1
|
Wu CHW, Tomaszewski A, Stark L, Scaglia F, Elenberg E, Schumaker FR. Perspectives from cystinosis: access to healthcare may be a confounding factor for variant classification. Front Genet 2024; 15:1402667. [PMID: 39113682 PMCID: PMC11303213 DOI: 10.3389/fgene.2024.1402667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/19/2024] [Indexed: 08/10/2024] Open
Abstract
Genetic variability persists across diverse populations, and it may impact the characterization of heritable diseases in different ancestral groups. Cystinosis is a metabolic disease caused by pathogenic variants in the CTNS gene causing the cellular accumulation of cystine. We attempted to assess the currently poorly characterized prevalence of cystinosis by employing a population genetics methodology. However, we encountered a significant challenge due to genetic variations across different populations, and the consideration of potential disparities in access to healthcare made our results inconclusive. Pathogenic CTNS variants were identified in a representative global population cohort using The Human Gene Mutation Database (HGMD) and the 1000 Genomes (1 KG) database. The c.124G>A (p.Val42Ile) variant was reported to be pathogenic based on an observation in the white population presenting with atypical phenotypes, but it would be reclassified as benign in the African ancestral group if applying the ACMG allele frequency guideline due to its high allele frequency specifically in this population. Inclusion or exclusion of this c.124G>A (p.Val42Ile) variant results in a significant change in estimated disease prevalence, which can impact the diagnosis and treatment of affected patients with a broad range of phenotypic presentations. This observation led us to postulate that pathogenic manifestations of the disease may be underdiagnosed due to variable expressivity and systemic inequities in access to care, specifically in the African subpopulation. We call for a more cautious and inclusive approach to achieve more equitable care across diverse populations.
Collapse
Affiliation(s)
- Chen-Han Wilfred Wu
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine and University Hospitals, Cleveland, OH, United States
- Department of Urology, Case Western Reserve University School of Medicine and University Hospitals, Cleveland, OH, United States
| | - Alicja Tomaszewski
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine and University Hospitals, Cleveland, OH, United States
- Department of Urology, Case Western Reserve University School of Medicine and University Hospitals, Cleveland, OH, United States
| | - Louisa Stark
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Ewa Elenberg
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Fredrick R. Schumaker
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
2
|
Uribe-Carretero E, Rey V, Fuentes JM, Tamargo-Gómez I. Lysosomal Dysfunction: Connecting the Dots in the Landscape of Human Diseases. BIOLOGY 2024; 13:34. [PMID: 38248465 PMCID: PMC10813815 DOI: 10.3390/biology13010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
Lysosomes are the main organelles responsible for the degradation of macromolecules in eukaryotic cells. Beyond their fundamental role in degradation, lysosomes are involved in different physiological processes such as autophagy, nutrient sensing, and intracellular signaling. In some circumstances, lysosomal abnormalities underlie several human pathologies with different etiologies known as known as lysosomal storage disorders (LSDs). These disorders can result from deficiencies in primary lysosomal enzymes, dysfunction of lysosomal enzyme activators, alterations in modifiers that impact lysosomal function, or changes in membrane-associated proteins, among other factors. The clinical phenotype observed in affected patients hinges on the type and location of the accumulating substrate, influenced by genetic mutations and residual enzyme activity. In this context, the scientific community is dedicated to exploring potential therapeutic approaches, striving not only to extend lifespan but also to enhance the overall quality of life for individuals afflicted with LSDs. This review provides insights into lysosomal dysfunction from a molecular perspective, particularly in the context of human diseases, and highlights recent advancements and breakthroughs in this field.
Collapse
Affiliation(s)
- Elisabet Uribe-Carretero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Caceres, Spain; (E.U.-C.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Caceres, Spain
| | - Verónica Rey
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Jose Manuel Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Caceres, Spain; (E.U.-C.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Caceres, Spain
| | - Isaac Tamargo-Gómez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
3
|
Clinical Characteristics, Molecular Background, and Survival of Egyptian Patients With Gaucher Disease Over a 20-Year Follow-up. J Pediatr Hematol Oncol 2022; 44:243-248. [PMID: 34310471 DOI: 10.1097/mph.0000000000002249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/25/2021] [Indexed: 11/25/2022]
Abstract
This study analyzes the general disease characteristics, impact of enzyme replacement therapy (ERT), and overall survival (OS) of 156 Egyptian patients with Gaucher disease (GD) enrolled on hormone replacement from 1998 to 2017. The mean age at diagnosis was 32.46±12.68 months. Anemia was noted at diagnosis in 50%, thrombocytopenia in 30.7%, severe splenomegaly in 58.7%, severe hepatomegaly in 11.9%, and skeletal findings were detected in 24.3% of the patients. The most prevalent GD type was type 3 (54.5%). Twenty-two of type 3 patients had no neurological manifestations at diagnosis, and 12 developed variable central nervous system manifestations during follow-up. The most common neurological features were limited eye movements, oculomotor apraxia, and squint. Of the 60 patients for whom genotypes were obtained, homozygous L444P was the most common (n=35/60, 58.3%). Treatment with ERT (imiglucerase) revealed significant improvements in blood indices, organ volumes, and growth parameters (P<0.05). Ten (11.7%) type 3 patients did not develop any neurological manifestations under ERT over 20 years. Mortality was 16%, and the 20-year OS was 73.3%. We conclude that in Egypt, type 3 is the most prevalent phenotype of GD, and homozygous L444P is the predominant GBA genotype of GD. Early age at diagnosis and treatment with ERT over 20 years revealed significant improvements in disease manifestations, with an OS of 73.3%.
Collapse
|
4
|
Darwish RK, Rabie WA, El Abd DM, Selim LA, Seliem ZS, Lotfy SA, Mehaney DA. Genetic variants of Pompe disease among a sample of Egyptian pediatric patients. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Cervera Bravo A, Osuna Marco MP, Morán-Jiménez MJ, Martín-Hernández E. Unexpected Cause of Persistent Microcytosis and Neurological Symptoms in a Child: Niemann-Pick Disease Type C. J Pediatr Hematol Oncol 2021; 43:e1238-e1240. [PMID: 33661177 DOI: 10.1097/mph.0000000000002135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/27/2021] [Indexed: 11/25/2022]
Abstract
Atypical microcytic anemias are rare diseases of iron/heme metabolism that can be diagnostically challenging. We report the case of a 2-year-old twin boy with neurodevelopmental delay and persistent microcytosis in whom atypical microcytic anemias was initially suspected. He had low blood iron and transferrin saturation with normal/high ferritin despite iron therapy. Hemoglobinopathies were excluded by conventional/DNA studies. Hepcidin was high but iron-refractory-iron-deficiency anemia was ruled out by a genetic panel. Bone marrow aspiration revealed foamy cells and iron depletion. A genetic study confirmed the diagnosis of Niemann-Pick disease type C which was finally considered the origin of microcytosis through anemia of chronic disease.
Collapse
Affiliation(s)
| | - Marta P Osuna Marco
- Department of Pediatric Hematology and Oncology, Montepríncipe HM Hospital, Boadilla del Monte
| | - María-José Morán-Jiménez
- Instituto de Investigación Sanitaria (Health Research Institute) of the 12 de Octubre University Hospital (imas12), Section 3: Rare Diseases, Group: Porphyrias, Hemochromatosis and Anemias
| | - Elena Martín-Hernández
- Unit of Hereditary Mitochondrial & Metabolic Diseases, Department of Pediatrics, 12 de Octubre University Hospital, National Reference Center for Hereditary Metabolic Diseases (C.S.U.R.) and European Reference Network for Hereditary Metabolic Disorders (MetabERN), Madrid, Spain
| |
Collapse
|
6
|
Fateen E, Abdallah ZY, Nazim WS, Ibrahim M, Radwan A. Mucopolysaccharidoses diagnosis in the era of enzyme replacement therapy in Egypt. Heliyon 2021; 7:e07830. [PMID: 34471711 PMCID: PMC8387752 DOI: 10.1016/j.heliyon.2021.e07830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/09/2021] [Accepted: 08/16/2021] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Undegraded glycosaminoglycans (GAGs) induced by deficiency of enzymes are the primary cause of mucopolyscchardoses. Mucopolysacchardoses (MPS) are a group of rare lysosomal storage diseases (LSD). The quantification of a specific enzymatic activity is needed for accurate diagnosis. The objectives of this work were: first, to continue the study of mucopolysacchardoses disease in Egypt after the start of using the enzyme replacement therapy (ERT). Second, to define the commonest types among our population after 18 years experience with the disease. Third, to compare the different MPS types' distribution, diagnosed after the start of the ERT, to identify the impact of using ERT on the number and type of diagnosed patients. METHOD Urinary GAGs were measured for all referred cases followed by two-dimensional electrophoretic separation for cases with high levels of GAGs; the specific enzyme activity was assayed for each type depending on the abnormal electrophoretic pattern obtained. Clinically suspected cases of Morquio syndrome were directly subjected to measuring the specific enzyme. RESULTS Out of 1448 suspected cases, 622 (42.9%) MPS patients were diagnosed revealing the following distribution: MPS I (172, 27.7%), MPS II (57, 9.1%), MPS III [(177, 28.5%: 134 type B and 43 types A, C or D)], MPS IVA (124, 19.9%), MPS VI (90, 14.5%) and MPS VII (2, 0.3%). MPS III was the most commonly diagnosed type followed by MPS I and MPS IVA. MPS IVA represented the most common type receiving treatment, followed by MPS I, MPS II and MPS VI. CONCLUSION The presence of treatment encouraged the affected families and physicians to seek diagnosis. MPS III was the commonest type among our studied group after 7 years of diagnosis, while MPS IVA was the commonest type receiving treatment.
Collapse
Affiliation(s)
- Ekram Fateen
- Biochemical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, 12622, Egypt
| | - Zeinab Y. Abdallah
- Biochemical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, 12622, Egypt
| | - Walaa S. Nazim
- Biochemical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, 12622, Egypt
| | - Mona Ibrahim
- Biochemical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, 12622, Egypt
| | - Amira Radwan
- Biochemical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, 12622, Egypt
| |
Collapse
|
7
|
Jamalpoor A, Othman A, Levtchenko EN, Masereeuw R, Janssen MJ. Molecular Mechanisms and Treatment Options of Nephropathic Cystinosis. Trends Mol Med 2021; 27:673-686. [PMID: 33975805 DOI: 10.1016/j.molmed.2021.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/15/2022]
Abstract
Nephropathic cystinosis is a severe, monogenic systemic disorder that presents early in life and leads to progressive organ damage, particularly affecting the kidneys. It is caused by mutations in the CTNS gene, which encodes the lysosomal transporter cystinosin, resulting in intralysosomal accumulation of cystine. Recent studies demonstrated that the loss of cystinosin is associated with disrupted autophagy dynamics, accumulation of distorted mitochondria, and increased oxidative stress, leading to abnormal proliferation and dysfunction of kidney cells. We discuss these molecular mechanisms driving nephropathic cystinosis. Further, we consider how unravelling molecular mechanisms supports the identification and development of new strategies for cystinosis by the use of small molecules, biologicals, and genetic rescue of the disease in vitro and in vivo.
Collapse
Affiliation(s)
- Amer Jamalpoor
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584, CG, Utrecht, The Netherlands
| | - Amr Othman
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584, CG, Utrecht, The Netherlands
| | - Elena N Levtchenko
- Department of Pediatric Nephrology & Growth and Regeneration, University Hospitals Leuven & KU Leuven, Leuven, Belgium
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584, CG, Utrecht, The Netherlands.
| | - Manoe J Janssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584, CG, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Thejeal RF, Wahhab SBA, Saadi NW. Pitfalls in the diagnosis of Gaucher disease in Iraq: A diagnostic experience from a developing country. Pak J Med Sci 2021; 37:782-787. [PMID: 34104165 PMCID: PMC8155412 DOI: 10.12669/pjms.37.3.2930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background and Objectives: Gaucher disease (GD) is a rare hereditary disorder caused by deficiency of the lysosomal enzyme β-glucocerebrosidase. An early and definitive diagnosis minimizes the sequelae of misdiagnoses, and unnecessary and invasive diagnostic procedures. Methods: A cross-sectional descriptive study was conducted in the period from June to August, 2018, to analysing data of thirteen patients, retrospectively. They presented to the gastrointestinal and metabolic clinics in Children Welfare Teaching Hospital in Iraq, and had wrong and delayed diagnosis of GD. Results: Two groups of patients were identified, based on diagnosis by enzymatic assay (considering the test positive when the enzyme level is below the normal value); those who had false positive (low level of the enzyme) result and received enzyme replacement therapy for long time, and those who had false negative (normal level of the enzyme) results which caused delay in their diagnosis and treatment. Two main factors that misled the diagnosis were identified. Conclusion: Each patient with Gaucher disease need to be approached by taking a thorough history, a proper clinical examination, and then by being investigated, accordingly. Biomarkers and molecular genetic studies are more accurate and solid additional tools, to the enzymatic assays on dried blood sample (DBS).
Collapse
Affiliation(s)
- Rabab Farhan Thejeal
- Rabab Farhan Thejeal Assistant Professor, College of Medicine-University of Baghdad, Pediatric Department, Pediatric Gastroenterology, Children Welfare Teaching Hospital, Medical City Complex, Baghdad, Iraq
| | - Saja Baheer Abdul Wahhab
- Saja Baheer Abdul Wahhab Pediatrician-C.A.B.P., Metabolic Clinic, Children Welfare Teaching Hospital, Baghdad, Iraq
| | - Nebal Waill Saadi
- Nebal Waill Saadi Assistant Professor, College of Medicine, University of Baghdad, Pediatric Neurology, Children Welfare Teaching Hospital, Baghdad, Iraq
| |
Collapse
|
9
|
Novel biomarkers for lysosomal storage disorders: Metabolomic and proteomic approaches. Clin Chim Acta 2020; 509:195-209. [PMID: 32561345 DOI: 10.1016/j.cca.2020.06.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022]
Abstract
Lysosomal storage disorders (LSDs) are characterized by the accumulation of specific disease substrates inside the lysosomes of various cells, eventually leading to the deterioration of cellular function and multisystem organ damage. With the continuous discovery and validation of novel and advanced therapies for most LSDs, there is an urgent need to discover more versatile and clinically relevant biomarkers. The utility of these biomarkers should ideally extend beyond the screening and diagnosis of LSDs to the evaluation of disease severity and monitoring of therapy. Metabolomic and proteomic approaches provide the means to the discovery and validation of such novel biomarkers. This is achieved mainly through the application of various mass spectrometric techniques to common and easily accessible biological samples, such as plasma, urine and dried blood spots. In this review, we tried to summarize the complexity of the lysosomal disorders phenotypes, their current diagnostic and therapeutic approaches, the various techniques supporting metabolomic and proteomic studies and finally we tried to explore the newly discovered biomarkers for most LSDs and their reported clinical values.
Collapse
|
10
|
Gawad Tantawy AA, Moneam Adly AA, Madkour SS, Salah El-Din NY. Pulmonary manifestations in young Gaucher disease patients: Phenotype-genotype correlation and radiological findings. Pediatr Pulmonol 2020; 55:441-448. [PMID: 31774256 DOI: 10.1002/ppul.24544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/28/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Although pulmonary involvement is important orbidity in Gaucher disease (GD), it is previously reported to be rare. Moreover, no epidemiological studies described its prevalence specifically in children. The clinical spectrum and risk determinants for this complication and its long-term response to therapy are unknown. AIM To assess the prevalence of clinical and radiological pulmonary involvement in pediatric GD patients and its relation to Gaucher severity and genotype. METHODS Forty-eight GD patients were studied focusing on pulmonary and neurological manifestations with assessment of severity scoring index (SSI; a Gaucher specific scale). Detailed enzyme replacement therapy (ERT) history was taken regarding dose, duration, and effect on pulmonary manifestations. Genotype was performed to 30 patients. Radiological investigations included plain chest-radiography (CXR), high-resolution CT (HRCT), and hepatic and splenic volumes. RESULTS Fifteen patients had type 1 (31.2%) and 33 patients had type 3 GD (68.8%). The most common mutation was L483P detected in 25 patients (83.3%). Sixteen patients had recurrent chest wheeze (33%). CXR showed pulmonary findings in 17 patients (35.4%) while HRCT-chest showed affection in 31 patients (64.6%). The ground-glass pattern was present in 14 patients (29.1%), reticulonodular infiltration in 9 patients (18.8%), air trapping in 6 patients (12.5%), and bronchiectatic changes in two patients (4.2%). Univariate logistic regression analysis for predictors of abnormal HRCT-chest was negatively correlated with platelets (P = .01) and hemoglobin (P = .018) and positively correlated with recurrent chest wheezing (P = .019), abnormal CXR (P = .007), and SSI (P = .009). CONCLUSION Pulmonary involvement is a prevalent morbidity of GD with variable presentations. CXR for early detection of pulmonary involvement in GD is safe and highly predictive.
Collapse
Affiliation(s)
| | | | - Sherihane S Madkour
- Department of Radiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
11
|
Ibraheem MF, Ahmed SJ. Clinical and Genetic Varieties of Gaucher Disease in Iraqi Children. JOURNAL OF CHILD SCIENCE 2020. [DOI: 10.1055/s-0040-1720956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractGaucher disease (GD), which is due to a deficiency in the lysosomal enzyme β-glucocerebrosidase, is a rare genetic disorder. It is characterized by a wide variety of clinical manifestations and severity of symptoms, making it difficult to manage. A cross-sectional hospital-based genetic study was undertaken with 32 pediatric patients. We recruited 21 males and 11 females diagnosed with GD, with a male-to-female ratio of 1.91:1. The mean age of the study population was 8.79 ± 4.37 years with an age range from 8 months to 17 years. We included patients on clinical evaluation from 2011 to 2019. An enzyme assay test was used to measure β-glucosidase enzyme activity in leukocytes and the GBA gene study was performed by polymerase chain reaction technique. We found GD type 1 in 27 (84.37%) participants, GD type 3 in five (15.63%) participants, while none classified as GD type 2. The dominant mutation in GD 1 was N370S in 81.5%, of which two-thirds were homozygous. The second common mutation in this type of disease (L444P) was present in nine cases (40.9%), two of whom were homozygous (9.9%). Meanwhile, R463C was present in six cases (27.27%), of whom one was homozygous. In GD 3, the dominant mutation was L444P as seen in 80% of the patients followed by N370S and R463C in 20%. This study shows that the most common mutant allele in this study was N370S, followed by L444P. Further large-scale studies with more advanced designs are recommended to explore the sequences of GBA genes.
Collapse
|
12
|
Psychiatric manifestations in Egyptian Gaucher patients on enzyme replacement therapy. J Psychosom Res 2019; 122:75-81. [PMID: 31079842 DOI: 10.1016/j.jpsychores.2019.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Gaucher disease (GD) may include psychiatric symptoms as a part of its wide spectrum of manifestations, with several reports describing its association with mood or psychotic symptoms. We investigated the presence of psychiatric manifestations in an Egyptian sample of Gaucher Disease (GD) patients. METHODS Our sample consisted of 22 GD patients (diagnosed by low glucocerebrosidase (GBA) activity in leukocytes or fibroblasts and molecular analysis by full (GBA) gene sequencing). 13 patients were classified as GD type 1 and 9 patients as GD type 3. We assessed the presence of psychiatric symptoms using the Mini-international neuropsychiatric interview (M.I.N·I) and the Mini International Neuropsychiatric Interview for Children and Adolescents (MINI-KID) tools. Arabic versions were used. RESULTS The results showed that 41% of the sample had psychiatric disorders, with the most common being depression. None was receiving any form of psychiatric treatment. We found no statistically significant association between the presence of psychiatric disorders and any of the clinical variables of GD, its phenotype, or genotype. CONCLUSION The current results suggest that GD patients are susceptible to psychiatric disorders. However, these results need to be replicated on a wider scale. These findings are of ultimate importance, considering the lack of integrated services addressing both the medical and psychological aspects of inborn errors of metabolism in many countries.
Collapse
|
13
|
Mahmoud IG, Elmonem MA, Elkhateeb NM, Elnaggar W, Sobhi A, Girgis MY, Kamel M, Shaheen Y, Samaha M, Ramadan A, Zaki MS, El-Hawary B, Hassan SA, Khalifa IA, Mossad F, Al-Menabawy NM, Zielke S, Gleeson JG, Rolfs A, Selim LA. Clinical, biomarker and genetic spectrum of Niemann-Pick type C in Egypt: The detection of nine novel NPC1 mutations. Clin Genet 2019; 95:537-539. [PMID: 30633340 DOI: 10.1111/cge.13492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Iman G Mahmoud
- Pediatric Neurology Department, Cairo University, Cairo, Egypt
| | - Mohamed A Elmonem
- Clinical and Chemical Pathology Department, Cairo University, Cairo, Egypt
| | | | - Walaa Elnaggar
- Pediatric Neurology Department, Cairo University, Cairo, Egypt
| | - Ahmed Sobhi
- Pediatric Neurology Department, Cairo University, Cairo, Egypt
| | - Marian Y Girgis
- Pediatric Neurology Department, Cairo University, Cairo, Egypt
| | - Mona Kamel
- Pediatric Neurology Department, Cairo University, Cairo, Egypt
| | - Yara Shaheen
- Pediatric Neurology Department, Cairo University, Cairo, Egypt
| | - Mona Samaha
- Pediatric Neurology Department, Cairo University, Cairo, Egypt
| | - Areef Ramadan
- Pediatric Neurology Department, Cairo University, Cairo, Egypt
| | - Maha S Zaki
- Clinical Genetics Department, National Research Centre, Cairo, Egypt
| | | | - Sawsan A Hassan
- Pediatric Neurology Department, Cairo University, Cairo, Egypt
| | - Iman A Khalifa
- Pediatric Neurology Department, Cairo University, Cairo, Egypt
| | - Fawzya Mossad
- Pediatric Neurology Department, Cairo University, Cairo, Egypt
| | | | - Susanne Zielke
- Albrecht-Kossel-Institute for Neurodegeneration, Rostock University Medical Centre, Rostock, Germany.,Centogene AG, Rostock, Germany
| | - Joseph G Gleeson
- Neuroscience Department, Howard Hughes Medical Institute, University of California, San Diego, California
| | - Arndt Rolfs
- Albrecht-Kossel-Institute for Neurodegeneration, Rostock University Medical Centre, Rostock, Germany.,Centogene AG, Rostock, Germany
| | - Laila A Selim
- Pediatric Neurology Department, Cairo University, Cairo, Egypt
| |
Collapse
|
14
|
Makuloluwa AK, Shams F. Cysteamine hydrochloride eye drop solution for the treatment of corneal cystine crystal deposits in patients with cystinosis: an evidence-based review. Clin Ophthalmol 2018; 12:227-236. [PMID: 29416314 PMCID: PMC5789046 DOI: 10.2147/opth.s133516] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cystinosis is a rare, autosomal recessive disorder leading to defective transport of cystine out of lysosomes. Subsequent cystine crystal accumulation can occur in various tissues, including the ocular surface. This review explores the efficacy of cysteamine hydrochloride eye drops in the treatment of corneal cystine crystal accumulation and its safety profile.
Collapse
Affiliation(s)
| | - Fatemeh Shams
- Tennent Institute of Ophthalmology, Gartnavel General Hospital, Glasgow, UK
| |
Collapse
|
15
|
Mehta A, Belmatoug N, Bembi B, Deegan P, Elstein D, Göker-Alpan Ö, Lukina E, Mengel E, Nakamura K, Pastores GM, Pérez-López J, Schwartz I, Serratrice C, Szer J, Zimran A, Di Rocco M, Panahloo Z, Kuter DJ, Hughes D. Exploring the patient journey to diagnosis of Gaucher disease from the perspective of 212 patients with Gaucher disease and 16 Gaucher expert physicians. Mol Genet Metab 2017; 122:122-129. [PMID: 28847676 DOI: 10.1016/j.ymgme.2017.08.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/03/2017] [Accepted: 08/03/2017] [Indexed: 11/17/2022]
Abstract
Gaucher disease (GD) is a rare hereditary disorder caused by a deficiency of the lysosomal enzyme β-glucocerebrosidase. Diagnosis is challenging owing to a wide variability in clinical manifestations and severity of symptoms. Many patients may experience marked delays in obtaining a definitive diagnosis. The two surveys reported herein aimed to explore the patient journey to diagnosis of GD from the perspectives of Gaucher expert physicians and patients. Findings from the surveys revealed that many patients experienced diagnostic delays and misdiagnoses, with nearly 1 in 6 patients stating that they were not diagnosed with GD for 7years or more after first consulting a doctor. Physicians and patients both reported multiple referrals to different specialties before a diagnosis of GD was obtained, with primary care, haematology/haematology-oncology and paediatrics the main specialties to which patients first presented. Splenomegaly, thrombocytopenia, anaemia and bone pain were reported as the most common medical problems at first presentation in both surveys. These findings support a clear need for straightforward and easy-to-follow guidance designed to assist non-specialists to identify earlier patients who are at risk of GD.
Collapse
Affiliation(s)
- Atul Mehta
- Lysosomal Storage Disorders Unit, Department of Haematology, Royal Free Hospital, UCL Medical School, London, UK.
| | - Nadia Belmatoug
- Referral Centre for Lysosomal Diseases, University Hospital Paris Nord Val de Seine, Clichy, France.
| | - Bruno Bembi
- Academic Medical Centre Hospital of Udine, Regional Coordinator Centre for Rare Diseases, Udine, Italy.
| | | | | | - Özlem Göker-Alpan
- Lysosomal Disorders Unit and Center for Clinical Trials, O&O Alpan, LLC, Fairfax, VA, USA.
| | - Elena Lukina
- National Research Center for Hematology, Moscow, Russia.
| | - Eugen Mengel
- Villa Metabolica, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| | | | - Gregory M Pastores
- University College Dublin, and Mater Misericordiae University Hospital, Dublin, Ireland.
| | | | - Ida Schwartz
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Christine Serratrice
- Foundation Hospital Saint Joseph, Marseille, France and Geneva University Hospital, Thonex, Switzerland.
| | - Jeffrey Szer
- Royal Melbourne Hospital, Parkville, Victoria, Australia.
| | - Ari Zimran
- Gaucher Clinic, Shaare Zedek Medical Center, affiliated with the Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | - Maja Di Rocco
- Unit of Rare Diseases, Department of Pediatrics, Giannina Gaslini Institute, Genoa, Italy.
| | | | - David J Kuter
- Center for Hematology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Derralynn Hughes
- Lysosomal Storage Disorders Unit, Department of Haematology, Royal Free Hospital, UCL Medical School, London, UK.
| |
Collapse
|
16
|
Saleem TH, Hassan MH, Ahmed AEA, Sayed AA, Mohamed NA, Elsayh KI, El-Ebidi AM, Mohammed NB. Clinical and genetic assessment of pediatric patients with Gaucher’s disease in Upper Egypt. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2017. [DOI: 10.1016/j.ejmhg.2016.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
17
|
Hendriksz CJ, Anheim M, Bauer P, Bonnot O, Chakrapani A, Corvol JC, de Koning TJ, Degtyareva A, Dionisi-Vici C, Doss S, Duning T, Giunti P, Iodice R, Johnston T, Kelly D, Klünemann HH, Lorenzl S, Padovani A, Pocovi M, Synofzik M, Terblanche A, Then Bergh F, Topçu M, Tranchant C, Walterfang M, Velten C, Kolb SA. The hidden Niemann-Pick type C patient: clinical niches for a rare inherited metabolic disease. Curr Med Res Opin 2017; 33:877-890. [PMID: 28276873 DOI: 10.1080/03007995.2017.1294054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 01/31/2017] [Accepted: 02/08/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND Niemann-Pick disease type C (NP-C) is a rare, inherited neurodegenerative disease of impaired intracellular lipid trafficking. Clinical symptoms are highly heterogeneous, including neurological, visceral, or psychiatric manifestations. The incidence of NP-C is under-estimated due to under-recognition or misdiagnosis across a wide range of medical fields. New screening and diagnostic methods provide an opportunity to improve detection of unrecognized cases in clinical sub-populations associated with a higher risk of NP-C. Patients in these at-risk groups ("clinical niches") have symptoms that are potentially related to NP-C, but go unrecognized due to other, more prevalent clinical features, and lack of awareness regarding underlying metabolic causes. METHODS Twelve potential clinical niches identified by clinical experts were evaluated based on a comprehensive, non-systematic review of literature published to date. Relevant publications were identified by targeted literature searches of EMBASE and PubMed using key search terms specific to each niche. Articles published in English or other European languages up to 2016 were included. FINDINGS Several niches were found to be relevant based on available data: movement disorders (early-onset ataxia and dystonia), organic psychosis, early-onset cholestasis/(hepato)splenomegaly, cases with relevant antenatal findings or fetal abnormalities, and patients affected by family history, consanguinity, and endogamy. Potentially relevant niches requiring further supportive data included: early-onset cognitive decline, frontotemporal dementia, parkinsonism, and chronic inflammatory CNS disease. There was relatively weak evidence to suggest amyotrophic lateral sclerosis or progressive supranuclear gaze palsy as potential niches. CONCLUSIONS Several clinical niches have been identified that harbor patients at increased risk of NP-C.
Collapse
Affiliation(s)
- Christian J Hendriksz
- a Salford Royal NHS Foundation Trust , Manchester , UK
- b University of Pretoria , Pretoria , South Africa
| | - Mathieu Anheim
- c University of Strasbourg , Hautepierre Hospital , Strasbourg , France
| | - Peter Bauer
- d Institute of Medical Genetics and Applied Genomics, Tübingen University , Tübingen, Germany
- e CENTOGENE AG , Rostock , Germany
| | | | | | - Jean-Christophe Corvol
- h Sorbonne University , UPMC and Hôpital Pitié-Salpêtrière, Department of Nervous System Diseases , Paris , France
| | | | - Anna Degtyareva
- j Federal State Budget Institution, Research Center for Obstetrics , Gynecology and Perinatology , Moscow , Russia
| | | | - Sarah Doss
- l Charite University Medicine Berlin , Department of Neurology , Berlin , Germany
| | | | - Paola Giunti
- n University College London, Institute of Neurology , London , UK
| | - Rosa Iodice
- o University Federico II Naples , Naples , Italy
| | | | | | - Hans-Hermann Klünemann
- r University Clinic for Psychiatry and Psychotherapy, Regensburg University , Regensburg , Germany
| | - Stefan Lorenzl
- s Ludwig Maximillian University , Munich , Germany
- t Paracelus Medical University , Salzburg , Austria
| | - Alessandro Padovani
- u Neurology Unit, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | | | - Matthis Synofzik
- w Department of Neurodegenerative Diseases , Hertie Institute for Clinical Brain Research , Tübingen, Germany
- x German Center for Neurodegenerative Diseases (DZNE) , Tübingen, Germany
| | | | | | - Meral Topçu
- z Hacettepe University Children's Hospital , Ankara , Turkey
| | | | | | | | - Stefan A Kolb
- ac Actelion Pharmaceuticals Ltd , Allschwil , Switzerland
| |
Collapse
|
18
|
Cherqui S, Courtoy PJ. The renal Fanconi syndrome in cystinosis: pathogenic insights and therapeutic perspectives. Nat Rev Nephrol 2016; 13:115-131. [PMID: 27990015 DOI: 10.1038/nrneph.2016.182] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cystinosis is an autosomal recessive metabolic disease that belongs to the family of lysosomal storage disorders. It is caused by a defect in the lysosomal cystine transporter, cystinosin, which results in an accumulation of cystine in all organs. Despite the ubiquitous expression of cystinosin, a renal Fanconi syndrome is often the first manifestation of cystinosis, usually presenting within the first year of life and characterized by the early and severe dysfunction of proximal tubule cells, highlighting the unique vulnerability of this cell type. The current therapy for cystinosis, cysteamine, facilitates lysosomal cystine clearance and greatly delays progression to kidney failure but is unable to correct the Fanconi syndrome. This Review summarizes decades of studies that have fostered a better understanding of the pathogenesis of the renal Fanconi syndrome associated with cystinosis. These studies have unraveled some of the early molecular changes that occur before the onset of tubular atrophy and identified a role for cystinosin beyond cystine transport, in endolysosomal trafficking and proteolysis, lysosomal clearance, autophagy and the regulation of energy balance. These studies have also led to the identification of new potential therapeutic targets and here, we outline the potential role of stem cell therapy for cystinosis and provide insights into the mechanism of haematopoietic stem cell-mediated kidney protection.
Collapse
Affiliation(s)
- Stephanie Cherqui
- Department of Pediatrics, Division of Genetics, University of California San Diego, 9500 Gilman Drive, MC 0734, La Jolla, California 92093-0734, USA
| | - Pierre J Courtoy
- Cell biology, de Duve Institute and Université catholique de Louvain, UCL-Brussels, 75 Avenue Hippocrate, B-1200 Brussels, Belgium
| |
Collapse
|
19
|
Elmonem MA, Veys KR, Soliman NA, van Dyck M, van den Heuvel LP, Levtchenko E. Cystinosis: a review. Orphanet J Rare Dis 2016; 11:47. [PMID: 27102039 PMCID: PMC4841061 DOI: 10.1186/s13023-016-0426-y] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/15/2016] [Indexed: 01/01/2023] Open
Abstract
Cystinosis is the most common hereditary cause of renal Fanconi syndrome in children. It is an autosomal recessive lysosomal storage disorder caused by mutations in the CTNS gene encoding for the carrier protein cystinosin, transporting cystine out of the lysosomal compartment. Defective cystinosin function leads to intra-lysosomal cystine accumulation in all body cells and organs. The kidneys are initially affected during the first year of life through proximal tubular damage followed by progressive glomerular damage and end stage renal failure during mid-childhood if not treated. Other affected organs include eyes, thyroid, pancreas, gonads, muscles and CNS. Leucocyte cystine assay is the cornerstone for both diagnosis and therapeutic monitoring of the disease. Several lines of treatment are available for cystinosis including the cystine depleting agent cysteamine, renal replacement therapy, hormonal therapy and others; however, no curative treatment is yet available. In the current review we will discuss the most important clinical features of the disease, advantages and disadvantages of the current diagnostic and therapeutic options and the main topics of future research in cystinosis.
Collapse
Affiliation(s)
- Mohamed A Elmonem
- Department of Pediatric Nephrology & Growth and Regeneration, University Hospitals Leuven & KU Leuven, UZ Herestraat 49-3000, Leuven, Belgium.,Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Koenraad R Veys
- Department of Pediatric Nephrology & Growth and Regeneration, University Hospitals Leuven & KU Leuven, UZ Herestraat 49-3000, Leuven, Belgium
| | - Neveen A Soliman
- Department of Pediatrics, Center of Pediatric Nephrology and Transplantation (CPNT), Faculty of Medicine, Cairo University, Cairo, Egypt.,EGORD, Egyptian group of orphan renal diseases, Cairo, Egypt
| | - Maria van Dyck
- Department of Pediatric Nephrology & Growth and Regeneration, University Hospitals Leuven & KU Leuven, UZ Herestraat 49-3000, Leuven, Belgium
| | - Lambertus P van den Heuvel
- Department of Pediatric Nephrology & Growth and Regeneration, University Hospitals Leuven & KU Leuven, UZ Herestraat 49-3000, Leuven, Belgium.,Department of Pediatric Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elena Levtchenko
- Department of Pediatric Nephrology & Growth and Regeneration, University Hospitals Leuven & KU Leuven, UZ Herestraat 49-3000, Leuven, Belgium.
| |
Collapse
|