1
|
Agibothu Kupparam HK, Shah I, Chandrasekaran P, Mane S, Sharma S, Thangavelu BR, Vilvamani S, Annavi V, Mahalingam SM, Thiruvengadam K, Navaneethapandian PG, Gandhi S, Poojari V, Nalwalla Z, Oswal V, Giridharan P, Babu SB, Rathinam S, Frederick A, Mankar S, Jeyakumar SM. Pharmacokinetics of anti-TB drugs in children and adolescents with drug-resistant TB: a multicentre observational study from India. J Antimicrob Chemother 2024; 79:2939-2947. [PMID: 39308327 DOI: 10.1093/jac/dkae311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/20/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Drug-resistant tuberculosis (DR-TB) is one of the challenging forms of TB to treat, not only in adults but also in children and adolescents. Further, there is a void in the treatment strategy exclusively for children due to various reasons, including paucity of pharmacokinetic (PK) data on anti-TB drugs across the globe. In this context, the present study aimed at assessing the PK of some of the anti-TB drugs used in DR-TB treatment regimens. METHOD A multicentre observational study was conducted among DR-TB children and adolescents (n = 200) aged 1-18 years (median: 12 years; IQR: 9-14) treated under programmatic settings in India. Steady-state PK (intensive: n = 89; and sparse: n = 111) evaluation of moxifloxacin, levofloxacin, cycloserine, ethionamide, rifampicin, isoniazid and pyrazinamide was carried out by measuring plasma levels using HPLC methods. RESULTS In the study population, the frequency of achieving peak plasma concentrations ranged between 13% (for rifampicin) to 82% (for pyrazinamide), whereas the frequency of suboptimal peak concentration for pyrazinamide, cycloserine, moxifloxacin, levofloxacin and rifampicin was 15%, 19%, 29%, 41% and 74%, respectively. Further, the frequency of supratherapeutic levels among patients varied between 3% for pyrazinamide and 60% for isoniazid. In the below-12 years age category, the median plasma maximum concentration and 12 h exposure of moxifloxacin were significantly lower than that of the above-12 years category despite similar weight-adjusted dosing. CONCLUSIONS Age significantly impacted the plasma concentration and exposure of moxifloxacin. The observed frequencies of suboptimal and supratherapeutic concentrations underscore the necessity for dose optimization and therapeutic drug monitoring in children and adolescents undergoing DR-TB treatment.
Collapse
Affiliation(s)
- Hemanth Kumar Agibothu Kupparam
- Department of Clinical Pharmacology, ICMR-National Institute for Research in Tuberculosis, No.1 Mayor Sathiyamoorthy Road, Chetpet, Chennai 600 031, Tamil Nadu, India
| | - Ira Shah
- Pediatric Infectious Diseases and Pediatric GI, Hepatology, Pediatric DR TB (State), Center of Excellence, Department of Pediatric Infectious Diseases, B.J. Wadia Hospital for Children, Mumbai, India
| | - Padmapriyadarsini Chandrasekaran
- Department of Clinical Research, ICMR-National Institute for Research in Tuberculosis, No.1 Mayor Sathiyamoorthy Road, Chetpet, Chennai 600 031, Tamil Nadu, India
| | - Sushant Mane
- Department of Pediatrics, State Pediatric Center of Excellence for TB, Grant Government Medical College, Sir JJ Group of Hospitals, Mumbai, India
| | - Sangeeta Sharma
- Department of Pediatrics, National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | - Bharathi Raja Thangavelu
- Department of Clinical Pharmacology, ICMR-National Institute for Research in Tuberculosis, No.1 Mayor Sathiyamoorthy Road, Chetpet, Chennai 600 031, Tamil Nadu, India
| | - Sudha Vilvamani
- Department of Clinical Pharmacology, ICMR-National Institute for Research in Tuberculosis, No.1 Mayor Sathiyamoorthy Road, Chetpet, Chennai 600 031, Tamil Nadu, India
| | - Vijayakumar Annavi
- Department of Clinical Pharmacology, ICMR-National Institute for Research in Tuberculosis, No.1 Mayor Sathiyamoorthy Road, Chetpet, Chennai 600 031, Tamil Nadu, India
| | - Santhana Mahalingam Mahalingam
- Department of Clinical Pharmacology, ICMR-National Institute for Research in Tuberculosis, No.1 Mayor Sathiyamoorthy Road, Chetpet, Chennai 600 031, Tamil Nadu, India
| | - Kannan Thiruvengadam
- Department of Epidemiology Statistics, ICMR-National Institute for Research in Tuberculosis, No.1 Mayor Sathiyamoorthy Road, Chetpet, Chennai 600 031, Tamil Nadu, India
| | - Poorna Gangadevi Navaneethapandian
- Department of Clinical Research, ICMR-National Institute for Research in Tuberculosis, No.1 Mayor Sathiyamoorthy Road, Chetpet, Chennai 600 031, Tamil Nadu, India
| | - Srushti Gandhi
- Pediatric Infectious Diseases and Pediatric GI, Hepatology, Pediatric DR TB (State), Center of Excellence, Department of Pediatric Infectious Diseases, B.J. Wadia Hospital for Children, Mumbai, India
| | - Vishrutha Poojari
- Pediatric Infectious Diseases and Pediatric GI, Hepatology, Pediatric DR TB (State), Center of Excellence, Department of Pediatric Infectious Diseases, B.J. Wadia Hospital for Children, Mumbai, India
| | - Zahabiya Nalwalla
- Pediatric Infectious Diseases and Pediatric GI, Hepatology, Pediatric DR TB (State), Center of Excellence, Department of Pediatric Infectious Diseases, B.J. Wadia Hospital for Children, Mumbai, India
| | - Vikas Oswal
- DR-TB Site-Shatabdi Municipal Hospital, Govandi, Mumbai, India
| | - Prathiksha Giridharan
- Department of Epidemiology, ICMR-National Institute for Research in Tuberculosis, No.1 Mayor Sathiyamoorthy Road, Chetpet, Chennai 600 031, Tamil Nadu, India
| | - Sarath Balaji Babu
- Department of Pediatric Pulmonology, Institute of Child Health and Hospital for Children, Chennai, Tamil Nadu, India
| | - Sridhar Rathinam
- Government Hospital of Thoracic Medicine, Chennai, Tamil Nadu, India
| | | | - Suhbangi Mankar
- DR-TB Site-Shatabdi Municipal Hospital, Govandi, Mumbai, India
| | - Shanmugam Murugaiha Jeyakumar
- Department of Clinical Pharmacology, ICMR-National Institute for Research in Tuberculosis, No.1 Mayor Sathiyamoorthy Road, Chetpet, Chennai 600 031, Tamil Nadu, India
| |
Collapse
|
2
|
Mukherjee A, Gowtham L, Kabra SK, Lodha R, Velpandian T. Pharmacokinetic-Pharmacodynamic (PK-PD) Analysis of Second-Line Anti-Tubercular Drugs in Indian Children with Multi-Drug Resistance. Indian J Pediatr 2024:10.1007/s12098-024-05135-9. [PMID: 38802673 DOI: 10.1007/s12098-024-05135-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/12/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVES To conduct a thorough pharmacokinetic (PK) - pharmacodynamic (PD) analysis of second-line anti-tubercular therapy (ATT) in children diagnosed with multi-drug resistant tuberculosis (MDR-TB). METHODS Twenty-seven children undergoing second-line ATT, including kanamycin (KM, n = 13), fluoroquinolones (FQs, n = 26), ethionamide (ETH, n = 20), para amino salicylic acid (PASA, n = 4), and cycloserine (CS, n = 15), were sampled at 0 (pre-dose), 1, 2, 3, and 4 h post-drug administration. Plasma drug levels were determined using a mass spectrometer and the collected dataset underwent non-compartmental PK analysis using PK solver ver2.0. PK/PD assessments involved individual drug simulation studies on 1000 subjects using Modviz Pop ver 1.0 in R-software. RESULTS A total of 22 and 5 children were considered as responders and non-responders, respectively. Non-compartmental PK analysis revealed mean plasma drug levels of this study cohort attained the targeted maximum drug plasma concentration (Cmax). The ratio of Cmax /minimum inhibitory concentration (MIC) or the area under the curve (AUC)/MIC of the studied drugs had not shown a significant difference between responders and non-responders. Non-responders of ETH and ofloxacin had shown deviation from the derived dose-response profile for the simulated population. CONCLUSIONS The management of MDR-TB with second-line ATT following national guidelines had cured the majority of the children (> 80%) who participated in the study. Inter-individual variability in few children from the targeted Cmax range suggests the need for future investigations on pharmacogenomic aspects of drug metabolism.
Collapse
Affiliation(s)
- Aparna Mukherjee
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Lakshminarayanan Gowtham
- Ocular Pharmacology and Pharmacy Division, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sushil Kumar Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Thirumurthy Velpandian
- Ocular Pharmacology and Pharmacy Division, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|