0101 plays a critical role in cell proliferation and the cell cycle of human CLL cells. KIAA0101 knockdown induced cell apoptosis, and reduced FOXO1, MYD88, and TLR4 expression, and may therefore be used as a therapeutic target of CLL.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jingjing Yuan
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yanyan Liu
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xingchen Liu
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Tianxin Lv
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Keshu Zhou
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yongping Song
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
14
|
Tan PY, Wen LJ, Li HN, Chai SW. MiR-548c-3p inhibits the proliferation, migration and invasion of human breast cancer cell by targeting E2F3. Cytotechnology 2020; 72:751-761. [PMID: 32902720 DOI: 10.1007/s10616-020-00418-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/29/2020] [Indexed: 12/12/2022] Open
Abstract
MiR-548 has been reported to be involved in a variety of tumor processes, but its function in breast cancer remains unclear. In this study, we found that miR-548 was low expressed in breast cancer tissues and cells compared with normal control. We then examined whether up-regulation of miR-548 could improve the progression of breast cancer. Our results indicate that up-regulation of miR-548 significantly inhibits cell proliferation, migration andinvasion, and induces apoptosis in breast cancer cells. Further studies showed that miR-548 could specifically inhibit E2F3 expression. Moreover, rescue test showed that up-regulation of E2F2 could reverse the effect of miR-548 on proliferation, migration, invasion and apoptosis of breast cancer cells. In general, miR-548 could improve the progression of breast cancer. By targeting E2F2, which may make a potential target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Pei-Yi Tan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Liu-Jing Wen
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China
| | - Hua-Nan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Shi-Wei Chai
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
15
|
Jia X, Meng W, Zhang L, Jia Y, Shi Y, Tong Z. Construction of differentially expressed Her-2 related lncRNA-mRNA-miRNA ceRNA network in Her-2 positive breast cancer. Transl Cancer Res 2020; 9:2527-2533. [PMID: 35117612 PMCID: PMC8798026 DOI: 10.21037/tcr.2020.03.34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/21/2020] [Indexed: 12/19/2022]
Abstract
Background Her-2 positive subtype breast cancer is characterized as Her-2 gene amplification with poor survival and increased invasiveness accounting for 20–30% of invasive infiltrated breast cancer. A lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) network is constructed to detect Her-2 specific RNAs in the development and progression of HER-2 positive breast cancer which may overcoming the anti-HER-2 therapy resistance of breast cancer cells. Methods One thousand one hundred and nine breast cancer samples obtained from The Cancer Genome Atlas (TCGA) database were classified into two cohorts including ER+/PR+ (n=461) and ER-/PR- breast cancer (n=152). Differently expressed mRNAs, lncRNAs and miRNAs were screened in ER+/PR+ and ER-/PR- breast cancer cohorts, respectively. lncRNA-miRNA interactions were preformed to predicted and verified by miRcode. miRNA-mRNA interactions were selected to predict targeted mRNAs of miRNAs by miRanda, Targetscan and miRTarBase. Results lncRNA-miRNA-mRNA ceRNA network was constructed by retained lncRNAs, miRNAs and mRNAs. Fifteen DEmiRNAs, 129 DElncRNAs and 269 DEmRNAs were retained in ER+/PR+ cohort after intersection with DEmiRNAs, DElncRNAs and DEmRNAs between breast cancer and normal tissues. Six hundred and ninety-three DEmRNAs, 25 DEmiRNAs and 364 DElncRNAs were retained in ER-/PR- cohort. ceRNA network in ER+/PR+ breast cancer cohort was constructed of the interactions of 4 DElncRNA–DEmiRNA pairs and 2 DEmiRNA–DEmRNA pairs included 4 DElncRNAs, 1 DEmiRNAs, and 2 DEmRNAs. ceRNA network in ER-/PR- breast cancer cohort was constructed of the interactions of 24 DElncRNA–DEmiRNA pairs and 1 DEmiRNA–DEmRNA pairs included 19 DElncRNAs, 4 DEmiRNAs, and 1 DEmRNA. MIR7-3HG- hsa-mir-204-NTRK2 axis was identified in both ER+/PR+ and ER-/PR- cohort in our study. Conclusions Based on the ceRNA hypothesis, a potential Her-2 related regulatory ceRNA networks are constructed which may provide novel insights into the mechanism underlying the biological processes of Her-2 positive breast cancer.
Collapse
Affiliation(s)
- Xiaochen Jia
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Wenjing Meng
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Lu Zhang
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Yongsheng Jia
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Yehui Shi
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Zhongsheng Tong
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| |
Collapse
|
16
|
Ye RY, Kuang XY, Zeng HJ, Shao N, Lin Y, Wang SM. KCTD12 promotes G1/S transition of breast cancer cell through activating the AKT/FOXO1 signaling. J Clin Lab Anal 2020; 34:e23315. [PMID: 32207860 PMCID: PMC7439418 DOI: 10.1002/jcla.23315] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/01/2020] [Accepted: 03/05/2020] [Indexed: 01/22/2023] Open
Abstract
Background Sustaining proliferation is the most fundamental step for breast cancer tumor genesis. Accelerated proliferation is usually linked to the uncontrolled cell cycle. However, the internal and external factors linked to the activation of breast cancer cell cycle are still to be investigated. Methods quantitative PCR (qPCR) and Western blotting assay were used to detect the expression of potassium channel tetramerization domain containing 12 (KCTD12) in breast cancer. MTT and colony formation assays were performed to evaluate the effect of KCTD12 on cell proliferation of breast cancer. Anchorage‐independent growth assay was used to examine the in vitro tumorigenesis of breast cancer cells. Flow cytometry assay, qPCR, and Western blotting were used to investigate the detailed mechanisms of KCTD12 on breast cancer progression. Results Herein, the result showed that the level of KCTD12 is significantly decreased in breast cancer tissues and cells, and lower level of KCTD12 predicts poorer survival for patients with breast cancer. Further cell function tests illustrated that downregulation of KCTD12 significantly promotes cell proliferation and in vitro tumor genesis. Besides, molecular biologic experiments showed that downregulation of KCTD12 can enhance the G1/S transition through activating the AKT/FOXO1 signaling. Conclusion Our study inferred that downregulation of KCTD12 can be a novel factor for poor prognosis in breast cancer.
Collapse
Affiliation(s)
- Run-Yi Ye
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xia-Ying Kuang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hui-Juan Zeng
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Nan Shao
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ying Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shen-Ming Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Bao Y, Zhang Y, Lu Y, Guo H, Dong Z, Chen Q, Zhang X, Shen W, Chen W, Wang X. Overexpression of microRNA-9 enhances cisplatin sensitivity in hepatocellular carcinoma by regulating EIF5A2-mediated epithelial-mesenchymal transition. Int J Biol Sci 2020; 16:827-837. [PMID: 32071552 PMCID: PMC7019138 DOI: 10.7150/ijbs.32460] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 11/17/2019] [Indexed: 12/14/2022] Open
Abstract
We investigated the role of microRNA (miR)-9 in modulating chemoresistance in hepatocellular carcinoma (HCC) cells. MiR-9 was overexpressed or knocked down in HCC cell lines. Cell viability, cell proliferation, the expression of EIF5A2 and the epithelial-mesenchymal transition (EMT)-related proteins were examined. HCC cells overexpressing miR-9 were more sensitive to cisplatin; miR-9 knockdown yielded the opposite result. The in vivo nude mouse HCC xenograft tumors yielded the same results. EIF5A2 was identified as a potential target of miR-9, where miR-9 regulated EIF5A2 expression at mRNA and protein level. EIF5A2 knockdown reversed miR-9 inhibition-mediated cisplatin resistance. Altering miR-9 and EIF5A2 expression changed E-cadherin and vimentin expression. Furthermore, EIF5A2 mediated miR-9 EMT pathway regulation, indicating that miR-9 can enhance cisplatin sensitivity by targeting EIF5A2 and inhibiting the EMT pathway. Targeting miR-9 may be useful for overcoming drug resistance in HCC.
Collapse
Affiliation(s)
- Ying Bao
- Key Laboratory for Translational Medicine, First Affiliated Hospital, Huzhou University, the First People's Hospital of Huzhou, huzhou 313000,China
| | - Yibo Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yongliang Lu
- Department of medicine,Huzhou University, huzhou 313000,China
| | - Huihui Guo
- Key Laboratory for Translational Medicine, First Affiliated Hospital, Huzhou University, the First People's Hospital of Huzhou, huzhou 313000,China
| | - Zhaohuo Dong
- Key Laboratory for Translational Medicine, First Affiliated Hospital, Huzhou University, the First People's Hospital of Huzhou, huzhou 313000,China
| | - Qiuqiang Chen
- Key Laboratory for Translational Medicine, First Affiliated Hospital, Huzhou University, the First People's Hospital of Huzhou, huzhou 313000,China
| | - Xilin Zhang
- Key Laboratory for Translational Medicine, First Affiliated Hospital, Huzhou University, the First People's Hospital of Huzhou, huzhou 313000,China
| | - Weiyun Shen
- Key Laboratory for Translational Medicine, First Affiliated Hospital, Huzhou University, the First People's Hospital of Huzhou, huzhou 313000,China
| | - Wei Chen
- Cancer Institute of Integrated traditional Chinese and Western Medicine, Key laboratory of cancer prevention and therapy combining traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310012, China
- Department of Medical Oncology, Tongde hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, China
| | - Xiang Wang
- Key Laboratory for Translational Medicine, First Affiliated Hospital, Huzhou University, the First People's Hospital of Huzhou, huzhou 313000,China
| |
Collapse
|
18
|
Li X, Zeng Z, Wang J, Wu Y, Chen W, Zheng L, Xi T, Wang A, Lu Y. MicroRNA-9 and breast cancer. Biomed Pharmacother 2019; 122:109687. [PMID: 31918267 DOI: 10.1016/j.biopha.2019.109687] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide and seriously impairs patients' physical and mental health. Its incidence has been predicted to rise further. Mounting evidence indicates that microRNAs (miRNAs) play key roles in tumorigenesis and development. It is worth noting that miR-9 exerts critical functions in the initiation and progression of breast cancer, and the present research displays opposite roles of miR-9 in breast cancer. This article mainly reviews the roles of miR-9 in breast cancer progression.
Collapse
Affiliation(s)
- Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhu Zeng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiaer Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenxing Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, China
| | - Tao Xi
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
19
|
Zhang W, Lei Ieee Member X, Bian C. Identifying Cancer genes by combining two-rounds RWR based on multiple biological data. BMC Bioinformatics 2019; 20:518. [PMID: 31760937 PMCID: PMC6876101 DOI: 10.1186/s12859-019-3123-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background It’s a very urgent task to identify cancer genes that enables us to understand the mechanisms of biochemical processes at a biomolecular level and facilitates the development of bioinformatics. Although a large number of methods have been proposed to identify cancer genes at recent times, the biological data utilized by most of these methods is still quite less, which reflects an insufficient consideration of the relationship between genes and diseases from a variety of factors. Results In this paper, we propose a two-rounds random walk algorithm to identify cancer genes based on multiple biological data (TRWR-MB), including protein-protein interaction (PPI) network, pathway network, microRNA similarity network, lncRNA similarity network, cancer similarity network and protein complexes. In the first-round random walk, all cancer nodes, cancer-related genes, cancer-related microRNAs and cancer-related lncRNAs, being associated with all the cancer, are used as seed nodes, and then a random walker walks on a quadruple layer heterogeneous network constructed by multiple biological data. The first-round random walk aims to select the top score k of potential cancer genes. Then in the second-round random walk, genes, microRNAs and lncRNAs, being associated with a certain special cancer in corresponding cancer class, are regarded as seed nodes, and then the walker walks on a new quadruple layer heterogeneous network constructed by lncRNAs, microRNAs, cancer and selected potential cancer genes. After the above walks finish, we combine the results of two-rounds RWR as ranking score for experimental analysis. As a result, a higher value of area under the receiver operating characteristic curve (AUC) is obtained. Besides, cases studies for identifying new cancer genes are performed in corresponding section. Conclusion In summary, TRWR-MB integrates multiple biological data to identify cancer genes by analyzing the relationship between genes and cancer from a variety of biological molecular perspective.
Collapse
Affiliation(s)
- Wenxiang Zhang
- School of Computer Science, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | | | - Chen Bian
- School of Computer Science, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| |
Collapse
|
20
|
Ritter A, Hirschfeld M, Berner K, Rücker G, Jäger M, Weiss D, Medl M, Nöthling C, Gassner S, Asberger J, Erbes T. Circulating non‑coding RNA‑biomarker potential in neoadjuvant chemotherapy of triple negative breast cancer? Int J Oncol 2019; 56:47-68. [PMID: 31789396 PMCID: PMC6910196 DOI: 10.3892/ijo.2019.4920] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
Due to the positive association between neoadjuvant chemotherapy (NACT) and the promising early response rates of patients with triple negative breast cancer (TNBC), including probabilities of pathological complete response, NACT is increasingly used in TNBC management. Liquid biopsy-based biomarkers with the power to diagnose the early response to NACT may support established monitoring tools, which are to a certain extent imprecise and costly. Simple serum- or urine-based analyses of non-coding RNA (ncRNA) expression may allow for fast, minimally-invasive testing and timely adjustment of the therapy regimen. The present study investigated breast cancer-related ncRNAs [microRNA (miR)-7, -9, -15a, -17, -18a, -19b, -21, -30b, -222 and -320c, PIWI-interacting RNA-36743 and GlyCCC2] in triple positive BT-474 cells and three TNBC cell lines (BT-20, HS-578T and MDA-MB-231) treated with various chemotherapeutic agents using reverse transcription-quantitative PCR. Intracellular and secreted microvesicular ncRNA expression levels were analysed using a multivariable statistical regression analysis. Chemotherapy-driven effects were investigated by analysing cell cycle determinants at the mRNA and protein levels. Serum and urine specimens from 8 patients with TNBC were compared with 10 healthy females using two-sample t-tests. Samples from the patients with TNBC were compared at two time points. Chemotherapeutic treatments induced distinct changes in ncRNA expression in TNBC cell lines and the BT-474 cell line in intra- and extracellular compartments. Serum and urine-based ncRNA expression analysis was able to discriminate between patients with TNBC and controls. Time point comparisons in the urine samples of patients with TNBC revealed a general rise in the level of ncRNA. Serum data suggested a potential association between piR-36743, miR-17, -19b and -30b expression levels and an NACT-driven complete clinical response. The present study highlighted the potential of ncRNAs as liquid biopsy-based biomarkers in TNBC chemotherapy treatment. The ncRNAs tested in the present study have been previously investigated for their involvement in BC or TNBC chemotherapy responses; however, these previous studies were restricted to patient tissue or in vitro models. The data from the present study offer novel insight into ncRNA expression in liquid samples from patients with TNBC, and the study serves as an initial step in the evaluation of ncRNAs as diagnostic biomarkers in the monitoring of TNBC therapy.
Collapse
Affiliation(s)
- Andrea Ritter
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Marc Hirschfeld
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Kai Berner
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Gerta Rücker
- Institute of Medical Biometry and Statistics, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79104 Freiburg, Germany
| | - Markus Jäger
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Daniela Weiss
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Markus Medl
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Claudia Nöthling
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Sandra Gassner
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Jasmin Asberger
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| |
Collapse
|
21
|
Tavakolian S, Goudarzi H, Torfi F, Faghihloo E. Evaluation of microRNA-9 and -192 expression levels as biomarkers in patients suffering from breast cancer. Biomed Rep 2019; 12:30-34. [PMID: 31839947 DOI: 10.3892/br.2019.1257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 10/02/2019] [Indexed: 12/18/2022] Open
Abstract
Given the global outbreak of breast cancer and its debilitating effect on women's health, it is not surprising that tremendous efforts have been made with an aim of shedding more light on the mechanisms involved in the pathogenesis of this type of cancer. Among the long list of risk factors associated with this malignancy, recently, the role of microRNAs (miRNAs or miRs) has turned into a hotspot for breast cancer investigations. miRNAs approximately 20 nucleotides in length and are located in either an exon or an intron, playing a role in the regulation of gene expression. In the present study, we extracted RNA from both the serum and cancerous tissue of breast cancer patients and after synthesizing the cDNA, we performed quantitative PCR to determine the expression levels of miR-9 and miR-192. The resulting data revealed that while the mRNA expression level of miR-9 was significantly decreased in the breast cancer tissues, there was no noticeable change in the expression level of this miRNA in the serum samples. Likewise, we found that the marked downregulation of miR-192 was only restricted to the cancerous tissues, but was not found in the serum of patients. Based on the meaningful downregulation of the expression of miR-9 and miR-192, this study provides a plausible framework for these miRNAs as effective biomarkers for breast cancer patients.
Collapse
Affiliation(s)
- Shaian Tavakolian
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Farhad Torfi
- Surgical Ward, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| |
Collapse
|
22
|
Qiao Y, Wang B, Zhang H, Yan Y, Niu L. Retracted Article: FOXO4 overexpression suppresses hypoxia-induced-MCF-7 cell survival and promotes apoptosis through the HIF-2α/Bnip3 signal pathway. RSC Adv 2019; 9:25912-25918. [PMID: 35530114 PMCID: PMC9070021 DOI: 10.1039/c9ra04380b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/01/2019] [Indexed: 11/21/2022] Open
Abstract
Transcriptional regulator forkhead box O (FOXO) has implications in many diverse carcinomas and often acts as a tumour suppressor. Evidence suggests that FOXO4 may play a role in cancer cell proliferation and apoptosis; however, the function and mechanism of FOXO4 on breast cancer cell growth are still unknown. FOXO4 can respond to hypoxia and in the current study, our aim is to investigate the function and molecular mechanism of FOXO4 in hypoxia-induced MCF-7 cells. We first observed that hypoxia treatment reduced FOXO4 mRNA and protein expression in MCF-7 cells. Moreover, FOXO4 overexpression reversed hypoxia-induced MCF-7 cell survival. Hypoxia treatment markedly impeded MCF-7 cell apoptosis and inhibited caspase-3 activity, whereas FOXO4 overexpression promoted apoptosis and increased caspase-3 activity in hypoxia-induced MCF-7 cells. Further studies indicated that FOXO4 overexpression inhibited hypoxia-induced HIF-2α and Bnip3 expression in MCF-7 cells; moreover, FOXO4 suppressed Bnip3 expression, which is dependent on the low level of HIF-2α. Finally, we demonstrated that Bnip3 overexpression reversed the effects of FOXO4 overexpression on cell survival and apoptosis in hypoxia-induced MCF-7 cells. In conclusion, the present study suggests that FOXO4 overexpression mediated the HIF-2α/Bnip3 signal pathway, which has implications in cell survival and apoptosis in hypoxia-induced MCF-7 cells.
Collapse
Affiliation(s)
- Yan Qiao
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiao Tong University No. 277 Yanta West Road Xi'an 710061 China +86-029-85324605
| | - Bin Wang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiao Tong University No. 277 Yanta West Road Xi'an 710061 China +86-029-85324605
| | - Huimin Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiao Tong University No. 277 Yanta West Road Xi'an 710061 China +86-029-85324605
| | - Yu Yan
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiao Tong University No. 277 Yanta West Road Xi'an 710061 China +86-029-85324605
| | - Ligang Niu
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiao Tong University No. 277 Yanta West Road Xi'an 710061 China +86-029-85324605
| |
Collapse
|
23
|
Zhang LY, Chen Y, Jia J, Zhu X, He Y, Wu LM. MiR-27a promotes EMT in ovarian cancer through active Wnt/𝜷-catenin signalling by targeting FOXO1. Cancer Biomark 2019; 24:31-42. [PMID: 30614794 DOI: 10.3233/cbm-181229] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ovarian cancer (OC) is the fifth most common type of cancer in women worldwide. MiR-27a plays an important role in the development of ovarian cancer. However, the exact function and molecular mechanism of miR-27a in epithelial-mesenchymal transition (EMT) has not been thoroughly elucidated to date. METHODS Quantitative real-time PCR (qRT-PCR) was used to determine the expression of miR-27a and FOXO1 mRNA in ovarian tissues and cells. The function of miR-27a in ovarian cancer was investigated through overexpression and knockdown of miR-27a in vitro. Wound healing and Transwell assays were performed to evaluate the migration and invasive capacity of the cells. A luciferase reporter assay was conducted to confirm the interaction between miR-27a and FOXO1. Western blotting was used to evaluate FOXO1, EMT and Wnt/β-catenin relative protein expression. RESULTS In our study, we found that the mRNA expression level of miR-27a was significantly higher in ovarian cancer tissues and in HO8910 and OV90 cells. Functional experiments showed that miR-27a overexpression potentiated the migration and invasion of HO8910 and OV90 cells, while miR-27a inhibition reduced the cells' migration and invasion. Moreover, miR-27a upregulated the expression of mesenchymal cell markers and downregulated the expression of epithelial cell markers, which were restored via silencing of miR-27a expression. Subsequently, miR-27a was found to directly target and suppress the expression of FOXO1. Finally, we demonstrated that miR-27a promoted the progression of ovarian cancer cells and induced the process of EMT via the Wnt/β-catenin signalling pathway through inhibition of FOXO1. CONCLUSIONS Taken together, these results indicate that targeting miR-27a and FOXO1 could represent a strategy for anticancer therapy in ovarian cancer.
Collapse
Affiliation(s)
- Li-Ya Zhang
- Department of Gynecology, Huizhou No. 2 Women's and Children's Healthcare Hospital, Huizhou, Guangdong 516001, China
| | - Yuan Chen
- Huizhou College of Life Sciences, Huizhou, Guangdong 516001, China
| | - Jue Jia
- Department of Gynecology, Shandong Provincial Tumor Hospital, Jinan, Shandong 250117, China
| | - Xi Zhu
- Department of Gynecology, Shenyang Maternal and Child Hospital, Shenyang, Liaoning 110000, China
| | - Yan He
- Department of Gynecology, Huizhou No. 2 Women's and Children's Healthcare Hospital, Huizhou, Guangdong 516001, China
| | - Li-Ming Wu
- Department of Gynecology, Huizhou No. 2 Women's and Children's Healthcare Hospital, Huizhou, Guangdong 516001, China
| |
Collapse
|
24
|
Ma X, Ning S. Shikimic acid promotes estrogen receptor(ER)-positive breast cancer cells proliferation via activation of NF-κB signaling. Toxicol Lett 2019; 312:65-71. [PMID: 31048002 DOI: 10.1016/j.toxlet.2019.04.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/21/2019] [Accepted: 04/26/2019] [Indexed: 12/24/2022]
Abstract
Shikimic acid (SA), a widely-known hydroaromatic compound enriched in Bracken fern and Illicium verum (also known as Chinese star anise), increases the risk of gastric and esophageal carcinoma, nevertheless, the influence of SA on breast cancer remains indistinct. Herein we found that, with models in vitro, SA significantly promoted estrogen receptor(ER) positive cells proliferation and NF-κB activation was involved in it. Moreover, our data showed that IκBα, a critically endogenous inhibitor of NF-κB, was repressed. Subsequently, we found increase of miR-300 by SA treatment sand miR-300 could target IκBα mRNA. Additionally, inhibition of miR-300 abrogated the repression of IκBα by SA. As a result, miR-300 was also involved in NF-κB activation and breast cancer cells proliferation promotion due to SA exposure. Taken together, with ER-positive breast cancer cell models in vitro, MCF-7 and T47D, our results implied that SA promoted breast cancer cells proliferation via a miR-300-induced NF-κB dependent pathway controlling cell cycle proteins.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Health Education and Administration, Jinhua Municipal Central Hospital, Jinhua, 321000, China
| | - Shilong Ning
- Department of Clinical Nutrition, Jinhua Municipal Central Hospital, Jinhua, 321000, China.
| |
Collapse
|
25
|
Liu Y, Lei P, Qiao H, Sun K, Lu X, Bao F, Yu R, Lian C, Li Y, Chen W, Xue F. miR-9 Enhances the Chemosensitivity of AML Cells to Daunorubicin by Targeting the EIF5A2/MCL-1 Axis. Int J Biol Sci 2019; 15:579-586. [PMID: 30745844 PMCID: PMC6367593 DOI: 10.7150/ijbs.29775] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/02/2018] [Indexed: 12/18/2022] Open
Abstract
Daunorubicin (Dnr) is at the forefront of acute myeloid leukemia (AML) therapy, but drug resistance poses a major threat to treatment success. MicroRNA (miR)-9 has been shown to have a pivotal role in AML development. However, little is known about the role of miR-9 in Dnr resistance in AML. We explored the potential role of miR-9 in Dnr resistance in AML cells and its mechanism of action. AML cell lines with high half-maximal inhibitory concentration to Dnr in vivo had significantly low miR-9 expression. miR-9 overexpresssion sensitized AML cells to Dnr, inhibited cell proliferation, and enhanced the ability of Dnr to induce apoptosis; miR-9 knockdown had the opposite effects. Mechanistic studies demonstrated that eukaryotic translation initiation factor 5A-2 (EIF5A2) was a putative target of miR-9, which was inversely correlated with the expression and role of miR-9 in AML cells. miR-9 improved the anti-tumor effects of Dnr by inhibiting myeloid cell leukemia-1 (MCL-1) expression, which was dependent on downregulation of EIF5A2 expression. These results suggest that miR-9 has an essential role in Dnr resistance in AML cells through inhibition of the EIF5A2/MCL-1 axis in AML cells. Our data highlight the potential application of miR-9 in chemotherapy for AML patients.
Collapse
Affiliation(s)
- Yanhui Liu
- Department of Hemotology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, PR China
| | - Pingchong Lei
- Department of Hemotology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, PR China
| | - Hong Qiao
- Baoying Hospital of traditional Chinese Medicine, Yangzhou, Jiangsu, 225800,China
| | - Kai Sun
- Department of Hemotology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, PR China
| | - Xiling Lu
- Department of Hemotology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, PR China
| | - Fengchang Bao
- Department of Hemotology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, PR China
| | - Runhong Yu
- Department of Hemotology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, PR China
| | - Cheng Lian
- Department of Hemotology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, PR China
| | - Yao Li
- Department of Hemotology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, PR China
| | - Wei Chen
- Cancer Institute of Integrated traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, China
| | - Fei Xue
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, PR China
| |
Collapse
|
26
|
Zhang X, Qian Y, Li F, Bei S, Li M, Feng L. microRNA-9 selectively targets LMX1A to promote gastric cancer cell progression. Biochem Biophys Res Commun 2018; 505:405-412. [DOI: 10.1016/j.bbrc.2018.09.101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/16/2018] [Indexed: 12/30/2022]
|
27
|
Yang GH, Zhang C, Wang N, Meng Y, Wang YS. Anacardic acid suppresses fibroblast-like synoviocyte proliferation and invasion and ameliorates collagen-induced arthritis in a mouse model. Cytokine 2018; 111:350-356. [PMID: 30273785 DOI: 10.1016/j.cyto.2018.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/01/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023]
Abstract
Anacardic acid, which is abundant in nutshell of Anacardium occidentale, has multiple pharmacological activities. In this study, we examined the therapeutic potential of anacardic acid in treating rheumatoid arthritis (RA). We explored the effects of anacardic acid on collagen-induced arthritis (CIA) in mice and on the proliferation and invasion of RA fibroblast-like synoviocytes (RA-FLSs). The underlying molecular mechanism was investigated. Anacardic acid treatment markedly suppressed paw swelling, joint destruction, and arthritis scores in CIA mice. The serum levels of tumor necrosis factor alpha (TNF- α) and interleutkin-1beta (IL- 1β) were significantly lowered by anacardic acid. In vitro assays demonstrated that anacardic acid impaired the proliferation and invasion abilities of RA-FLSs in the presence of TNF- α or IL- 1β. Western blot analysis revealed the reduction of Akt protein expression and phoshporylation in RA-FLSs by anacardic acid. However, the mRNA level of Akt remained unchanged. Anacardic acid treatment significantly increased the expression of miR-633 in RA-FLSs. Akt was identified as a novel target of miR-633. Overexpression of miR-633 significantly inhibited the proliferation and invasion of RA-FLSs, which was rescued by enforced expression of Akt. Depletion of miR-633 prevented anacardic acid-mediated suppression of proliferation and invasion of RA-FLSs, which was accompanied by increased expression of Akt protein. In conclusion, anacardic acid may serve as a promising agent in the treatment of RA.
Collapse
MESH Headings
- Anacardic Acids/pharmacology
- Animals
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/chemically induced
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Collagen/pharmacology
- Disease Models, Animal
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Interleukin-1beta/metabolism
- Mice
- Mice, Inbred DBA
- MicroRNAs/metabolism
- Neoplasm Invasiveness/pathology
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/metabolism
- Signal Transduction/drug effects
- Synoviocytes/drug effects
- Synoviocytes/metabolism
- Synoviocytes/pathology
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Guo-Hui Yang
- Department of Emergency Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chi Zhang
- Department of Orthopedics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Nan Wang
- Department of Emergency Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Meng
- Department of Emergency Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi-Sheng Wang
- Department of Orthopedics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
28
|
Loginov VI, Filippova EA, Kurevlev SV, Fridman MV, Burdennyy AM, Braga EA. Suppressive and Hypermethylated MicroRNAs in the Pathogenesis of Breast Cancer. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418070086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Zang Y, Dong M, Zhang K, Tian W, Wang Y, Xue F. Bioinformatics analysis of key differentially expressed genes in well and poorly differentiated endometrial carcinoma. Mol Med Rep 2018; 18:467-476. [PMID: 29749513 DOI: 10.3892/mmr.2018.8969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/26/2018] [Indexed: 11/06/2022] Open
Abstract
Endometrial carcinoma (EC) is one of the most common gynecological malignancies. The malignant degree increases between grade (G)1 and G3, and EC of G3 usually presents a high recurrence rate and poor prognosis. Therefore, the present study aimed to examine the principal genes associated with the degree of differentiation in EC. The microarrays GSE17025, GSE24537 and GSE35784, representing data of Type I EC samples of G1 and G3, were downloaded from the Gene Expression Omnibus. The differentially expressed genes (DEGs) and differentially expressed micro (mi)RNAs (DEMs) were identified, followed by functional enrichment analyses and interaction network construction. In total, 83 upregulated and 130 downregulated DEGs with the same expression trends in two mRNA datasets were screened. The upregulated DEGs were primarily enriched in 'mitotic cell cycle process', 'cell cycle process' and 'mitotic cell cycle'; while the downregulated DEGs were enriched in 'cellular component assembly involved in morphogenesis', 'cell projection organization' and 'microtubule‑based movement'. From the protein‑protein interaction network, DNA topoisomerase IIα, kinesin family member 11, cyclin B1 and BUB1 mitotic checkpoint serine/threonine were identified as foremost hub genes. One module was extracted and involved in 'mitotic cell cycle process' and 'cell cycle process'. Based on the analysis of DEMs and the miRNA‑target regulatory network, miRNA‑9 may be the most important upregulated DEM, and the DEGs forkhead box P1 and cyclin E1 may serve vital roles in the differentiation of EC. In conclusion, principal genes were identified that may be determinants of the carcinogenesis of poorly differentiated EC, which may facilitate the examination of potential molecular mechanisms. These genes may additionally help identify candidate biomarkers and novel therapeutic targets for poorly differentiated EC.
Collapse
Affiliation(s)
- Yuqin Zang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Mengting Dong
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Kai Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Wenyan Tian
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
30
|
Gao L, Cheng D, Yang J, Wu R, Li W, Kong AN. Sulforaphane epigenetically demethylates the CpG sites of the miR-9-3 promoter and reactivates miR-9-3 expression in human lung cancer A549 cells. J Nutr Biochem 2018. [PMID: 29525530 DOI: 10.1016/j.jnutbio.2018.01.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Increasing evidence suggests that epigenetic aberrations contribute to the development and progression of cancers such as lung cancer. The promoter region of miR-9-3 was recently found to be hypermethylated in lung cancer, resulting in down-regulation of miR-9-3 and poor patient prognosis. Sulforaphane (SFN), a natural compound that is obtained from cruciferous vegetables, has potent anticancer activities. In this study, we aimed to investigate the effect of SFN on restoring the miR-9-3 level in lung cancer A549 cells through epigenetic regulation. DNA methylation of the miR-9-3 promoter was examined using bisulfite genomic sequencing and methylated DNA immunoprecipitation analysis. The expression levels of miR-9-3 and several epigenetic modifying enzymes were measured using quantitative real-time polymerase chain reaction and Western blotting, respectively. The transcriptional activity of the miR-9-3 promoter was evaluated by patch methylation, and histone modifications were analyzed using chromatin immunoprecipitation (ChIP) assays. We found that CpG methylation was reduced in the miR-9-3 promoter and that miR-9-3 expression was increased after 5 days of treatment with SFN. In vitro methylation analysis showed that the methylated recombinant construct exhibited lower luciferase reporter activity than the unmethylated counterpart. ChIP assays revealed that SFN treatment increased H3K4me1 enrichment at the miR-9-3 promoter. Furthermore, SFN treatment attenuated enzymatic DNMT activity and DNMT3a, HDAC1, HDAC3, HDAC6 and CDH1 protein expression. Taken together, these findings indicate that SFN may exert its chemopreventive effects partly through epigenetic demethylation and restoration of miR-9-3.
Collapse
Affiliation(s)
- Linbo Gao
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - David Cheng
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jie Yang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Wenji Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|