1
|
Omran F, Kyrou I, Osman F, Lim VG, Randeva HS, Chatha K. Cardiovascular Biomarkers: Lessons of the Past and Prospects for the Future. Int J Mol Sci 2022; 23:5680. [PMID: 35628490 PMCID: PMC9143441 DOI: 10.3390/ijms23105680] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a major healthcare burden on the population worldwide. Early detection of this disease is important in prevention and treatment to minimise morbidity and mortality. Biomarkers are a critical tool to either diagnose, screen, or provide prognostic information for pathological conditions. This review discusses the historical cardiac biomarkers used to detect these conditions, discussing their application and their limitations. Identification of new biomarkers have since replaced these and are now in use in routine clinical practice, but still do not detect all disease. Future cardiac biomarkers are showing promise in early studies, but further studies are required to show their value in improving detection of CVD above the current biomarkers. Additionally, the analytical platforms that would allow them to be adopted in healthcare are yet to be established. There is also the need to identify whether these biomarkers can be used for diagnostic, prognostic, or screening purposes, which will impact their implementation in routine clinical practice.
Collapse
Affiliation(s)
- Farah Omran
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Clinical Sciences Research Laboratories, University Hospitals Coventry and Warwickshire, Coventry CV2 2DX, UK
| | - Ioannis Kyrou
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Centre of Applied Biological & Exercise Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Faizel Osman
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Department of Cardiology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Ven Gee Lim
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Department of Cardiology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Harpal Singh Randeva
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Clinical Sciences Research Laboratories, University Hospitals Coventry and Warwickshire, Coventry CV2 2DX, UK
| | - Kamaljit Chatha
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Biochemistry and Immunology Department, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| |
Collapse
|
2
|
Toman H, Sahin H, Erbas M, Turkon H, Simsek T, Kiraz HA, Özkan MTA. Effects of Prophylactic Ozone Therapy on General Anesthesia and Surgical Stress Response: Neutrophil/Lymphocyte Ratio and Ischemia-Modified Albumin. Int Surg 2019; 104:467-473. [DOI: 10.9738/intsurg-d-16-00018.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
General anesthesia and surgical stress cause an acute endocrine, metabolic, and immunologic inflammatory response in organisms and an increase in neutrophil lymphocyte ratio (NLR) and ischemia-modified albumin (IMA) levels. Ozone, other than inhalation administration, reduces the release of antioxidants and some proinflammatory cytokines and has been shown to have an anti-inflammatory effect. Our aim is to research how the NLR and IMA response is affected in rabbits undergoing surgical intervention with general anesthesia given prophylactic with ozone therapy. We divided 12 New Zealand rabbits into 2 groups: group O was given 70 μg/mL 10 mL ozone by the rectal route in 6 sessions on alternate days, and group C was given air by the rectal route. The rabbits underwent surgical intervention under general anesthesia. Blood samples were taken at basal, preoperation, 30 minutes postanesthesia, and 24 hours postoperation and were examined for hemogram and IMA. At 24 hours postoperation, an increase in NLR was observed in both groups, more clearly in group C (P < 0.05). In both groups, comparisons within the groups showed a significant increase in NLR only at 24 hours postoperation compared to other times (P < 0.05).When IMA values were compared, differences between the groups were observed between preoperative values and those at the 30 minutes postanesthesia and 24 hours postoperation (P < 0.05). When general anesthesia and surgical stress response were evaluated using inflammatory parameters of both NLR and IMA, there was significantly less of an increase in levels in rabbits given ozone compared to the control group.
Collapse
Affiliation(s)
| | - Hasan Sahin
- Department of Anesthesiology and Reanimation,
| | - Mesut Erbas
- Department of Anesthesiology and Reanimation,
| | | | | | | | | |
Collapse
|
3
|
Controlling acute rheumatic fever and rheumatic heart disease in developing countries: are we getting closer? Curr Opin Pediatr 2015; 27:116-23. [PMID: 25490689 DOI: 10.1097/mop.0000000000000164] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To describe new developments (2013-2014) in acute rheumatic fever (ARF) and rheumatic heart disease (RHD) relevant to developing countries. RECENT FINDINGS Improved opportunities for the primary prevention of ARF now exist, because of point-of-care antigen tests for Streptococcus pyogenes, and clinical decision rules which inform management of pharyngitis without requiring culture results. There is optimism that a vaccine, providing protection against many ARF-causing S. pyogenes strains, may be available in coming years. Collaborative approaches to RHD control, including World Heart Federation initiatives and the development of registers, offer promise for better control of this disease. New data on RHD-associated costs provide persuasive arguments for better government-level investment in primary and secondary prevention. There is expanding knowledge of potential biomarkers and immunological profiles which characterize ARF/RHD, and genetic mutations conferring ARF/RHD risk, but as yet no new diagnostic testing strategy is ready for clinical application. SUMMARY Reduction in the disease burden and national costs of ARF and RHD are major priorities. New initiatives in the primary and secondary prevention of ARF/RHD, novel developments in pathogenesis and biomarker research and steady progress in vaccine development, are all causes for optimism for improving control of ARF/RHD, which affect the poorest of the poor.
Collapse
|