1
|
Rahimi A, Baghernejadan Z, Hazrati A, Malekpour K, Samimi LN, Najafi A, Falak R, Khorramdelazad H. Combination therapy with immune checkpoint inhibitors in colorectal cancer: Challenges, resistance mechanisms, and the role of microbiota. Biomed Pharmacother 2025; 186:118014. [PMID: 40157004 DOI: 10.1016/j.biopha.2025.118014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Colorectal cancer (CRC) is still one of the leading causes of cancer deaths worldwide. Even though there has been progress in cancer immunotherapy, the results of applying immune checkpoint inhibitors (ICIs) have been unsatisfactory, especially in microsatellite stable (MSS) CRC. Single-agent ICIs that target programmed cell death-1 (PD-1)/ PD-L1, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), T cell Ig- and mucin-domain-containing molecule-3 (TIM-3), and lymphocyte activation gene (LAG)-3 have emerged as having specific benefits. However, many primary and secondary resistance mechanisms are available in the tumor microenvironment (TME) that prevent it from happening. Combination strategies, such as the use of anti-PD-1 and anti-CTLA-4, can be effective in overcoming these resistance pathways, but toxicities remain a significant concern. Moreover, ICIs have been integrated with various treatment modalities, including chemotherapy, radiotherapy, antibiotics, virotherapy, polyadenosine diphosphate-ribose polymerase (PARP) inhibitors, and heat shock protein 90 (HSP90) inhibitors. The outcomes observed in both preclinical and clinical settings have been encouraging. Interestingly, manipulating gut microbiota via fecal microbiota transplantation (FMT) has been identified as a new strategy to increase the efficacy of immunotherapy in CRC patients. Therefore, integrating ICIs with other treatment approaches holds promise in enhancing the prognosis of CRC patients. This review focuses on the unmet need for new biomarkers to select patients for combination therapies and the ongoing work to overcome resistance and immune checkpoint blockade.
Collapse
Affiliation(s)
- Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Baghernejadan
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
2
|
Mestiri S, Sami A, Sah N, El-Ella DMA, Khatoon S, Shafique K, Raza A, Mathkor DM, Haque S. Cellular plasticity and non-small cell lung cancer: role of T and NK cell immune evasion and acquisition of resistance to immunotherapies. Cancer Metastasis Rev 2025; 44:27. [PMID: 39856479 DOI: 10.1007/s10555-025-10244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Lung cancer is a leading global cause of mortality, with non-small cell lung cancer (NSCLC) accounting for a significant portion of cases. Immune checkpoint inhibitors (ICIs) have transformed NSCLC treatment; however, many patients remain unresponsive. ICI resistance in NSCLC and its association with cellular plasticity, epithelial-mesenchymal transition (EMT), enhanced adaptability, invasiveness, and resistance is largely influenced by epigenetic changes, signaling pathways, tumor microenvironment, and associated immune cells, fibroblasts, and cytokines. Immunosuppressive cells, including M2 tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells, contribute to resistance by suppressing the immune response. This cellular plasticity is influenced when B cells, natural killer cells, and T cells are exhausted or inhibited by components of the tumor microenvironment. Conversely, diverse T cell, NK cell, and B cell subsets hold potential as predictive response markers particularly cytotoxic CD8+ T cells, effector memory T cells, activated T cells, tumor infiltrated NK cells, tertiary lymphoid structures, etc. influence treatment response. Identifying specific gene expressions and immunophenotypes within T cells may offer insights into early clinical responses to immunotherapy. ICI resistance in NSCLC is a multifaceted process shaped by tumor plasticity, the complex tumor microenvironment, and dynamic immune cell changes. Comprehensive analysis of these factors may lead to the identification of novel biomarkers and combination therapies to enhance ICI efficacy in NSCLC treatment.
Collapse
Affiliation(s)
- Sarra Mestiri
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Ana Sami
- Queen Mary University of London, London, UK
| | - Naresh Sah
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, USA
| | - Dina Moustafa Abo El-Ella
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Sabiha Khatoon
- Department of Physiology and Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Khadija Shafique
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Afsheen Raza
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, UAE.
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia.
- Universidad Espiritu Santo, Samborondon, Ecuador.
| |
Collapse
|
3
|
Chang Z, Wang K, Fang Z, Tang Y, Gao X, Tang B. NanoTrackThera Platform for Real-Time, In Situ Monitoring of Tumor Immunotherapy and Photothermal Synergistic Efficacy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411705. [PMID: 39846357 DOI: 10.1002/smll.202411705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/06/2025] [Indexed: 01/24/2025]
Abstract
Cancer is one of the leading causes of death worldwide, posing a significant threat to human health. Although immunotherapy has shown promise in cancer treatment, its efficacy is often compromised by tumor immune evasion, which hinders treatment outcomes. Therefore, combining immunotherapy with other therapeutic approaches to enhance its effectiveness has become an increasingly accepted strategy in clinical practice. In response to this need, a nanotechnology-based platform, NanoTrackThera (NTT), which enables both combination therapy and real-time efficacy diagnosis, is developed. Using nonsmall cell lung cancer (NSCLC) as a model, the NTT platform integrates immunotherapy and photothermal therapy (PTT) to enhance the activity of natural killer (NK) cells, employ immune checkpoint inhibitors, and leverage the heat generation from self-assembled nanoparticles under near-infrared (NIR) irradiation to directly kill cancer cells. Simultaneously, the nanoplatform incorporates dual detection capabilities through fluorescence imaging and photoacoustic imaging. With these multimodal imaging techniques, the platform can achieve real-time, in situ, tracking of tumor biomarker changes during treatment, providing precise feedback on the efficacy of the combined immunotherapy and photothermal therapy. The NTT platform significantly enhances therapeutic efficacy while enabling real-time monitoring of dynamic changes in key tumor biomarkers, providing a solution for personalized and adaptive precision therapy.
Collapse
Affiliation(s)
- Zixuan Chang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
| | - Keyi Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
| | - Zixian Fang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
| | - Yue Tang
- Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, 250014, P. R. China
| | - Xiaonan Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
- Shandong Department, Laoshan Laboratory, 168Wenhai Middle Rd, Aoshanwei Jimo, Qingdao, 266237, P. R. China
| |
Collapse
|
4
|
Li Y, Sharma A, Schmidt-Wolf IGH. Evolving insights into the improvement of adoptive T-cell immunotherapy through PD-1/PD-L1 blockade in the clinical spectrum of lung cancer. Mol Cancer 2024; 23:80. [PMID: 38659003 PMCID: PMC11040940 DOI: 10.1186/s12943-023-01926-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/20/2023] [Indexed: 04/26/2024] Open
Abstract
Undeniably, cancer immunotherapies have expanded the spectrum of cancer treatment, however, some patients do not respond to immunotherapies. This scenario is no different for lung cancer, whose two main types, non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), still pose a serious clinical challenge. Adoptive T-cell therapies (ATC), which primarily include cytokine-induced killer (CIK) cell therapy, chimeric antigen receptor T-cell (CAR T-cell) therapy and γδ-T-cell therapy, strengthen the patient's immune system in combating cancer. Combining ATC with immune checkpoint inhibitors (ICI) further enhances the effectiveness of this approach to eradicate cancer. With a particular emphasis on CIK cell therapy, which recently completed 30 years, we highlight the role of the PD-1/PD-L1 axis in NSCLC and SCLC. Besides, we provide insights into the potential synergies of PD-1/PD-L1 inhibitors with adoptive T-cell immunotherapy in reshaping the treatment paradigm for lung cancer.
Collapse
Affiliation(s)
- Yutao Li
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, Venusberg Campus 1, D-53127,, Bonn, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, Venusberg Campus 1, D-53127,, Bonn, Germany
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, Venusberg Campus 1, D-53127,, Bonn, Germany.
| |
Collapse
|
5
|
Chen X, Chen LJ, Peng XF, Deng L, Wang Y, Li JJ, Guo DL, Niu XH. Anti-PD-1/PD-L1 therapy for colorectal cancer: Clinical implications and future considerations. Transl Oncol 2024; 40:101851. [PMID: 38042137 PMCID: PMC10701436 DOI: 10.1016/j.tranon.2023.101851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer in the world. The PD-1/PD-L1 pathway plays a crucial role in modulating immune response to cancer, and PD-L1 expression has been observed in tumor and immune cells within the tumor microenvironment of CRC. Thus, immunotherapy drugs, specifically checkpoint inhibitors, have been developed to target the PD-1/PD-L1 signaling pathway, thereby inhibiting the interaction between PD-1 and PD-L1 and restoring T-cell function in cancer cells. However, the emergence of resistance mechanisms can reduce the efficacy of these treatments. To counter this, monoclonal antibodies (mAbs) have been used to improve the efficacy of CRC treatments. mAbs such as nivolumab and pembrolizumab are currently approved for CRC treatment. These antibodies impede immune checkpoint receptors, including PD-1/PD-L1, and their combination therapy shows promise in the treatment of advanced CRC. This review presents a concise overview of the use of the PD-1/PD-L1 blockade as a therapeutic strategy for CRC using monoclonal antibodies and combination therapies. Additionally, this article outlines the function of PD-1/PD-L1 as an immune response suppressor in the CRC microenvironment as well as the potential advantages of administering inflammatory agents for CRC treatment. Finally, this review analyzes the outcomes of clinical trials to examine the challenges of anti-PD-1/PD-L1 therapeutic resistance.
Collapse
Affiliation(s)
- Xiang Chen
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong Province 511518, China
| | - Ling-Juan Chen
- Department of Clinical Laboratory, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong Province 511518, China
| | - Xiao-Fei Peng
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong Province 511518, China
| | - Ling Deng
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong Province 511518, China
| | - Yan Wang
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong Province 511518, China
| | - Jiu-Jiang Li
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong Province 511518, China
| | - Dong-Li Guo
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong Province 511518, China
| | - Xiao-Hua Niu
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong Province 511518, China.
| |
Collapse
|
6
|
Karmakar S, Mishra A, Pal P, Lal G. Effector and cytolytic function of natural killer cells in anticancer immunity. J Leukoc Biol 2024; 115:235-252. [PMID: 37818891 DOI: 10.1093/jleuko/qiad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
Adaptive immune cells play an important role in mounting antigen-specific antitumor immunity. The contribution of innate immune cells such as monocytes, macrophages, natural killer (NK) cells, dendritic cells, and gamma-delta T cells is well studied in cancer immunology. NK cells are innate lymphoid cells that show effector and regulatory function in a contact-dependent and contact-independent manner. The cytotoxic function of NK cells plays an important role in killing the infected and transformed host cells and controlling infection and tumor growth. However, several studies have also ascribed the role of NK cells in inducing pathophysiology in autoimmune diseases, promoting immune tolerance in the uterus, and antitumor function in the tumor microenvironment. We discuss the fundamentals of NK cell biology, its distribution in different organs, cellular and molecular interactions, and its cytotoxic and noncytotoxic functions in cancer biology. We also highlight the use of NK cell-based adoptive cellular therapy in cancer.
Collapse
Affiliation(s)
- Surojit Karmakar
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| | - Amrita Mishra
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| | - Pradipta Pal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| | - Girdhari Lal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| |
Collapse
|
7
|
Kudling TV, Clubb JH, Pakola S, Quixabeira DC, Lähdeniemi IA, Heiniö C, Arias V, Havunen R, Cervera-Carrascon V, Santos JM, Sutinen E, Räsänen J, Borenius K, Mäyränpää MI, Aaltonen E, Sorsa S, Hemminki O, Kanerva A, Verschuren EW, Ilonen I, Hemminki A. Effective intravenous delivery of adenovirus armed with TNFα and IL-2 improves anti-PD-1 checkpoint blockade in non-small cell lung cancer. Oncoimmunology 2023; 12:2241710. [PMID: 37546696 PMCID: PMC10399490 DOI: 10.1080/2162402x.2023.2241710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023] Open
Abstract
Lung cancer remains among the most difficult-to-treat malignancies and is the leading cause of cancer-related deaths worldwide. The introduction of targeted therapies and checkpoint inhibitors has improved treatment outcomes; however, most patients with advanced-stage non-small cell lung cancer (NSCLC) eventually fail these therapies. Therefore, there is a major unmet clinical need for checkpoint refractory/resistant NSCLC. Here, we tested the combination of aPD-1 and adenovirus armed with TNFα and IL-2 (Ad5-CMV-mTNFα/mIL-2) in an immunocompetent murine NSCLC model. Moreover, although local delivery has been standard for virotherapy, treatment was administered intravenously to facilitate clinical translation and putative routine use. We showed that treatment of tumor-bearing animals with aPD-1 in combination with intravenously injected armed adenovirus significantly decreased cancer growth, even in the presence of neutralizing antibodies. We observed an increased frequency of cytotoxic tumor-infiltrating lymphocytes, including tumor-specific cells. Combination treatment led to a decreased percentage of immunosuppressive tumor-associated macrophages and an improvement in dendritic cell maturation. Moreover, we observed expansion of the tumor-specific memory T cell compartment in secondary lymphoid organs in the group that received aPD-1 with the virus. However, although the non-replicative Ad5-CMV-mTNFα/mIL-2 virus allows high transgene expression in the murine model, it does not fully reflect the clinical outcome in humans. Thus, we complemented our findings using NSCLC ex vivo models fully permissive for the TNFα and IL-2- armed oncolytic adenovirus TILT-123. Overall, our data demonstrate the ability of systemically administered adenovirus armed with TNFα and IL-2 to potentiate the anti-tumor efficacy of aPD-1 and warrant further investigation in clinical trials.
Collapse
Affiliation(s)
- Tatiana V. Kudling
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - James H.A. Clubb
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Santeri Pakola
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Dafne C.A. Quixabeira
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Iris A.K. Lähdeniemi
- Translational Lung Cancer Research Group, Institute for Molecular Medicine Finland (FIMM), HiLife, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Camilla Heiniö
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Victor Arias
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Riikka Havunen
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Victor Cervera-Carrascon
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Joao M. Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Eva Sutinen
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pulmonary Medicine, Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
| | - Jari Räsänen
- General Thoracic and Esophageal Surgery, Heart and Lung Center, Helsinki University Hospital and Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kristian Borenius
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- General Thoracic and Esophageal Surgery, Heart and Lung Center, Helsinki University Hospital and Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikko I. Mäyränpää
- Pathology, University of Helsinki and Helsinki University Hospital (HUSLAB), Helsinki, Finland
| | - Eero Aaltonen
- Faculty of Medicine, Medicum, University of Helsinki, Helsinki, Finland
| | - Suvi Sorsa
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Otto Hemminki
- Comprehensive Cancer Center, Helsinki University Hospital (HUS), Helsinki, Finland
- Department of Urology, Helsinki University Hospital, Helsinki, Finland
| | - Anna Kanerva
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Comprehensive Cancer Center, Helsinki University Hospital (HUS), Helsinki, Finland
- Department of Gynecology and Obstetrics, Helsinki University Hospital, Helsinki, Finland
| | - Emmy W. Verschuren
- Translational Lung Cancer Research Group, Institute for Molecular Medicine Finland (FIMM), HiLife, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Ilkka Ilonen
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- General Thoracic and Esophageal Surgery, Heart and Lung Center, Helsinki University Hospital and Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
- Comprehensive Cancer Center, Helsinki University Hospital (HUS), Helsinki, Finland
| |
Collapse
|