1
|
Li Z, You Y, Feng B, Chen J, Gao H, Li F. Construction methods and latest applications of kidney cancer organoids. Oncol Rev 2024; 18:1434981. [PMID: 39600908 PMCID: PMC11588466 DOI: 10.3389/or.2024.1434981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Renal cell carcinoma (RCC) is one of the deadliest malignant tumors. Despite significant advances in RCC treatment over the past decade, complete remission is rarely achieved. Consequently, there is an urgent need to explore and develop new therapies to improve the survival rates and quality of life for patients. In recent years, the development of tumor organoid technology has attracted widespread attention as it can more accurately simulate the spatial structure and physiological characteristics of tumors within the human body. In this review, we summarize the main methods currently used to construct kidney cancer organoids, as well as their various biological and clinical applications. Furthermore, combining organoids with other technologies, such as co-culture techniques and microfluidic technologies, can further develop organoids and address their limitations, creating more practical models. This approach summarizes the interactions between different tissues or organs during tumor progression. Finally, we also provide an outlook on the construction and application of kidney cancer organoids. These rapidly evolving kidney cancer organoids may soon become a focal point in the development of in vitro clinical models and therapeutic research for kidney cancer.
Collapse
Affiliation(s)
- Zhiqiang Li
- Medical College of Guangxi University, Nan Ning, Guang Xi, China
| | - Yanqiu You
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nan Ning, China
| | - Bingzheng Feng
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nan Ning, China
| | - Jibing Chen
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nan Ning, China
| | - Hongjun Gao
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nan Ning, China
| | - Fujun Li
- Medical College of Guangxi University, Nan Ning, Guang Xi, China
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nan Ning, China
| |
Collapse
|
2
|
Elshazly AM, Xu J, Melhem N, Abdulnaby A, Elzahed AA, Saleh T, Gewirtz DA. Is Autophagy Targeting a Valid Adjuvant Strategy in Conjunction with Tyrosine Kinase Inhibitors? Cancers (Basel) 2024; 16:2989. [PMID: 39272847 PMCID: PMC11394573 DOI: 10.3390/cancers16172989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Tyrosine kinase inhibitors (TKIs) represent a relatively large class of small-molecule inhibitors that compete with ATP for the catalytic binding site of tyrosine kinase proteins. While TKIs have demonstrated effectiveness in the treatment of multiple malignancies, including chronic myelogenous leukemia, gastrointestinal tumors, non-small cell lung cancers, and HER2-overexpressing breast cancers, as is almost always the case with anti-neoplastic agents, the development of resistance often imposes a limit on drug efficacy. One common survival response utilized by tumor cells to ensure their survival in response to different stressors, including anti-neoplastic drugs, is that of autophagy. The autophagic machinery in response to TKIs in multiple tumor models has largely been shown to be cytoprotective in nature, although there are a number of cases where autophagy has demonstrated a cytotoxic function. In this review, we provide an overview of the literature examining the role that autophagy plays in response to TKIs in different preclinical tumor model systems in an effort to determine whether autophagy suppression or modulation could be an effective adjuvant strategy to increase efficiency and/or overcome resistance to TKIs.
Collapse
Affiliation(s)
- Ahmed M Elshazly
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Nebras Melhem
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Alsayed Abdulnaby
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Aya A Elzahed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, Hashemite University, Zarqa 13133, Jordan
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA
| |
Collapse
|
3
|
Chen Q, Sun X, Li Y, Yang X, Yang X, Xu H, Cai H, Hu J. The potential of organoids in renal cell carcinoma research. BMC Urol 2024; 24:120. [PMID: 38858665 PMCID: PMC11165752 DOI: 10.1186/s12894-024-01511-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024] Open
Abstract
Renal cell carcinoma, a leading cause of death in urological malignancies, arises from the nephron. Its characteristics include diversity in disease biology, varied clinical behaviors, different prognoses, and diverse responses to systemic therapies. The term 'organoids' is used to describe structures resembling tissues created through the three-dimensional cultivation of stem cells in vitro. These organoids, when derived from tumor tissues, can retain the diversity of the primary tumor, mirror its spatial tissue structure, and replicate similar organ-like functions. In contrast to conventional two-dimensional cell cultures and the transplantation of tumor tissues into other organisms, organoids derived from tumors maintain the complexity and microenvironment of the original tumor tissue. This fidelity makes them a more reliable model for the development of cancer drugs, potentially accelerating the translation of these drugs to clinical use and facilitating personalized treatment options for patients. This review aims to summarize the recent advancements in the use of organoids for studying renal cell carcinoma, focusing on their cultivation, potential applications, and inherent limitations.
Collapse
Affiliation(s)
- Qiuyang Chen
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuan Sun
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yubei Li
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinyue Yang
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuejian Yang
- Department of Urology, Suqian First Hospital, Suqian, China
| | - Haifei Xu
- Department of Urology, Nantong Tumor Hospital, Nantong, China
| | - Hongzhou Cai
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China.
| | - Jun Hu
- Department of Nursing, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China.
| |
Collapse
|
4
|
Lang M, Schmidt LS, Wilson KM, Ricketts CJ, Sourbier C, Vocke CD, Wei D, Crooks DR, Yang Y, Gibbs BK, Zhang X, Klumpp-Thomas C, Chen L, Guha R, Ferrer M, McKnight C, Itkin Z, Wangsa D, Wangsa D, James A, Difilippantonio S, Karim B, Morís F, Ried T, Merino MJ, Srinivasan R, Thomas CJ, Linehan WM. High-throughput and targeted drug screens identify pharmacological candidates against MiT-translocation renal cell carcinoma. J Exp Clin Cancer Res 2023; 42:99. [PMID: 37095531 PMCID: PMC10127337 DOI: 10.1186/s13046-023-02667-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/06/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND MiT-Renal Cell Carcinoma (RCC) is characterized by genomic translocations involving microphthalmia-associated transcription factor (MiT) family members TFE3, TFEB, or MITF. MiT-RCC represents a specific subtype of sporadic RCC that is predominantly seen in young patients and can present with heterogeneous histological features making diagnosis challenging. Moreover, the disease biology of this aggressive cancer is poorly understood and there is no accepted standard of care therapy for patients with advanced disease. Tumor-derived cell lines have been established from human TFE3-RCC providing useful models for preclinical studies. METHODS TFE3-RCC tumor derived cell lines and their tissues of origin were characterized by IHC and gene expression analyses. An unbiased high-throughput drug screen was performed to identify novel therapeutic agents for treatment of MiT-RCC. Potential therapeutic candidates were validated in in vitro and in vivo preclinical studies. Mechanistic assays were conducted to confirm the on-target effects of drugs. RESULTS The results of a high-throughput small molecule drug screen utilizing three TFE3-RCC tumor-derived cell lines identified five classes of agents with potential pharmacological efficacy, including inhibitors of phosphoinositide-3-kinase (PI3K) and mechanistic target of rapamycin (mTOR), and several additional agents, including the transcription inhibitor Mithramycin A. Upregulation of the cell surface marker GPNMB, a specific MiT transcriptional target, was confirmed in TFE3-RCC and evaluated as a therapeutic target using the GPNMB-targeted antibody-drug conjugate CDX-011. In vitro and in vivo preclinical studies demonstrated efficacy of the PI3K/mTOR inhibitor NVP-BGT226, Mithramycin A, and CDX-011 as potential therapeutic options for treating advanced MiT-RCC as single agents or in combination. CONCLUSIONS The results of the high-throughput drug screen and validation studies in TFE3-RCC tumor-derived cell lines have provided in vitro and in vivo preclinical data supporting the efficacy of the PI3K/mTOR inhibitor NVP-BGT226, the transcription inhibitor Mithramycin A, and GPNMB-targeted antibody-drug conjugate CDX-011 as potential therapeutic options for treating advanced MiT-RCC. The findings presented here should provide the basis for designing future clinical trials for patients with MiT-driven RCC.
Collapse
Affiliation(s)
- Martin Lang
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, 39100, Italy
| | - Laura S Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kelli M Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Christopher J Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carole Sourbier
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cathy D Vocke
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Darmood Wei
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel R Crooks
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Youfeng Yang
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin K Gibbs
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Carleen Klumpp-Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Lu Chen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Rajarshi Guha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Crystal McKnight
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Zina Itkin
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Darawalee Wangsa
- Genetics Branch, Cancer Genomics Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Danny Wangsa
- Genetics Branch, Cancer Genomics Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amy James
- Laboratory of Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Simone Difilippantonio
- Laboratory of Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Baktir Karim
- Laboratory of Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Francisco Morís
- EntreChem SL, Vivero Ciencias de la Salud, Calle Colegio Santo Domingo Guzmán, Oviedo, AS, 33011, Spain
| | - Thomas Ried
- Genetics Branch, Cancer Genomics Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria J Merino
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ramaprasad Srinivasan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Charbonneau M, Harper K, Brochu-Gaudreau K, Perreault A, McDonald PP, Ekindi-Ndongo N, Jeldres C, Dubois CM. Establishment of a ccRCC patient-derived chick chorioallantoic membrane model for drug testing. Front Med (Lausanne) 2022; 9:1003914. [PMID: 36275794 PMCID: PMC9582329 DOI: 10.3389/fmed.2022.1003914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is an aggressive subtype of renal cell carcinoma accounting for the majority of deaths in kidney cancer patients. Advanced ccRCC has a high mortality rate as most patients progress and develop resistance to currently approved targeted therapies, highlighting the ongoing need for adequate drug testing models to develop novel therapies. Current animal models are expensive and time-consuming. In this study, we investigated the use of the chick chorioallantoic membrane (CAM), a rapid and cost-effective model, as a complementary drug testing model for ccRCC. Our results indicated that tumor samples from ccRCC patients can be successfully cultivated on the chick chorioallantoic membrane (CAM) within 7 days while retaining their histopathological characteristics. Furthermore, treatment of ccRCC xenografts with sunitinib, a tyrosine kinase inhibitor used for the treatment of metastatic RCC, allowed us to evaluate differential responses of individual patients. Our results indicate that the CAM model is a complementary in vivo model that allows for rapid and cost-effective evaluation of ccRCC patient response to drug therapy. Therefore, this model has the potential to become a useful platform for preclinical evaluation of new targeted therapies for the treatment of ccRCC.
Collapse
Affiliation(s)
- Martine Charbonneau
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Kelly Harper
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Karine Brochu-Gaudreau
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alexis Perreault
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | - Claudio Jeldres
- Division of Urology, Department of Surgery, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Claire M. Dubois
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada,*Correspondence: Claire M. Dubois
| |
Collapse
|