1
|
Nasir NJM, Chuah S, Shuen T, Prawira A, Ba R, Lim MC, Chua J, Nguyen PHD, Lim CJ, Wasser M, Hazirah SN, Lim TKH, Leow WQ, Loh TJ, Wan WK, Pang YH, Soon G, Cheow PC, Kam JH, Iyer S, Kow A, Dan YY, Bonney GK, Chung A, Goh BKP, Chow PKH, Albani S, Zhai W, Ouyang JF, Toh HC, Chew V. GATA4 downregulation enhances CCL20-mediated immunosuppression in hepatocellular carcinoma. Hepatol Commun 2024; 8:e0508. [PMID: 39167427 PMCID: PMC11340929 DOI: 10.1097/hc9.0000000000000508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/07/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a deadly cancer with a high global mortality rate, and the downregulation of GATA binding protein 4 (GATA4) has been implicated in HCC progression. In this study, we investigated the role of GATA4 in shaping the immune landscape of HCC. METHODS HCC tumor samples were classified into "low" or "normal/high" based on GATA4 RNA expression relative to adjacent non-tumor liver tissues. The immune landscapes of GATA4-low and GATA4-normal/high tumors were analyzed using cytometry by time-of-flight, bulk/spatial transcriptomic analyses and validated by multiplex immunofluorescence. RESULTS GATA4-low tumors displayed enrichment in exhausted programmed cell death protein 1+ T cells, immunosuppressive regulatory T cells, myeloid-derived suppressor cells, and macrophages, highlighting the impact of GATA4 downregulation on immunosuppression. Spatial and bulk transcriptomic analyses revealed a negative correlation between GATA4 and C-C Motif Chemokine Ligand 20 (CCL20) expression in HCC. Overexpressing GATA4 confirmed CCL20 as a downstream target, contributing to an immunosuppressive tumor microenvironment, as evidenced by increased regulatory T cells and myeloid-derived suppressor cells in CCL20-high tumors. Lastly, the reduced expression of GATA4 and higher expression of CCL20 were associated with poorer overall survival in patients with HCC, implicating their roles in tumor progression. CONCLUSIONS Our study reveals that GATA4 downregulation contributes to an immunosuppressive microenvironment, driven by CCL20-mediated enrichment of regulatory T cells and myeloid-derived suppressor cells in HCC. These findings underscore the critical role of GATA4 reduction in promoting immunosuppression and HCC progression.
Collapse
Affiliation(s)
- N. Jannah M. Nasir
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore
- Duke-NUS Medical School, Singapore
| | - Samuel Chuah
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore
| | - Timothy Shuen
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Aldo Prawira
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore
| | - Rebecca Ba
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Mei Chee Lim
- Duke-NUS Medical School, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Joelle Chua
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Phuong H. D. Nguyen
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore
| | - Chun J. Lim
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore
| | - Martin Wasser
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore
| | - Sharifah N. Hazirah
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore
| | - Tony K. H. Lim
- Duke-NUS Medical School, Singapore
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Wei Qiang Leow
- Duke-NUS Medical School, Singapore
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Tracy Jiezhen Loh
- Duke-NUS Medical School, Singapore
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Wei Keat Wan
- Duke-NUS Medical School, Singapore
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Yin Huei Pang
- Department of Pathology, National University Hospital, Singapore
| | - Gwyneth Soon
- Department of Pathology, National University Hospital, Singapore
| | - Peng Chung Cheow
- Duke-NUS Medical School, Singapore
- Department of Hepatopancreatobiliary and Transplant Surgery, Division of Surgery and Surgical Oncology, Singapore General Hospital and National Cancer Centre Singapore, Singapore
| | - Juinn Huar Kam
- Duke-NUS Medical School, Singapore
- Department of Hepatopancreatobiliary and Transplant Surgery, Division of Surgery and Surgical Oncology, Singapore General Hospital and National Cancer Centre Singapore, Singapore
| | - Shridhar Iyer
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, University Surgical Cluster, National University Health System, Singapore
| | - Alfred Kow
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, University Surgical Cluster, National University Health System, Singapore
| | - Yock Young Dan
- Department of Medicine, Division of Gastroenterology & Hepatology, National University Hospital, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Glenn K. Bonney
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, University Surgical Cluster, National University Health System, Singapore
| | - Alexander Chung
- Duke-NUS Medical School, Singapore
- Department of Hepatopancreatobiliary and Transplant Surgery, Division of Surgery and Surgical Oncology, Singapore General Hospital and National Cancer Centre Singapore, Singapore
| | - Brian K. P. Goh
- Duke-NUS Medical School, Singapore
- Department of Hepatopancreatobiliary and Transplant Surgery, Division of Surgery and Surgical Oncology, Singapore General Hospital and National Cancer Centre Singapore, Singapore
| | - Pierce K. H. Chow
- Duke-NUS Medical School, Singapore
- Department of Hepatopancreatobiliary and Transplant Surgery, Division of Surgery and Surgical Oncology, Singapore General Hospital and National Cancer Centre Singapore, Singapore
- Program in Clinical and Translational Liver Cancer Research, Division of Medical Science, National Cancer Centre, Singapore
| | - Salvatore Albani
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore
| | - Weiwei Zhai
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunan, China
| | | | - Han Chong Toh
- Duke-NUS Medical School, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Valerie Chew
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore
- Duke-NUS Medical School, Singapore
| |
Collapse
|
2
|
Namba Y, Kobayashi T, Tadokoro T, Fukuhara S, Oshita K, Matsubara K, Honmyo N, Kuroda S, Ohira M, Ohdan H. Effect of genetic polymorphisms of interleukin-1 beta on the microscopic portal vein invasion and prognosis of hepatocellular carcinoma. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2024; 31:528-536. [PMID: 38798075 PMCID: PMC11503458 DOI: 10.1002/jhbp.12009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
BACKGROUND Several studies have demonstrated a relationship between genetic polymorphisms of interleukin-1 beta (IL-1β) and cancer development; however, their influence on cancer prognosis is unknown. In the present study, we aimed to evaluate the impact of IL-1β single nucleotide polymorphisms on the hematogenous dissemination and prognosis of hepatocellular carcinoma. METHODS We conducted a retrospective cohort study including patients with hepatocellular carcinoma who underwent primary liver resection at our hospital between April 2015 and December 2018. The primary endpoints were overall and recurrence-free survival. Secondary endpoints were microscopic portal vein invasion and number of circulating tumor cells. RESULTS A total of 148 patients were included, 32 with rs16944 A/A genotype. A/A genotype was associated with microscopic portal vein invasion and number of circulating tumor cells (p = .03 and .04). In multivariate analysis, A/A genotype, alpha-fetoprotein level, and number of circulating tumor cells were associated with microscopic portal vein invasion (p = .01, .01, and <.01). A/A genotype, Child-Pugh B, and intraoperative blood loss were independent predictive factors for overall survival (p = .02, <.01, and <.01). CONCLUSIONS Our results indicate that the IL-1β rs16944 A/A genotype is involved in number of circulating tumor cells, microscopic portal vein invasion, and prognosis in HCC.
Collapse
Affiliation(s)
- Yosuke Namba
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Tsuyoshi Kobayashi
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Takeshi Tadokoro
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Sotaro Fukuhara
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Ko Oshita
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Keiso Matsubara
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Naruhiko Honmyo
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Shintaro Kuroda
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Masahiro Ohira
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| |
Collapse
|
3
|
Monteran L, Ershaid N, Scharff Y, Zoabi Y, Sanalla T, Ding Y, Pavlovsky A, Zait Y, Langer M, Caller T, Eldar-Boock A, Avivi C, Sonnenblick A, Satchi-Fainaro R, Barshack I, Shomron N, Zhang XHF, Erez N. Combining TIGIT Blockade with MDSC Inhibition Hinders Breast Cancer Bone Metastasis by Activating Antitumor Immunity. Cancer Discov 2024; 14:1252-1275. [PMID: 38427556 DOI: 10.1158/2159-8290.cd-23-0762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 01/17/2024] [Accepted: 02/28/2024] [Indexed: 03/03/2024]
Abstract
Bone is the most common site of breast cancer metastasis. Bone metastasis is incurable and is associated with severe morbidity. Utilizing an immunocompetent mouse model of spontaneous breast cancer bone metastasis, we profiled the immune transcriptome of bone metastatic lesions and peripheral bone marrow at distinct metastatic stages, revealing dynamic changes during the metastatic process. We show that cross-talk between granulocytes and T cells is central to shaping an immunosuppressive microenvironment. Specifically, we identified the PD-1 and TIGIT signaling axes and the proinflammatory cytokine IL1β as central players in the interactions between granulocytes and T cells. Targeting these pathways in vivo resulted in attenuated bone metastasis and improved survival, by reactivating antitumor immunity. Analysis of patient samples revealed that TIGIT and IL1β are prominent in human bone metastasis. Our findings suggest that cotargeting immunosuppressive granulocytes and dysfunctional T cells may be a promising novel therapeutic strategy to inhibit bone metastasis. Significance: Temporal transcriptome profiling of the immune microenvironment in breast cancer bone metastasis revealed key communication pathways between dysfunctional T cells and myeloid derived suppressor cells. Cotargeting of TIGIT and IL1β inhibited bone metastasis and improved survival. Validation in patient data implicated these targets as a novel promising approach to treat human bone metastasis.
Collapse
Affiliation(s)
- Lea Monteran
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nour Ershaid
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ye'ela Scharff
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yazeed Zoabi
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tamer Sanalla
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yunfeng Ding
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas
| | - Anna Pavlovsky
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Zait
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marva Langer
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tal Caller
- Tamman Cardiovascular Research Institute, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anat Eldar-Boock
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Camila Avivi
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amir Sonnenblick
- Oncology Division, Tel Aviv Sourasky Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Iris Barshack
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas
| | - Neta Erez
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Chen KY, Liu SY, Tang JJ, Liu MK, Chen XY, Liu ZP, Ferrandon D, Lai KF, Li Z. NLRP3 knockout in mice provided protection against Serratia marcescens-induced acute pneumonia by decreasing PD-L1 and PD-1 expression in macrophages. Int Immunopharmacol 2024; 129:111559. [PMID: 38330794 DOI: 10.1016/j.intimp.2024.111559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 02/10/2024]
Abstract
Antibiotic-resistant Serratia marcescens (Sm) is known to cause bloodstream infections, pneumonia, etc. The nod-like receptor family, pyrin domain-containing 3 (NLRP3), has been implicated in various lung infections. Yet, its role in Sm-induced pneumonia was not well understood. In our study, we discovered that deletion of Nlrp3 in mice significantly improved Sm-induced survival rates, reduced bacterial loads in the lungs, bronchoalveolar lavage fluid (BALF), and bloodstream, and mitigated the severity of acute lung injury (ALI) compared to wild-type (WT) mice. Mechanistically, we observed that 24 h post-Sm infection, NLRP3 inflammasome activation occurred, leading to gasdermin D NH2-terminal (GSDMD-NT)-induced pyroptosis in macrophages and IL-1β secretion. The NLRP3 or NLRP3 inflammasome influenced the expression PD-L1 and PD-1, as well as the count of PD-L1 or PD-1-expressing macrophages, alveolar macrophages, interstitial macrophages, PD-L1-expressing neutrophils, and the count of macrophage receptors with collagenous structure (MARCO)-expressing macrophages, particularly MARCO+ alveolar macrophages. The frequency of MARCO+ alveolar macrophages, PD-1 expression, particularly PD-1+ interstitial macrophages were negatively or positively correlated with the Sm load, respectively. Additionally, IL-1β levels in BALF correlated with three features of acute lung injury: histologic score, protein concentration and neutrophil count in BALF. Consequently, our findings suggest that Nlrp3 deletion offers protection agaisnt acute Sm pneumonia in mice by inhibiting inflammasome activation and reducing Sm infection-induced PD-L1/PD-1 or MARCO expression, particularly in macrophages. This highlights potential therapeutic targets for Sm and other gram-negative bacteria-induced acute pneumonia.
Collapse
Affiliation(s)
- Kan-Yao Chen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; Department of Clinical Laboratory, Guangdong Provincial People's Hospital Zhuhai Hospital, Zhuhai, China
| | - Shu-Yan Liu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou, China
| | - Juan-Juan Tang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Meng-Ke Liu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xu-Yang Chen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhi-Peng Liu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Dominique Ferrandon
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China; Université de Strasbourg, RIDI UPR9022 du CNRS, F-67000 Strasbourg, France
| | - Ke-Fang Lai
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China.
| | - Zi Li
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China; The Second Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Zhang Y, Ma D, Gong Y, Wang F, Wu J, Wu C. IL1R2 is a Novel Prognostic Biomarker for Lung Adenocarcinoma. Curr Mol Med 2024; 24:620-629. [PMID: 37078353 DOI: 10.2174/1566524023666230420092142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 04/21/2023]
Abstract
AIMS The aim of this study is to figure out the role of IL1R2 in LUAD (lung adenocarcinoma). BACKGROUND IL1R2, a special member of IL-1 receptor family, binds to IL-1 and plays an important role in inhibiting IL-1 pathway, which seems to be involved in tumorigenesis. Emerging studies demonstrated higher IL1R2 expression levels in several malignancies. OBJECTIVE In the present study, we assessed the expression of IL1R2 in LUAD tissues with immunohistochemistry and explored various databases to determine whether it could be a potential prognostic biomarker and therapeutic target. METHODS The expression level of IL1R2 in lung adenocarcinoma was analyzed by Immunohistochemistry and UALCAN database. The correlation between IL1R2 expression and the patient prognosis was identified by Kaplan-Meier plotter. The correlation of IL1R2 expression with immune infiltrates was clarified by TIMER database. The protein-protein interaction network and gene functional enrichment analysis were constructed and performed by STRING and Metascape database. RESULTS Immunohistochemistry showed that the expression of IL1R2 was higher in tumor tissues of LUAD patients and that patients with lower IL1R2 level have a better prognosis than their counterparts. We validated our findings in several online databases and found that IL1R2 gene was also positively correlated with B cells and neutrophils and biomarkers of CD8+T cells and exhausted T cells. PPI network and gene enrichment analyses showed that expression of IL1R2 was also associated with complex functionspecific networks involving IL-1 signal, NF-KappaB transcription factors. CONCLUSION According to these findings, we demonstrated that IL1R2 was involved in the progression and prognosis of LUAD and the underlying mechanism needs further investigation.
Collapse
Affiliation(s)
- Ying Zhang
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, P.R. China
- Departments of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214000, P.R. China
| | - Danyu Ma
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, P.R. China
| | - Yile Gong
- Department of General Internal Medicine, People's hospital of Ziyang, Ankang, Shanxi, 725399, P.R. China
| | - Fan Wang
- Department of General Internal Medicine, People's hospital of Ziyang, Ankang, Shanxi, 725399, P.R. China
| | - Jingping Wu
- Department of General Internal Medicine, People's hospital of Ziyang, Ankang, Shanxi, 725399, P.R. China
| | - Chen Wu
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, P.R. China
- Department of General Internal Medicine, People's hospital of Ziyang, Ankang, Shanxi, 725399, P.R. China
| |
Collapse
|
6
|
Jiao Z, Zhang J. Interplay between inflammasomes and PD-1/PD-L1 and their implications in cancer immunotherapy. Carcinogenesis 2023; 44:795-808. [PMID: 37796835 DOI: 10.1093/carcin/bgad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/22/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023] Open
Abstract
The inflammasomes play crucial roles in inflammation and cancer development, while the PD-1/PD-L1 pathway is critical for immune suppression in the tumor microenvironment (TME). Recent research indicates a reciprocal regulatory relationship between inflammasomes and PD-1/PD-L1 signaling in cancer development and PD-1 blockade treatment. By activating in diverse cells in tumor tissues, inflammasome upregulates PD-L1 level in the TME. Moreover, the regulation of PD-1/PD-L1 activity by inflammasome activation involves natural killer cells, tumor-associated macrophages and myeloid-derived suppressor cells. Conversely, PD-1 blockade can activate the inflammasome, potentially influencing treatment outcomes. The interplay between inflammasomes and PD-1/PD-L1 has profound and intricate effects on cancer development and treatment. In this review, we discuss the crosstalk between inflammasomes and PD-1/PD-L1 in cancers, exploring their implications for tumorigenesis, metastasis and immune checkpoint inhibitor (ICI) resistance. The combined therapeutic strategies targeting both inflammasomes and checkpoint molecules hold promising potential as treatments for cancer.
Collapse
Affiliation(s)
- Zhongyu Jiao
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology (Peking University), Peking University Health Science Center, Beijing 100191, P.R. China
| | - Jun Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology (Peking University), Peking University Health Science Center, Beijing 100191, P.R. China
| |
Collapse
|
7
|
Castillo DR, Jeon WJ, Park D, Pham B, Yang C, Joung B, Moon JH, Lee J, Chong EG, Park K, Reeves ME, Duerksen-Hughes P, Mirshahidi HR, Mirshahidi S. Comprehensive Review: Unveiling the Pro-Oncogenic Roles of IL-1ß and PD-1/PD-L1 in NSCLC Development and Targeting Their Pathways for Clinical Management. Int J Mol Sci 2023; 24:11547. [PMID: 37511306 PMCID: PMC10380530 DOI: 10.3390/ijms241411547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
In the past decade, targeted therapies for solid tumors, including non-small cell lung cancer (NSCLC), have advanced significantly, offering tailored treatment options for patients. However, individuals without targetable mutations pose a clinical challenge, as they may not respond to standard treatments like immune-checkpoint inhibitors (ICIs) and novel targeted therapies. While the mechanism of action of ICIs seems promising, the lack of a robust response limits their widespread use. Although the expression levels of programmed death ligand 1 (PD-L1) on tumor cells are used to predict ICI response, identifying new biomarkers, particularly those associated with the tumor microenvironment (TME), is crucial to address this unmet need. Recently, inflammatory cytokines such as interleukin-1 beta (IL-1β) have emerged as a key area of focus and hold significant potential implications for future clinical practice. Combinatorial approaches of IL-1β inhibitors and ICIs may provide a potential therapeutic modality for NSCLC patients without targetable mutations. Recent advancements in our understanding of the intricate relationship between inflammation and oncogenesis, particularly involving the IL-1β/PD-1/PD-L1 pathway, have shed light on their application in lung cancer development and clinical outcomes of patients. Targeting these pathways in cancers like NSCLC holds immense potential to revolutionize cancer treatment, particularly for patients lacking targetable genetic mutations. However, despite these promising prospects, there remain certain aspects of this pathway that require further investigation, particularly regarding treatment resistance. Therefore, the objective of this review is to delve into the role of IL-1β in NSCLC, its participation in inflammatory pathways, and its intricate crosstalk with the PD-1/PD-L1 pathway. Additionally, we aim to explore the potential of IL-1β as a therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Dani Ran Castillo
- Division of Hematology and Oncology, Loma Linda University Cancer Center, Loma Linda, CA 92354, USA; (D.R.C.); (E.G.C.); (M.E.R.); (H.R.M.)
| | - Won Jin Jeon
- Department of Internal Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (W.J.J.); (B.P.); (B.J.); (J.H.M.)
| | - Daniel Park
- Department of Internal Medicine, University of San Francisco-Fresno, Fresno, CA 93701, USA;
| | - Bryan Pham
- Department of Internal Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (W.J.J.); (B.P.); (B.J.); (J.H.M.)
| | - Chieh Yang
- Department of Internal Medicine, School of Medicine, University of California Riverside, Riverside, CA 92521, USA;
| | - Bowon Joung
- Department of Internal Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (W.J.J.); (B.P.); (B.J.); (J.H.M.)
| | - Jin Hyun Moon
- Department of Internal Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (W.J.J.); (B.P.); (B.J.); (J.H.M.)
| | - Jae Lee
- School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Esther G. Chong
- Division of Hematology and Oncology, Loma Linda University Cancer Center, Loma Linda, CA 92354, USA; (D.R.C.); (E.G.C.); (M.E.R.); (H.R.M.)
| | - Kiwon Park
- Department of Pharmacy, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Mark E. Reeves
- Division of Hematology and Oncology, Loma Linda University Cancer Center, Loma Linda, CA 92354, USA; (D.R.C.); (E.G.C.); (M.E.R.); (H.R.M.)
| | - Penelope Duerksen-Hughes
- Division of Biochemistry, Department of Medicine & Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Hamid R. Mirshahidi
- Division of Hematology and Oncology, Loma Linda University Cancer Center, Loma Linda, CA 92354, USA; (D.R.C.); (E.G.C.); (M.E.R.); (H.R.M.)
| | - Saied Mirshahidi
- Biospecimen Laboratory, Loma Linda University Cancer Center, Loma Linda, CA 92354, USA
- Division of Microbiology and Molecular Genetics, Department of Medicine & Basic Sciences, Loma Linda University, Loma Linda 92350, CA, USA
| |
Collapse
|
8
|
Singh RD, Dholariya S, Shekher A, Avadhesh, Parchwani D, Gupta SC. Role of IL-1 gene polymorphisms in common solid cancers. MULTIFACETED ROLE OF IL-1 IN CANCER AND INFLAMMATION 2023:1-69. [DOI: 10.1016/b978-0-12-824273-5.00002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Lee JM, Tsuboi M, Kim ES, Mok TS, Garrido P. Overcoming immunosuppression and pro-tumor inflammation in lung cancer with combined IL-1β and PD-1 inhibition. Future Oncol 2022; 18:3085-3100. [PMID: 36004638 DOI: 10.2217/fon-2021-1567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Inflammation in the tumor microenvironment is a complicit and known carcinogenesis driver. Inhibition of IL-1β, one of the most abundant and influential cytokines in the tumor microenvironment, may enhance the efficacy of PD-1. In a post-hoc analysis of phase III cardiovascular CANTOS trial, canakinumab, a monoclonal anti-IL-1β antibody, significantly reduced lung cancer incidence. Immune checkpoint inhibition (ICI) is the standard of care in non-small-cell lung cancer. However, ICI efficacy is heavily impacted by programmed death ligand-1 (PD-L1) status. Most patients with non-small-cell lung cancer have low PD-L1 expression levels. Thus, combinational strategies are needed to improve ICI efficacy and expand its use. Here, we describe the preclinical and clinical evidence to support the combination of IL-1β and PD-1 under investigation in the CANOPY program. The perioperative use of canakinumab with or without PD-1 inhibition in the CANOPY-N trial is described as a potential chemotherapy-free immunotherapy strategy.
Collapse
Affiliation(s)
- Jay M Lee
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-7313, USA
| | - Masahiro Tsuboi
- National Cancer Center Hospital East, Kashiwanoha, Kashiwa, Chiba, Japan
| | - Edward S Kim
- Levine Cancer Institute, Atrium Health, Charlotte, NC 28204, USA
| | - Tony Sk Mok
- State Key Laboratory of South China, The Chinese University of Hong Kong, Hong Kong, China
| | - Pilar Garrido
- Medical Oncology Department, Hospital Ramón y Cajal, Madrid, Spain
| |
Collapse
|
10
|
Yuan B, Clowers MJ, Velasco WV, Peng S, Peng Q, Shi Y, Ramos-Castaneda M, Zarghooni M, Yang S, Babcock RL, Chang SH, Heymach JV, Zhang J, Ostrin EJ, Watowich SS, Kadara H, Moghaddam SJ. Targeting IL-1β as an immune preventive and therapeutic modality for K-ras mutant lung cancer. JCI Insight 2022; 7:157788. [PMID: 35471938 PMCID: PMC9220853 DOI: 10.1172/jci.insight.157788] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/22/2022] [Indexed: 11/17/2022] Open
Abstract
K-ras–mutant lung adenocarcinoma (KM-LUAD) is associated with abysmal prognosis and is tightly linked to tumor-promoting inflammation. A human mAb, canakinumab, targeting the proinflammatory cytokine IL-1β, significantly decreased the risk of lung cancer in the Canakinumab Anti-inflammatory Thrombosis Outcomes Study. Interestingly, we found high levels of IL-1β in the lungs of mice with K-rasG12D–mutant tumors (CC-LR mice). Here, we blocked IL-1β using an anti–IL-1β mAb in cohorts of 6- or 14-week-old CC-LR mice to explore its preventive and therapeutic effect, respectively. IL-1β blockade significantly reduced lung tumor burden, which was associated with reprogramming of the lung microenvironment toward an antitumor phenotype characterized by increased infiltration of cytotoxic CD8+ T cells (with high IFN-γ and granzyme B expression but low programmed cell death 1 [PD-1] expression) while suppressing neutrophils and polymorphonuclear (PMN) myeloid-derived suppressor cells. When querying the Cancer Genome Atlas data set, we found positive correlations between IL1B expression and infiltration of immunosuppressive PMNs and expression of their chemoattractant, CXCL1, and PDCD1 expressions in patients with KM-LUAD. Our data provide evidence that IL-1β blockade may be a preventive strategy for high-risk individuals and an alternative therapeutic approach in combination with currently available treatments for KM-LUAD.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Michael J Clowers
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Walter V Velasco
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Stephen Peng
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Qian Peng
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Yewen Shi
- Department of Head & Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Marco Ramos-Castaneda
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Melody Zarghooni
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rachel L Babcock
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Seon Hee Chang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - John V Heymach
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Jianjun Zhang
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Edwin J Ostrin
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Stephanie S Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| |
Collapse
|
11
|
MCPIP1 regulates focal adhesion kinase and rho GTPase-dependent migration in clear cell renal cell carcinoma. Eur J Pharmacol 2022; 922:174804. [DOI: 10.1016/j.ejphar.2022.174804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 11/18/2022]
|