1
|
Mustafin RN. Prospects for breast cancer immunotherapy using microRNAs and transposable elements as objects. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:1011-1026. [PMID: 39351441 PMCID: PMC11438560 DOI: 10.37349/etat.2024.00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/04/2024] [Indexed: 10/04/2024] Open
Abstract
One of the directions in treatment of chemoresistant breast cancer (BC) may include new methods of activating the immune response against tumor cells. Clinically used checkpoint inhibition using antibodies to PD-1 and PD-L1 works in some patients, but the lack of biomarkers means number of respondents is low. The possibility of combining this method with chemotherapy is limited by an increased risk of toxic liver damage, development of immune-related pneumonitis, and thyroid dysfunction. This article includes introduction into the clinic of new methods of immunotherapy for BC, among which epigenetic activation of retroelements, double-stranded transcripts of which stimulate the interferon response against the tumor, is promising. For this purpose, inhibitors of DNA methyltransferase*, histone deacetylase* and histone methyltransferase* are used (* subtitles in the main text). Their antitumor effect is also mediated by removal of repressive epigenetic marks from tumor suppressor genes. However, numerous studies have proven the role of retroelements in the carcinogenesis of various malignant neoplasms, including BC. Moreover, endogenous retroviruses HERV-K and LINE1 retrotransposons are planned to be used as diagnostic biomarkers for BC. Therefore, a rational approach to using viral mimicry in antitumor therapy of BC may be the simultaneous suppression of specific retrotransposons (drivers for carcinogenesis) using reverse transcriptase inhibitors and silencing of specific transposons involved in carcinogenesis using complementary microRNAs. To determine possible pathways of influence in this direction, 35 specific transposon-derived microRNAs* changes in BC were identified, which can become guides for targeted therapy of BC.
Collapse
Affiliation(s)
- Rustam Nailevich Mustafin
- Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, Ministry of Health of Russia, 450008 Ufa, Russia
| |
Collapse
|
2
|
Elango VD, Mugundan UM, Mg R. Efavirenz: New Hope in Cancer Therapy. Cureus 2024; 16:e67776. [PMID: 39323697 PMCID: PMC11422744 DOI: 10.7759/cureus.67776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/25/2024] [Indexed: 09/27/2024] Open
Abstract
Despite extensive research directed at preventive and treatment strategies, breast cancer remains the leading cause of cancer-related mortality among women. This necessitates the development of a new medication aimed at increasing patient survival and quality of life. A new drug's development from the ground up can cost billions of dollars and take up to ten or more years. Because much of the required safety and pharmacokinetic data are already available from earlier trials, repurposing medications usually results in lower costs and shorter turnaround times. Many antiretroviral medications target biological pathways and enzymes associated with cancer, which becomes an ideal option for repurposing as anticancer medications. Efavirenz is an antiretroviral medication that targets molecular pathways implicated in the growth of breast cancer, such as LINE-1 (long interspersed nuclear elements-1) suppression, hence lowering the proliferation of breast cancer cells and exhibiting anti-cancer properties. Additionally, it suppresses the fatty acid synthase gene and other important genes related to fat metabolism, impairing mitochondrial activity and making cancer cells deprived of energy. Efavirenz also inhibits cancer-initiating stem cells, promotes differentiation, and prevents recurrence. Additionally, efavirenz promotes oxidative damage by the formation of superoxide in cancer cells. In addition to its anti-cancer properties, efavirenz has the advantage of being a well-established and relatively inexpensive medication with a favorable safety profile. If proven effective, efavirenz could offer a cost-effective therapeutic option, which is an intriguing direction that warrants further investigation.
Collapse
Affiliation(s)
- Varshitha Dheep Elango
- Department of Pharmacy Practice, SRM (Sri Ramasamy Memorial) College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Kattankulathur, IND
| | - Uma Maheshwari Mugundan
- Department of Pharmacy Practice, SRM (Sri Ramasamy Memorial) College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Kattankulathur, IND
| | - Rajanandh Mg
- Department of Pharmacy Practice, SRM (Sri Ramasamy Memorial) College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Kattankulathur, IND
| |
Collapse
|
3
|
Costa B, Vale N. Efavirenz: History, Development and Future. Biomolecules 2022; 13:biom13010088. [PMID: 36671473 PMCID: PMC9855767 DOI: 10.3390/biom13010088] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Efavirenz (Sustiva®) is a first-generation non-nucleoside reverse transcriptase inhibitor (NNRTI) used to treat human immunodeficiency virus (HIV) type 1 infection or to prevent the spread of HIV. In 1998, the FDA authorized efavirenz for the treatment of HIV-1 infection. Patients formerly required three 200 mg efavirenz capsules daily, which was rapidly updated to a 600 mg tablet that only required one tablet per day. However, when given 600 mg once daily, plasma efavirenz concentrations were linked not only to poor HIV suppression but also to toxicity. Clinical data suggested that the standard dose of efavirenz could be reduced without compromising its effectiveness, resulting in a reduction in side effects and making the drug more affordable. Therefore, ENCORE1 was performed to compare the efficiency and safeness of a reduced dose of efavirenz (400 mg) with the standard dose (600 mg) plus two NRTI in antiretroviral-naïve HIV-infected individuals. Nowadays, due to the emergence of integrase strand transfer inhibitors (INSTIs), some consider that it is time to stop using efavirenz as a first-line treatment on a global scale, in the parts of the world where that is possible. Efavirenz has been a primary first-line antiviral drug for more than 15 years. However, at this moment, the best use for efavirenz could be for pre-exposure prophylaxis (PrEP) and repurposing in medicine.
Collapse
Affiliation(s)
- Bárbara Costa
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
4
|
Berrino E, Miglio U, Bellomo SE, Debernardi C, Bragoni A, Petrelli A, Cascardi E, Giordano S, Montemurro F, Marchiò C, Venesio T, Sapino A. The Tumor-Specific Expression of L1 Retrotransposons Independently Correlates with Time to Relapse in Hormone-Negative Breast Cancer Patients. Cells 2022; 11:cells11121944. [PMID: 35741073 PMCID: PMC9221920 DOI: 10.3390/cells11121944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Long-Interspersed Nuclear Element (L1) retrotransposons are silenced in healthy tissues but unrepressed in cancer. Even if L1 reactivation has been associated with reduced overall survival in breast cancer (BC) patients, a comprehensive correlation with clinicopathological features is still missing. METHODS Using quantitative, reverse-transcription PCR, we assessed L1 mRNA expression in 12 BC cells, 210 BC patients and in 47 normal mammary tissues. L1 expression was then correlated with molecular and clinicopathological data. RESULTS We identified a tumor-exclusive expression of L1s, absent in normal mammary cells and tissues. A positive correlation between L1 expression and tumor dedifferentiation, lymph-node involvement and increased immune infiltration was detected. Molecular subtyping highlighted an enrichment of L1s in basal-like cells and cancers. By exploring disease-free survival, we identified L1 overexpression as an independent biomarker for patients with a high risk of recurrence in hormone-receptor-negative BCs. CONCLUSIONS Overall, L1 reactivation identified BCs with aggressive features and patients with a worse clinical fate.
Collapse
Affiliation(s)
- Enrico Berrino
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (E.B.); (U.M.); (S.E.B.); (A.B.); (A.P.); (E.C.); (S.G.); (F.M.); (C.M.); (A.S.)
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy;
| | - Umberto Miglio
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (E.B.); (U.M.); (S.E.B.); (A.B.); (A.P.); (E.C.); (S.G.); (F.M.); (C.M.); (A.S.)
| | - Sara Erika Bellomo
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (E.B.); (U.M.); (S.E.B.); (A.B.); (A.P.); (E.C.); (S.G.); (F.M.); (C.M.); (A.S.)
- Department of Oncology, University of Turin, 10124 Turin, Italy
| | - Carla Debernardi
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy;
| | - Alberto Bragoni
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (E.B.); (U.M.); (S.E.B.); (A.B.); (A.P.); (E.C.); (S.G.); (F.M.); (C.M.); (A.S.)
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy;
| | - Annalisa Petrelli
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (E.B.); (U.M.); (S.E.B.); (A.B.); (A.P.); (E.C.); (S.G.); (F.M.); (C.M.); (A.S.)
| | - Eliano Cascardi
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (E.B.); (U.M.); (S.E.B.); (A.B.); (A.P.); (E.C.); (S.G.); (F.M.); (C.M.); (A.S.)
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy;
| | - Silvia Giordano
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (E.B.); (U.M.); (S.E.B.); (A.B.); (A.P.); (E.C.); (S.G.); (F.M.); (C.M.); (A.S.)
- Department of Oncology, University of Turin, 10124 Turin, Italy
| | - Filippo Montemurro
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (E.B.); (U.M.); (S.E.B.); (A.B.); (A.P.); (E.C.); (S.G.); (F.M.); (C.M.); (A.S.)
| | - Caterina Marchiò
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (E.B.); (U.M.); (S.E.B.); (A.B.); (A.P.); (E.C.); (S.G.); (F.M.); (C.M.); (A.S.)
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy;
| | - Tiziana Venesio
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (E.B.); (U.M.); (S.E.B.); (A.B.); (A.P.); (E.C.); (S.G.); (F.M.); (C.M.); (A.S.)
- Correspondence: ; Tel.: +39-011-9933547; Fax: +39-011-9933480
| | - Anna Sapino
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (E.B.); (U.M.); (S.E.B.); (A.B.); (A.P.); (E.C.); (S.G.); (F.M.); (C.M.); (A.S.)
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy;
| |
Collapse
|
5
|
The Antiviral Drug Efavirenz in Breast Cancer Stem Cell Therapy. Cancers (Basel) 2021; 13:cancers13246232. [PMID: 34944852 PMCID: PMC8699628 DOI: 10.3390/cancers13246232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/12/2021] [Accepted: 12/08/2021] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Cancer stem cells (CSCs) are responsible for tumour initiation, chemo- and radiotherapy resistance and cancer recurrence. CSCs display plasticity that enables them to alter their phenotype and function making them challenging to eliminate. In this study we explore the effects of an antiretroviral medication used to treat HIV/AIDS (Efavirenz) on cancer stem cells derived from multiple breast cancer cell lines. Efavirenz has been previously found to be effective in the treatment of triple-negative breast cancers, and here we show that it is also capable of altering CSC numbers, cell morphology, RNA/microRNA gene expression and levels of epithelial/mesenchymal CSC subtypes. This study shows that, with Efavirenz, it is possible to not only eliminate primary breast cancer cells, but also to promote changes in cell morphology. Abstract Although many breast cancer therapies show initial success in the treatment of the primary tumour, they often fail to eliminate a sub-population of cells known as cancer stem cells (CSCs). These cells are recognised for their self-renewal properties and for their capacity for differentiation often leading to chemo/radio-resistance. The antiviral drug Efavirenz has been shown to be effective in eliminating triple-negative breast cancer cells, and here we examine its effect on breast CSCs. The effects of Efavirenz on CSCs for several breast cancer cell lines were investigated by examining cellular changes upon drug treatment, including CSC numbers, morphology, RNA/microRNA expression and levels of epithelial/mesenchymal CSC subtypes. Efavirenz treatment resulted in a decrease in the size and number of tumorspheres and a reduction in epithelial-type CSC levels, but an increase in mesenchymal-type CSCs. Efavirenz caused upregulation of several CSC-related genes as well as miR-21, a CSC marker and miR-182, a CSC suppressor gene. We conclude that Efavirenz alters the phenotype and expression of key genes in breast CSCs, which has important potential therapeutic implications.
Collapse
|