1
|
Guo B, Xu X, Chi X, Wang M. Relationship of lncRNA FTX and miR-186-5p levels with diabetic peripheral neuropathy in type 2 diabetes and its bioinformatics analysis. Ir J Med Sci 2024; 193:2293-2299. [PMID: 38837012 DOI: 10.1007/s11845-024-03720-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/17/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) frequently occurs as a secondary condition in individuals with type 2 diabetes mellitus (T2DM). OBJECTIVE To explore the relationship of lncRNA FTX and miR-186-5p levels with DPN in T2DM. METHODS The study enrolled 50 patients with T2DM and 45 patients with DPN. Expression levels of FTX and miR-186-5p were measured by RT-qPCR. The levels of MDA, GSH, and SOD in the serum were measured to assess the patients' oxidative stress levels. In addition, the target genes of miR-186-5p were analyzed by bioinformatics. RESULTS Serum FTX levels were increased and miR-186-5p levels were decreased in patients with T2DM and DPN. Both of them had high diagnostic value for T2DM and DPN. In addition, FTX and miR-186-5p were risk factors for the onset of DPN in people with T2DM and were significantly correlated with oxidative stress indicators in patients. CONCLUSION FTX and miR-186-5p are closely related to the disease progression of DPN in people with T2DM and may become therapeutic targets for DPN in people with T2DM.
Collapse
Affiliation(s)
- Baoqiang Guo
- Department of Endocrinology and Metabolism, The Second People's Hospital of Liaocheng, Liaocheng, 252600, China.
| | - Xiuli Xu
- Department of Function (Electroencephalogram Room), The Second People's Hospital of Liaocheng, Liaocheng, 252600, China.
| | - Xuexiu Chi
- Department of Endocrinology and Metabolism, The Second People's Hospital of Liaocheng, Liaocheng, 252600, China
| | - Min Wang
- Department of Function (Electroencephalogram Room), The Second People's Hospital of Liaocheng, Liaocheng, 252600, China
| |
Collapse
|
2
|
Shi F, Li T, Shi H, Wei Y, Wang J, Liu C, Liang R. Identification of potential therapeutic targets for skin cutaneous melanoma on the basic of transcriptomics. Skin Res Technol 2024; 30:e13916. [PMID: 39113615 PMCID: PMC11306917 DOI: 10.1111/srt.13916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/11/2024]
Abstract
BACKGROUND Advanced skin cutaneous melanoma (SKCM) is responsible for the majority of skin cancer-related deaths. Apart from the rare BRAF V600F mutation, which can be targeted with specific drugs, there are currently no other novel effective therapeutic targets. METHODS We used SMR analysis with cis-expressed quantitative trait locus (cis-eQTL) as the exposure variable and SKCM as the outcome variable to identify potential therapeutic targets for SKCM. Colocalization assays and HEIDI tests are used to test whether SKCM risk and gene expression are driven by common SNPs. Replication analysis further validated the findings, and we also constructed protein-protein interaction networks to explore the relationship between the identified genes and known SKCM targets. Drug prediction and molecular docking further validated the medicinal value of drug targets. Transcriptome differential analysis further validated that there were differences between normal tissues and SKCM for the selected targets. RESULTS We identified 13 genes significantly associated with the risk of SKCM, including five protective genes and eight harmful genes. The HEIDI test and co-localization analysis further indicates a causal association between genes (SOX4, MAFF) and SKCM, categorized as Class 1 evidence targets. The remaining 11 genes, except for HELZ2 show a moderately causal association with SKCM, categorized as Class 2 evidence targets. Target druggability predictions from DGIdb suggest that SOX4, MAFF, ACSF3, CDK10, SPG7, and TCF25 are likely to be future drug targets. CONCLUSION The study provides genetic evidence for targeting available drug genes for the treatment of SKCM.
Collapse
Affiliation(s)
- Fengling Shi
- Department of OncologyThe Fourth Affiliated Hospital of Soochow UniversitySuzhou Dushu Lake HospitalMedical Center of Soochow UniversitySuzhouChina
- Division of Clinical OncologyMedical Center of Soochow UniversitySuzhouChina
| | - Tao Li
- Department of OncologyThe Fourth Affiliated Hospital of Soochow UniversitySuzhou Dushu Lake HospitalMedical Center of Soochow UniversitySuzhouChina
- Division of Clinical OncologyMedical Center of Soochow UniversitySuzhouChina
| | - Huiling Shi
- Department of OncologyThe Fourth Affiliated Hospital of Soochow UniversitySuzhou Dushu Lake HospitalMedical Center of Soochow UniversitySuzhouChina
- Division of Clinical OncologyMedical Center of Soochow UniversitySuzhouChina
| | - Yushan Wei
- Department of OncologyThe Fourth Affiliated Hospital of Soochow UniversitySuzhou Dushu Lake HospitalMedical Center of Soochow UniversitySuzhouChina
- Division of Clinical OncologyMedical Center of Soochow UniversitySuzhouChina
| | - Juan Wang
- Department of OncologyThe Fourth Affiliated Hospital of Soochow UniversitySuzhou Dushu Lake HospitalMedical Center of Soochow UniversitySuzhouChina
- Division of Clinical OncologyMedical Center of Soochow UniversitySuzhouChina
| | - Canyu Liu
- Department of Radiation OncologyThe Fourth Affiliated Hospital of Soochow UniversitySuzhou Dushu Lake HospitalMedical Center of Soochow UniversitySuzhouChina
| | - Ruirong Liang
- Department of OncologyThe Fourth Affiliated Hospital of Soochow UniversitySuzhou Dushu Lake HospitalMedical Center of Soochow UniversitySuzhouChina
- Division of Clinical OncologyMedical Center of Soochow UniversitySuzhouChina
- Department of OncologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
3
|
Song C, Wang G, Liu M, Han S, Dong M, Peng M, Wang W, Wang Y, Xu Y, Liu L. Deciphering the SOX4/MAPK1 regulatory axis: a phosphoproteomic insight into IQGAP1 phosphorylation and pancreatic Cancer progression. J Transl Med 2024; 22:602. [PMID: 38943117 PMCID: PMC11212360 DOI: 10.1186/s12967-024-05377-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/06/2024] [Indexed: 07/01/2024] Open
Abstract
OBJECTIVE This study aims to elucidate the functional role of IQGAP1 phosphorylation modification mediated by the SOX4/MAPK1 regulatory axis in developing pancreatic cancer through phosphoproteomics analysis. METHODS Proteomics and phosphoproteomics data of pancreatic cancer were obtained from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database. Differential analysis, kinase-substrate enrichment analysis (KSEA), and independent prognosis analysis were performed on these datasets. Subtype analysis of pancreatic cancer patients was conducted based on the expression of prognostic-related proteins, and the prognosis of different subtypes was evaluated through prognosis analysis. Differential analysis of proteins in different subtypes was performed to identify differential proteins in the high-risk subtype. Clinical correlation analysis was conducted based on the expression of prognostic-related proteins, pancreatic cancer typing results, and clinical characteristics in the pancreatic cancer proteomics dataset. Functional pathway enrichment analysis was performed using GSEA/GO/KEGG, and most module proteins correlated with pancreatic cancer were selected using WGCNA analysis. In cell experiments, pancreatic cancer cells were grouped, and the expression levels of SOX4, MAPK1, and the phosphorylation level of IQGAP1 were detected by RT-qPCR and Western blot experiments. The effect of SOX4 on MAPK1 promoter transcriptional activity was assessed using a dual-luciferase assay, and the enrichment of SOX4 on the MAPK1 promoter was examined using a ChIP assay. The proliferation, migration, and invasion functions of grouped pancreatic cancer cells were assessed using CCK-8, colony formation, and Transwell assays. In animal experiments, the impact of SOX4 on tumor growth and metastasis through the regulation of MAPK1-IQGAP1 phosphorylation modification was studied by constructing subcutaneous and orthotopic pancreatic cancer xenograft models, as well as a liver metastasis model in nude mice. RESULTS Phosphoproteomics and proteomics data analysis revealed that the kinase MAPK1 may play an important role in pancreatic cancer progression by promoting IQGAP1 phosphorylation modification. Proteomics analysis classified pancreatic cancer patients into two subtypes, C1 and C2, where the high-risk C2 subtype was associated with poor prognosis, malignant tumor typing, and enriched tumor-related pathways. SOX4 may promote the occurrence of the high-risk C2 subtype of pancreatic cancer by regulating MAPK1-IQGAP1 phosphorylation modification. In vitro cell experiments confirmed that SOX4 promoted IQGAP1 phosphorylation modification by activating MAPK1 transcription while silencing SOX4 inhibited the proliferation, migration, and invasion of pancreatic cancer cells by reducing the phosphorylation level of MAPK1-IQGAP1. In vivo, animal experiments further confirmed that silencing SOX4 suppressed the growth and metastasis of pancreatic cancer by reducing the phosphorylation level of MAPK1-IQGAP1. CONCLUSION The findings of this study suggest that SOX4 promotes the phosphorylation modification of IQGAP1 by activating MAPK1 transcription, thereby facilitating the growth and metastasis of pancreatic cancer.
Collapse
Affiliation(s)
- Chao Song
- Department of Pancreatic Surgery, Affiliated Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, PR China
- Department of General Surgery, Qingpu Branch, Affiliated Zhongshan Hospital of Fudan University, Qingpu Branch, No. 1158 Park Road East, Qingpu District, Shanghai, PR China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, PR China
| | - Ganggang Wang
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, China
| | - Mengmeng Liu
- Department of Gastroenterology, Qingpu Branch, Affiliated Zhongshan Hospital of Fudan University, Shanghai, PR China
| | - Siyang Han
- Department of Pancreatic Surgery, Affiliated Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, PR China
| | - Meiyuan Dong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, PR China
| | - Maozhen Peng
- Department of Pancreatic Surgery, Affiliated Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, PR China
| | - Wenquan Wang
- Department of Pancreatic Surgery, Affiliated Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, PR China
| | - Yicun Wang
- Department of General Surgery, Qingpu Branch, Affiliated Zhongshan Hospital of Fudan University, Qingpu Branch, No. 1158 Park Road East, Qingpu District, Shanghai, PR China.
| | - Yaolin Xu
- Department of Pancreatic Surgery, Affiliated Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, PR China.
| | - Liang Liu
- Department of Pancreatic Surgery, Affiliated Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, PR China.
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, PR China.
| |
Collapse
|
4
|
Wang L, Huang Q, Li H, Li H, Wang X, Tan X. Mechanism of LncRNA FTX regulates nephroblastoma progression through MiR-215-5p/PI3K/AKT axis. J Pediatr Urol 2024; 20:491.e1-491.e8. [PMID: 38365477 DOI: 10.1016/j.jpurol.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Nephroblastoma, also more commonly known as Wilms tumor (WT), is a common childhood malignancy that connects tumorigenesis and organ development in the kidney. OBJECTIVE The current study focused on the effect of lncRNA FTX in nephroblastoma. STUDY DESIGN Expression of lncRNA FTX in nephroblastoma tissues and cells was determined. The expression location of lncRNA FTX was detected by FISH. The binding of lncRNA FTX and miR-215-5p with Ago2 was verified by RIP. Following gain- and loss-of-function approaches, the crucial role of lncRNA FTX and miR-215-5p in nephroblastoma cell functions was measured with the involvement of the PI3K/AKT pathway. RESULTS LncRNA FTX was elevated and miR-215-5p was declined in nephroblastoma. Silencing of lncRNA FTX or mimic of miR-215-5p inhibited the malignant properties of nephroblastoma cells. LncRNA FTX was localized in the cytoplasm and might bind miR-215-5p. LncRNA FTX promoted the malignant features of nephroblastoma cells by inhibiting miR-215-5p through activating of the PI3K/AKT pathway. CONCLUSIONS LncRNA FTX is capable of accelerating nephroblastoma development in vitro by reducing miR-215-5p through activating of the PI3K/AKT pathway, indicating LncRNA FTX may possibly a future target for the diagnosis and treatment of nephroblastoma. SUMMARY FIGURE.
Collapse
Affiliation(s)
- Li Wang
- Pediatric Department of The Affiliated Changsha Hospital of Xiangya, School of Medicine, Central South University, Changsha, Hunan 410005, PR China
| | - Qin Huang
- Pediatric Department of The Affiliated Changsha Hospital of Xiangya, School of Medicine, Central South University, Changsha, Hunan 410005, PR China
| | - Hui Li
- Pediatric Department of The Affiliated Changsha Hospital of Xiangya, School of Medicine, Central South University, Changsha, Hunan 410005, PR China
| | - Haisha Li
- Pediatric Department of The Affiliated Changsha Hospital of Xiangya, School of Medicine, Central South University, Changsha, Hunan 410005, PR China
| | - Xiangyun Wang
- Pediatric Department of The Affiliated Changsha Hospital of Xiangya, School of Medicine, Central South University, Changsha, Hunan 410005, PR China.
| | - Xin Tan
- Pediatric Department of The Affiliated Changsha Hospital of Xiangya, School of Medicine, Central South University, Changsha, Hunan 410005, PR China.
| |
Collapse
|
5
|
Shin JJ, Park J, Shin HS, Arab I, Suk K, Lee WH. Roles of lncRNAs in NF-κB-Mediated Macrophage Inflammation and Their Implications in the Pathogenesis of Human Diseases. Int J Mol Sci 2024; 25:2670. [PMID: 38473915 DOI: 10.3390/ijms25052670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Over the past century, molecular biology's focus has transitioned from proteins to DNA, and now to RNA. Once considered merely a genetic information carrier, RNA is now recognized as both a vital element in early cellular life and a regulator in complex organisms. Long noncoding RNAs (lncRNAs), which are over 200 bases long but do not code for proteins, play roles in gene expression regulation and signal transduction by inducing epigenetic changes or interacting with various proteins and RNAs. These interactions exhibit a range of functions in various cell types, including macrophages. Notably, some macrophage lncRNAs influence the activation of NF-κB, a crucial transcription factor governing immune and inflammatory responses. Macrophage NF-κB is instrumental in the progression of various pathological conditions including sepsis, atherosclerosis, cancer, autoimmune disorders, and hypersensitivity. It orchestrates gene expression related to immune responses, inflammation, cell survival, and proliferation. Consequently, its malfunction is a key contributor to the onset and development of these diseases. This review aims to summarize the function of lncRNAs in regulating NF-κB activity in macrophage activation and inflammation, with a particular emphasis on their relevance to human diseases and their potential as therapeutic targets. The insights gained from studies on macrophage lncRNAs, as discussed in this review, could provide valuable knowledge for the development of treatments for various pathological conditions involving macrophages.
Collapse
Affiliation(s)
- Jae-Joon Shin
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeongkwang Park
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyeung-Seob Shin
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Imene Arab
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|