1
|
Rina A, Maffeo D, Minnai F, Esposito M, Palmieri M, Serio VB, Rosati D, Mari F, Frullanti E, Colombo F. The Genetic Analysis and Clinical Therapy in Lung Cancer: Current Advances and Future Directions. Cancers (Basel) 2024; 16:2882. [PMID: 39199653 PMCID: PMC11352260 DOI: 10.3390/cancers16162882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Lung cancer, including both non-small cell lung cancer and small cell lung cancer, remains the leading cause of cancer-related mortality worldwide, representing 18% of the total cancer deaths in 2020. Many patients are identified already at an advanced stage with metastatic disease and have a worsening prognosis. Recent advances in the genetic understanding of lung cancer have opened new avenues for personalized treatments and targeted therapies. This review examines the latest discoveries in the genetics of lung cancer, discusses key biomarkers, and analyzes current clinical therapies based on this genetic information. It will conclude with a discussion of future prospects and potential research directions.
Collapse
Affiliation(s)
- Angela Rina
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- UOC Laboratorio di Assistenza e Ricerca Traslazionale, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy;
| | - Debora Maffeo
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesca Minnai
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (F.M.); (M.E.)
| | - Martina Esposito
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (F.M.); (M.E.)
| | - Maria Palmieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Viola Bianca Serio
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Diletta Rosati
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesca Mari
- UOC Laboratorio di Assistenza e Ricerca Traslazionale, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy;
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Elisa Frullanti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesca Colombo
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (F.M.); (M.E.)
| |
Collapse
|
2
|
Zhang N, Li Y. Receptor tyrosine kinases: biological functions and anticancer targeted therapy. MedComm (Beijing) 2023; 4:e446. [PMID: 38077251 PMCID: PMC10701465 DOI: 10.1002/mco2.446] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 10/16/2024] Open
Abstract
Receptor tyrosine kinases (RTKs) are a class of protein kinases that play crucial roles in various cellular processes, including cell migration, morphological differentiation, cell growth, and angiogenesis. In humans, 58 RTKs have been identified and categorized into 20 distinct families based on the composition of their extracellular regions. RTKs are primarily activated by specific ligands that bind to their extracellular region. They not only regulate tumor transformation, proliferation, metastasis, drug resistance, and angiogenesis, but also initiate and maintain the self-renewal and cloning ability of cancer stem cells. Accurate diagnosis and grading of tumors with dysregulated RTKs are essential in clinical practice. There is a growing body of evidence supporting the benefits of RTKs-targeted therapies for cancer patients, and researchers are actively exploring new targets and developing targeted agents. However, further optimization of RTK inhibitors is necessary to effectively target the diverse RTK alterations observed in human cancers. This review provides insights into the classification, structure, activation mechanisms, and expression of RTKs in tumors. It also highlights the research advances in RTKs targeted anticancer therapy and emphasizes their significance in optimizing cancer diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Nan Zhang
- Chongqing University Cancer Hospital, School of MedicineChongqing UniversityChongqingChina
| | - Yongsheng Li
- Chongqing University Cancer Hospital, School of MedicineChongqing UniversityChongqingChina
- Department of Medical OncologyChongqing University Cancer HospitalChongqingChina
| |
Collapse
|
3
|
Remon J, Hendriks LE, Mountzios G, García-Campelo R, Saw SP, Uprety D, Recondo G, Villacampa G, Reck M. MET alterations in NSCLC—Current Perspectives and Future Challenges. J Thorac Oncol 2022; 18:419-435. [PMID: 36441095 DOI: 10.1016/j.jtho.2022.10.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Accepted: 10/19/2022] [Indexed: 11/24/2022]
Abstract
Targeted therapies have revolutionized the treatment and improved the outcome for oncogene-driven NSCLC and an increasing number of oncogenic driver therapies have become available. For MET-dysregulated NSCLC (especially MET exon 14 skipping mutations and MET-amplifications, which is one of the most common bypass mechanisms of resistance in oncogene-addicted NSCLC), several anti-MET-targeted therapies have been approved recently (MET exon 14 skipping mutation) and multiple others are in development. In this narrative review, we summarize the role of MET as an oncogenic driver in NSCLC, discuss the different testing methods for exon 14 skipping mutations, gene amplification, and protein overexpression, and review the existing data and ongoing clinical trials regarding targeted therapies in MET-altered NSCLC. As immunotherapy with or without chemotherapy has become the standard of care for advanced NSCLC, immunotherapy data for MET-dysregulated NSCLC are put into perspective. Finally, we discuss future challenges in this rapidly evolving landscape.
Collapse
|
4
|
Saigí M, Carcereny E, Morán T, Cucurull M, Domènech M, Hernandez A, Martinez-Cardús A, Pros E, Sanchez-Cespedes M. Biological and clinical perspectives of the actionable gene fusions and amplifications involving tyrosine kinase receptors in lung cancer. Cancer Treat Rev 2022; 109:102430. [DOI: 10.1016/j.ctrv.2022.102430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/20/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
|
5
|
Mi J, Huang Z, Zhang R, Zeng L, Xu Q, Yang H, Lizaso A, Tong F, Dong X, Yang N, Zhang Y. Molecular characterization and clinical outcomes in EGFR-mutant de novo MET-overexpressed advanced non-small-cell lung cancer. ESMO Open 2021; 7:100347. [PMID: 34953403 PMCID: PMC8717426 DOI: 10.1016/j.esmoop.2021.100347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/19/2021] [Accepted: 11/20/2021] [Indexed: 11/26/2022] Open
Abstract
Background Approximately 2%-8% of non-small-cell lung cancer (NSCLC) harbors concurrent epidermal growth factor receptor (EGFR) sensitizing mutation and mesenchymal–epithelial transition factor (MET) amplification prior to EGFR-tyrosine kinase inhibitor (EGFR-TKI) therapy. This study aimed to investigate the optimal first-line therapeutic options for patients with concurrent EGFR-mutant, MET-overexpressed/amplified advanced NSCLC. Methods A total of 104 treatment-naïve patients with EGFR-mutant de novo MET-overexpressed advanced NSCLC were identified using immunohistochemistry and stratified to four groups according to treatment regimen: EGFR-TKI monotherapy (n = 48), EGFR-TKI combined with either crizotinib (n = 9) or chemotherapy (n = 12), and chemotherapy (n = 35). A subpopulation of 28 patients was also tested with next-generation sequencing (NGS). Objective response rate (ORR) and progression-free survival (PFS) outcomes were analyzed according to treatment strategies and molecular features. Results All the patients (n = 104) achieved ORR of 36.5% and median PFS (mPFS) of 7.0 months. Baseline clinicopathologic characteristics were similar among the four treatment groups. Compared with chemotherapy, EGFR-TKI monotherapy or EGFR-TKI combination therapy achieved significantly higher ORR (P < 0.001) and longer mPFS (P = 0.003). No ORR or PFS difference was observed between EGFR-TKI monotherapy and combination therapy. In the NGS-identified population (n = 28), patients who received EGFR-TKI plus crizotinib (n = 9) achieved similar ORR (88.9% versus 57.9%, P = 0.195) and mPFS (9.0 versus 8.5 months, hazard ratio 1.10, 95% confidence interval 0.43-2.55, P = 0.45) than those who received EGFR-TKI monotherapy (n = 19), regardless of MET copy number status. Grade 3/4 rashes were significantly more among patients who received EGFR-TKI plus crizotinib (P = 0.026). Conclusions Our findings provided clinical evidence that patients with concurrent EGFR sensitizing mutation and de novo MET amplification/overexpression could benefit from first-line EGFR-TKI monotherapy. Concomitant EGFR sensitizing mutation and MET overexpression/amplification were detected in 2.6% of lung cancer patients. EGFR-TKI monotherapy elicited a higher response rate and longer PFS than chemotherapy. EGFR-TKI with or without crizotinib elicited comparable PFS regardless of MET copy number. EGFR-TKI monotherapy achieved lower number of grade 3/4 adverse events than EGFR-TKI plus crizotinib.
Collapse
Affiliation(s)
- J Mi
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Graduate School, University of South China, Hengyang, Hunan, China
| | - Z Huang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Graduate School, University of South China, Hengyang, Hunan, China
| | - R Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - L Zeng
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Q Xu
- Department of Medical Oncology, Qinghai Provincial People's Hospital, Xining, China
| | - H Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - A Lizaso
- Burning Rock Biotech, Guangzhou, China
| | - F Tong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - X Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - N Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Graduate School, University of South China, Hengyang, Hunan, China.
| | - Y Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Graduate School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
6
|
Rao S, Anthony ML, Chowdhury N, Kathrotia R, Mishra M, Naithani M, Sindhwani G, Singh N. Molecular characterization of lung carcinomas: A study on diagnostic, predictive, and prognostic markers using immunohistochemical analysis at a Tertiary Care Center in Uttarakhand, India. J Carcinog 2021; 20:17. [PMID: 34729049 PMCID: PMC8531572 DOI: 10.4103/jcar.jcar_14_21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION: Focused studies in different geographic regions would delineate the underlying biological differences and molecular alterations in non-small cell lung cancer (NSCLC) worldwide. Previous studies in literature have documented limited characterization by studying a minimal number of biological markers. This study was done to evaluate expression of multiple immunomarkers including diagnostic, prognostic, and predictive markers in NSCLC for its characterization. MATERIALS AND METHODS: This was an observational study conducted on 60 consecutive cases of NSCLC. Immunomarkers comprising of p63, p40, TTF-1, napsin A, B-Raf, c-Met, phospho-AKT (P-AKT), PTEN, anaplastic lymphoma kinase (ALK), epidermal growth factor receptor (EGFR) and K-Ras, synaptophysin, chromogranin and pan-cytokeratin were evaluated on paraffin-embedded tissue sections of NSCLC. RESULTS: Age of patients with NSCLC in our study ranged from 35 to 90 years, and 93.3% of them were chronic smokers. 93.3% of cases presented in late stages (Stages III and IV) and 78% of cases were squamous cell carcinoma (SCC). EGFR positivity was noted in 83.3% of cases. ALK was positive in one case while C-Met and PTEN immunopositivity was noted in only two cases. Ten cases showed positivity for K-Ras and 90% of these were SCC. Ten cases were positive for B-Raf and 80% of these were SCC. 30% of cases showed immunopositivity for P-AKT. None of the molecular markers was found to have statistically significant correlation with clinicopathological parameters. CONCLUSION: SCC is the predominant histological subtype of NSCLC in the region of Uttarakhand, India, with a high proportion of cases harboring EGFR mutation. Variable expression of K-Ras, P-AKT, ALK 1, and PTEN in NSCLC signifies that molecular profile of every case is individualistic and independent. We attribute this to ethnicity, influence of implicated substance or metabolite in tobacco, and variable mutations incurred in tumor cells over a period of time.
Collapse
Affiliation(s)
- Shalinee Rao
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Michael Leonard Anthony
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Nilotpal Chowdhury
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Rajesh Kathrotia
- Department of Physiology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Mayank Mishra
- Department of Pulmonary Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Manisha Naithani
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Girish Sindhwani
- Department of Pulmonary Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Neha Singh
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| |
Collapse
|
7
|
Das D, Wang J, Hong J. Next-Generation Kinase Inhibitors Targeting Specific Biomarkers in Non-Small Cell Lung Cancer (NSCLC): A Recent Overview. ChemMedChem 2021; 16:2459-2479. [PMID: 33929777 DOI: 10.1002/cmdc.202100166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/27/2021] [Indexed: 12/25/2022]
Abstract
Lung cancer causes many deaths globally. Mutations in regulatory genes, irregularities in specific signal transduction events, or alterations of signalling pathways are observed in cases of non-small cell lung cancer (NSCLC). Over the past two decades, a few kinases have been identified, validated, and studied as biomarkers for NSCLC. Among them, EGFR, ALK, ROS1, MET, RET, NTRK, and BRAF are regarded as targetable biomarkers to cure and/or control the disease. In recent years, the US Food and Drug Administration (FDA) approved more than 15 kinase inhibitors targeting these NSCLC biomarkers. The kinase inhibitors significantly improved the progression-free survival (PFS) of NSCLC patients. Challenges still remain for metastatic diseases and advanced NSCLC cases. New discoveries of potent kinase inhibitors and rapid development of modern medical technologies will help to control NSCLC cases. This article provides an overview of the discoveries of various types of kinase inhibitors against NSCLC, along with medicinal chemistry aspects and related developments in next-generation kinase inhibitors that have been reported in recent years.
Collapse
Affiliation(s)
- Debasis Das
- Discovery Chemistry Research, Arromax Pharmatech Co., Ltd., Sangtiandao Innovation Park, No. 1 Huayun Road, SIP, Suzhou, 215123, China
| | - Jingbing Wang
- Discovery Chemistry Research, Arromax Pharmatech Co., Ltd., Sangtiandao Innovation Park, No. 1 Huayun Road, SIP, Suzhou, 215123, China
| | - Jian Hong
- Discovery Chemistry Research, Arromax Pharmatech Co., Ltd., Sangtiandao Innovation Park, No. 1 Huayun Road, SIP, Suzhou, 215123, China
| |
Collapse
|
8
|
Sui JSY, Finn SP, Gray SG. Detection of MET Exon 14 Skipping Alterations in Lung Cancer Clinical Samples Using a PCR-Based Approach. Methods Mol Biol 2021; 2279:145-155. [PMID: 33683691 DOI: 10.1007/978-1-0716-1278-1_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The receptor tyrosine kinase (RTK) c-MET plays important roles in cancer, yet despite being frequently overexpressed, clinical responses to targeting this receptor have been limited in the clinical setting. A singular significant challenge has been the accurate identification of biomarkers for the selection of responsive patients. However, recently mutations which result in the loss of exon 14 (called METex14 skipping) have emerged as novel biomarkers in non-small cell lung carcinomas (NSCLC) to predict for responsiveness to targeted therapy with c-MET inhibitors. Currently, the diverse genomic alterations responsible for METex14 skipping pose a challenge for routine clinical diagnostic testing. Next generation sequencing (NGS) is the current gold standard for identifying the diverse mutations associated with METex14, but the cost for such a procedure remains to some degree prohibitive as often NGS is requested on a case-by-case basis, and many hospitals may not even have the capacity or resources to conduct NGS.However, PCR-based approaches to detect METex14 have been developed which can be conducted in most routine hospital laboratories and may therefore allow a cost-effective approach to pre-screen patients that may respond to c-MET inhibitors prior to conducting NGS, or until all patients will have NGS conducted as routine practise. In this chapter, we describe one such PCR-based approach for screening samples for the detection of METex14 in NSCLC.
Collapse
Affiliation(s)
- Jane S Y Sui
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
- Department of Medical Oncology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Stephen P Finn
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
- Department of Histopathology, Cancer Molecular Diagnostics, Labmed Directorate, St. James's Hospital, Dublin, Ireland
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, Dublin, Ireland
| | - Steven G Gray
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland.
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland.
- School of Biological Sciences, Dublin Institute of Technology, Dublin, Ireland.
| |
Collapse
|
9
|
Ji X, Ding H. The efficacy of enteral nutrition combined with accelerated rehabilitation in non-small cell lung cancer surgery: A randomized controlled trial protocol. Medicine (Baltimore) 2020; 99:e23382. [PMID: 33235112 PMCID: PMC7710191 DOI: 10.1097/md.0000000000023382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To investigate the effect of enteral nutrition combined with accelerated rehabilitation in treating the non-small cell lung cancer (NSCLC). METHODS It is a randomized controlled experiment to be carried out from June 2021 to December 2021. It was permitted through the Ethics Committee of Cancer Hospital Affiliated to Shandong First Medical University (00923876). 100 patients are included in the study. The inclusion criteria contain: (1) patients with NSCLCs receiving surgery as the primary treatment; (2) over 18 years of age. The exclusion criteria are as follows: (1) age ≥65 years; (2) severe metabolic and systemic diseases, such as diabetes, hypertension, or severe liver and kidney dysfunction; (3) the body mass index <18.5 kg/m; (4) patients who have received preoperational radiotherapy or chemotherapy. Patients in the control group are provided routine nutrition, including preoperative nutritional risk screening and assessment and preoperative nutrition education and dietary guidance, while patients in the nutrition group are provided additional enteral nutrition preparations combined with accelerated rehabilitation as in the control group. The primary outcomes include the perioperative change of serum albumin, serum prealbumin, hemoglobin, and total lymphocyte counts. The second outcomes include length of hospitalization, quality of life, and risk of postoperative complications. RESULTS shows the comparison of indicators after surgery between the 2 groups. CONCLUSION Enteral nutrition combined with accelerated rehabilitation appears to be beneficial in decreasing the complications and improving postoperative recovery after NSCLC surgery.
Collapse
Affiliation(s)
- Xiaona Ji
- Department of Thoracic Surgery, Cancer Hospital Affiliated to Shandong First Medical University
| | - Haiyan Ding
- Department of Intensive-Care Unit, Jinan Children's Hospital, Shandong, China
| |
Collapse
|
10
|
Crees ZD, Shearrow C, Lin L, Girard J, Arasi K, Bhoraskar A, Berei J, Eckburg A, Anderson AD, Garcia C, Munger A, Palani S, Smith TJ, Sreenivassappa SB, Vitali C, David O, Puri N. EGFR/c-Met and mTOR signaling are predictors of survival in non-small cell lung cancer. Ther Adv Med Oncol 2020; 12:1758835920953731. [PMID: 32973931 PMCID: PMC7493230 DOI: 10.1177/1758835920953731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/06/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND EGFR/c-Met activation/amplification and co-expression, mTOR upregulation/activation, and Akt/Wnt signaling upregulation have been individually associated with more aggressive disease and characterized as potential prognostic markers for lung cancer patients. METHODS Tumors obtained from 109 participants with stage I-IV non-small cell lung cancer (NSCLC) were studied for EGFR/c-Met co-localization as well as for total and active forms of EGFR, c-Met, mTOR, S6K, beta-catenin, and Axin2. Slides were graded by two independent blinded pathologists using a validated scoring system. Protein expression profile correlations were assessed using Pearson correlation and Spearman's rho. Prognosis was assessed using Kaplan-Meier analysis. RESULTS Protein expression profile analysis revealed significant correlations between EGFR/p-EGFR (p = 0.0412) and p-mTOR/S6K (p = 0.0044). Co-localization of p-EGFR/p-c-Met was associated with increased p-mTOR (p = 0.0006), S6K (p = 0.0018), and p-S6K (p < 0.0001) expression. In contrast, active beta-catenin was not positively correlated with EGFR/c-Met nor any activated proteins. Axin2, a negative regulator of the Wnt pathway, was correlated with EGFR, p-EGFR, p-mTOR, p-S6K, EGFR/c-Met co-localization, and p-EGFR/p-c-Met co-localization (all p-values <0.03). Kaplan-Meier analysis revealed shorter median survival in participants with high expression of Axin2, total beta-catenin, total/p-S6K, total/p-mTOR, EGFR, and EGFR/c-Met co-localization compared with low expression. After controlling for stage of disease at diagnosis, subjects with late-stage disease demonstrated shorter median survival when exhibiting high co-expression of EGFR/c-Met (8.1 month versus 22.3 month, p = 0.050), mTOR (6.7 month versus 22.3 month, p = 0.002), and p-mTOR (8.1 month versus 25.4 month, p = 0.004) compared with low levels. CONCLUSIONS These findings suggest that increased EGFR/c-Met signaling is correlated with upregulated mTOR/S6K signaling, which may in turn be associated with shorter median survival in late-stage NSCLC.
Collapse
Affiliation(s)
- Zachary D Crees
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, IL, USA
| | - Caleb Shearrow
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, IL, USA
| | - Leo Lin
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, IL, USA
| | - Jennifer Girard
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, IL, USA
| | - Kavin Arasi
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, IL, USA
| | - Aayush Bhoraskar
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, IL, USA
| | - Joseph Berei
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, IL, USA
| | - Adam Eckburg
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, IL, USA
| | - Austin D. Anderson
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, IL, USA
| | - Christian Garcia
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, IL, USA
| | - Ariana Munger
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, IL, USA
| | - Sunil Palani
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, IL, USA
| | - Thomas J Smith
- College of Education, Northern Illinois University, Dekalb, IL, USA
| | | | - Connie Vitali
- Department of Pathology, University of Illinois College of Medicine at Rockford IL, USA
| | - Odile David
- Department of Pathology, University of Illinois College of Medicine at Chicago, IL, USA
| | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, 1601 Parkview Avenue, Room Number E-632, Rockford, IL 61107, USA
| |
Collapse
|
11
|
Zhong F, Lu HP, Chen G, Dang YW, Li GS, Chen XY, Qin YY, Yao YX, Zhang XG, Liang Y, Li MX, Mo M, Zhang KL, Ding H, Huang ZG, Wei ZX. The clinical significance and potential molecular mechanism of integrin subunit beta 4 in laryngeal squamous cell carcinoma. Pathol Res Pract 2019; 216:152785. [PMID: 31889588 DOI: 10.1016/j.prp.2019.152785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/21/2019] [Accepted: 12/10/2019] [Indexed: 01/10/2023]
Abstract
The relationship between integrin beta 4 (ITGB4) expression and laryngeal squamous cell carcinoma (LSCC) remains unclarified. The object of the present study was to explore the clinical significance and potential molecular mechanism of ITGB4 in LSCC. The protein level of ITGB4 was significantly higher in 46 LSCC patients than in 26 non-LSCC tissues detected by in-house immunohistochemistry. Consistently, ITGB4 mRNA level was also greatly upregulated based on microarray and RNA-seq data (standard mean difference, SMD = 1.62, 95 % CI: 1.23-2.00). And the area under curves (AUC) of summary receiver operator characteristic (SROC) was 0.87 (95 % CI: 0.84-0.90) based on 172 cases of LSCC and 59 cases of non-cancerous controls. Ninety genes were intersected by the ITGB4 related genes and LSCC differential expressed genes (DEGs) from all available microarray and RNA-seq datasets. Based on Gene Ontology (GO) analysis, the top terms of biological process (BP), cellular component (CC) and molecular function (MF) for the 90 ITGB4 related DEGs were extracellular matrix organization, basement membrane and extracellular matrix structural constituent, respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that ITGB4 related DEGs mainly participated in the pathways of ECM-receptor interaction, Focal adhesion and Small cell lung cancer. Moreover, the Protein-Protein Interaction (PPI) network indicated that ITGA3, ITGA5, ITGB4, MET, LAMA3, and COL4A1 might be the core genes of LSCC development related to ITGB4. In conclusion, high ITGB4 expression may lead to the occurrence and development of LSCC via various signaling pathways.
Collapse
Affiliation(s)
- Feng Zhong
- Department of Pathology, Hengxian People's Hospital, 141 Jiaoyu Road, Hengxian County of Nanning 530300, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hui-Ping Lu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Guo-Sheng Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Yi Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yong-Ying Qin
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yu-Xuan Yao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Guohui Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yao Liang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ming-Xuan Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Miao Mo
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Kai-Lang Zhang
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hua Ding
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - Zhu-Xin Wei
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
12
|
Comparative analysis of expression of mutant and wild-type alleles is essential for reliable PCR-based detection of MET exon 14 skipping. Biochimie 2019; 165:267-274. [DOI: 10.1016/j.biochi.2019.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/26/2019] [Indexed: 01/05/2023]
|
13
|
Santoni-Rugiu E, Melchior LC, Urbanska EM, Jakobsen JN, Stricker KD, Grauslund M, Sørensen JB. Intrinsic resistance to EGFR-Tyrosine Kinase Inhibitors in EGFR-Mutant Non-Small Cell Lung Cancer: Differences and Similarities with Acquired Resistance. Cancers (Basel) 2019; 11:E923. [PMID: 31266248 PMCID: PMC6678669 DOI: 10.3390/cancers11070923] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
Activating mutations in the epidermal growth factor receptor gene occur as early cancer-driving clonal events in a subset of patients with non-small cell lung cancer (NSCLC) and result in increased sensitivity to EGFR-tyrosine-kinase-inhibitors (EGFR-TKIs). Despite very frequent and often prolonged clinical response to EGFR-TKIs, virtually all advanced EGFR-mutated (EGFRM+) NSCLCs inevitably acquire resistance mechanisms and progress at some point during treatment. Additionally, 20-30% of patients do not respond or respond for a very short time (<3 months) because of intrinsic resistance. While several mechanisms of acquired EGFR-TKI-resistance have been determined by analyzing tumor specimens obtained at disease progression, the factors causing intrinsic TKI-resistance are less understood. However, recent comprehensive molecular-pathological profiling of advanced EGFRM+ NSCLC at baseline has illustrated the co-existence of multiple genetic, phenotypic, and functional mechanisms that may contribute to tumor progression and cause intrinsic TKI-resistance. Several of these mechanisms have been further corroborated by preclinical experiments. Intrinsic resistance can be caused by mechanisms inherent in EGFR or by EGFR-independent processes, including genetic, phenotypic or functional tumor changes. This comprehensive review describes the identified mechanisms connected with intrinsic EGFR-TKI-resistance and differences and similarities with acquired resistance and among clinically implemented EGFR-TKIs of different generations. Additionally, the review highlights the need for extensive pre-treatment molecular profiling of advanced NSCLC for identifying inherently TKI-resistant cases and designing potential combinatorial targeted strategies to treat them.
Collapse
Affiliation(s)
- Eric Santoni-Rugiu
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark.
| | - Linea C Melchior
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Edyta M Urbanska
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Jan N Jakobsen
- Department of Oncology and Palliative Units, Zealand University Hospital, DK-4700 Næstved, Denmark
| | - Karin de Stricker
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Morten Grauslund
- Department of Clinical Genetics and Pathology, Skåne University Hospital, SE-221 85 Lund, Sweden
| | - Jens B Sørensen
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| |
Collapse
|
14
|
O'Brien O, Wright MC, O'Brien C, Geoghegan O, Leonard N, Nicholson S, Cuffe S, Fabre A, Jochum W, Joerger M, Gray SG, Finn SP. Cost-Efficient and Easy to Perform PCR-Based Assay to Identify Met Exon 14 Skipping in Formalin-Fixed Paraffin-Embedded (FFPE) Non-Small Cell Lung Cancer (NSCLC) Samples. Diagnostics (Basel) 2019; 9:diagnostics9010013. [PMID: 30669306 PMCID: PMC6468531 DOI: 10.3390/diagnostics9010013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 01/03/2023] Open
Abstract
MET is a receptor tyrosine kinase (RTK) that plays important roles in carcinogenesis. Despite being frequently overexpressed in cancer, clinical responses to targeting this receptor have been limited. Recently novel splicing mutations involving the loss of exon 14 (called METex14 skipping) have emerged as potential biomarkers to predict for responsiveness to targeted therapies with Met inhibitors in non-small cell lung cancer (NSCLC). Currently, the diverse genomic alterations responsible for METex14 skipping pose a challenge for routine clinical diagnostic testing. In this report, we examine three different methodologies to detect METex14 and assess their potential utility for use as a diagnostic assay for both the identification of METex14 and intra-tumoural distribution in NSCLC.
Collapse
Affiliation(s)
- Odharnaith O'Brien
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St. James's Hospital, D08 W9RT Dublin, Ireland.
- Department of Histopathology, Labmed Directorate, St. James's Hospital, D08 RX0X Dublin, Ireland.
| | - Mark C Wright
- Department of Histopathology, Labmed Directorate, St. James's Hospital, D08 RX0X Dublin, Ireland.
| | - Cathal O'Brien
- Cancer Molecular Diagnostics, Labmed Directorate, St. James's Hospital, D08 RX0X Dublin, Ireland.
| | - Orla Geoghegan
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St. James's Hospital, D08 W9RT Dublin, Ireland.
| | - Niamh Leonard
- Department of Histopathology, Labmed Directorate, St. James's Hospital, D08 RX0X Dublin, Ireland.
| | - Siobhan Nicholson
- Department of Histopathology, Labmed Directorate, St. James's Hospital, D08 RX0X Dublin, Ireland.
| | - Sinéad Cuffe
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St. James's Hospital, D08 W9RT Dublin, Ireland.
- HOPE Directorate, St. James's Hospital, D08 RT2X Dublin, Ireland.
| | - Aurelie Fabre
- Department of Pathology, St. Vincent's University Hospital, University College Dublin School of Medicine, D04 T6F4 Dublin, Ireland.
| | - Wolfram Jochum
- Department of Pathology, Cantonal Hospital, 9007 St. Gallen, Switzerland.
| | - Markus Joerger
- Department of Medical Oncology & Hematology, Cantonal Hospital, 9007 St. Gallen, Switzerland.
| | - Steven G Gray
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St. James's Hospital, D08 W9RT Dublin, Ireland.
- Department of Clinical Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland.
- School of Biological Sciences, Dublin Institute of Technology, D08 NF82 Dublin, Ireland.
| | - Stephen P Finn
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St. James's Hospital, D08 W9RT Dublin, Ireland.
- Department of Histopathology, Labmed Directorate, St. James's Hospital, D08 RX0X Dublin, Ireland.
- Cancer Molecular Diagnostics, Labmed Directorate, St. James's Hospital, D08 RX0X Dublin, Ireland.
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, D08 X4RX Dublin, Ireland.
| |
Collapse
|
15
|
Saigi M, Alburquerque-Bejar JJ, Mc Leer-Florin A, Pereira C, Pros E, Romero OA, Baixeras N, Esteve-Codina A, Nadal E, Brambilla E, Sanchez-Cespedes M. MET-Oncogenic and JAK2-Inactivating Alterations Are Independent Factors That Affect Regulation of PD-L1 Expression in Lung Cancer. Clin Cancer Res 2018; 24:4579-4587. [PMID: 29898990 DOI: 10.1158/1078-0432.ccr-18-0267] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/10/2018] [Accepted: 06/06/2018] [Indexed: 11/16/2022]
Abstract
Purpose: The blockade of immune checkpoints such as PD-L1 and PD-1 is being exploited therapeutically in several types of malignancies. Here, we aimed to understand the contribution of the genetics of lung cancer to the ability of tumor cells to escape immunosurveillance checkpoints.Experimental Design: More than 150 primary non-small cell lung cancers, including pulmonary sarcomatoid carcinomas, were tested for levels of the HLA-I complex, PD-L1, tumor-infiltrating CD8+ lymphocytes, and alterations in main lung cancer genes. Correlations were validated in cancer cell lines using appropriate treatments to activate or inhibit selected pathways. We also performed RNA sequencing to assess changes in gene expression after these treatments.Results:MET-oncogenic activation tended to associate with positive PD-L1 immunostaining, whereas STK11 mutations were correlated with negative immunostaining. In MET-altered cancer cells, MET triggered a transcriptional increase of PD-L1 that was independent of the IFNγ-mediated JAK/STAT pathway. The activation of MET also upregulated other immunosuppressive genes (PDCD1LG2 and SOCS1) and transcripts involved in angiogenesis (VEGFA and NRP1) and in cell proliferation. We also report recurrent inactivating mutations in JAK2 that co-occur with alterations in MET and STK11, which prevented the induction of immunoresponse-related genes following treatment with IFNγ.Conclusions: We show that MET activation promotes the expression of several negative checkpoint regulators of the immunoresponse, including PD-L1. In addition, we report inactivation of JAK2 in lung cancer cells that prevented the response to IFNγ. These alterations are likely to facilitate tumor growth by enabling immune tolerance and may affect the response to immune checkpoint inhibitors. Clin Cancer Res; 24(18); 4579-87. ©2018 AACR.
Collapse
Affiliation(s)
- Maria Saigi
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Juan J Alburquerque-Bejar
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Anne Mc Leer-Florin
- Département d'Anatomie et Cytologie Pathologiques, Pôle de Biologie et Pathologie, CHU Grenoble Alpes, Grenoble and Université Grenoble Alpes, Grenoble, France
| | - Carolina Pereira
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Eva Pros
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Octavio A Romero
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Nuria Baixeras
- Pathology Department, Bellvitge University Hospital, Hospitalet de Llobregat, Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Ernest Nadal
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Hospitalet de Llobregat, Barcelona, Spain.,Clinical Research in Solid Tumors (CReST) Group, OncoBell Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Elisabeth Brambilla
- Département d'Anatomie et Cytologie Pathologiques, Pôle de Biologie et Pathologie, CHU Grenoble Alpes, Grenoble and Université Grenoble Alpes, Grenoble, France
| | - Montse Sanchez-Cespedes
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|